首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylokinase (SAK) as the third generation thrombolytic molecule is a promising agent for the treatment of thrombosis. SAK variant of SAKфC was expressed in Pichia pastoris strains KM71H and GS115. The codon adaptation index of SAK was improved from 0.75 to 0.89. The expression of recombinant SAK (rSAK) reached to its maximum (310?mg/L of the culture medium) after 48-hr stimulation with 3% methanol and remained steady until day 5. The maximum activity of the enzyme was at pH 8.6 and 37°C. It was highly active at temperatures 20–37°C and pH ranges of 6.8–9 (relative residual activity more than 80%). It was determined that rSAK was 73.8% of the total proteins secreted by P. pastoris KM71H into the culture media. The specific activities of rSAK were measured as 9,002 and 21,042?U/mg for the nonpurified and purified proteins, respectively. The quantity of the purified protein (>99% purity) was 720?µg/mL with a purification factor of 2.34. Western blot analysis showed two bands of nearly 22 and 18.6?kDa. It was concluded that P. pastoris is a proper host for expression of biologically active and endotoxin-free rSAK due to its high expression and low protein impurity in culture supernatant.  相似文献   

2.
Staphylokinase (SAK) is a promising thrombolytic agent for treating blood-clotting disorders. Recombinant SAK (rSAK) was produced after integration of the gene into Pichia pastoris genome. The recombinant Pichia carrying multiple insertions of the SAK gene yielded high-level (~1 g/l) of extracellular glycosylated rSAK (~18 kDa) with negligible plasminogen activation activity. Addition of tunicamycin during the induction phase resulted in expression of non-glycosylated and highly active rSAK (~15 kDa) from the same clone. Two simple steps of ion-exchange chromatography produced an homogenous rSAK of >95% purity which suitable for future structural and functional studies.  相似文献   

3.
The gene encoding human cerebral tissue acetylcholinesterase (AChE) was cloned from an 18-week fetal cerebral tissue and expressed in Pichia pastoris. Twenty-two positive transformants were obtained by Mut+/Muts phenotypes screening in MD/MM medium and polymerase chain reaction amplification, and four recombinant P. pastoris strains that could secrete active AChE at high level were identified by simple and specific development reaction with indoxyl acetate as the chromogenic substrate. In shake-flask culture induced with methanol, the recombinant human AChE (rhAChE) content was about 76% of the total secreted proteins, and rhAChE activity in supernatant was 40 U/ml. The enzyme was purified through anion-exchange and affinity chromatography. Purity of the rhAChE was up to 96% after the simple purification procedure. The enzymatic activity reached 200 U/mg.  相似文献   

4.
Recently, we engineered a Pichia pastoris Mut+ strain to produce and secrete recombinant Litopenaeus vannamei trypsinogen. Despite the observed toxicity of the recombinant shrimp trypsinogen to the P. pastoris cell host, when high density cell cultures in shake flasks with alanine in the induction medium were used recombinant shrimp trypsinogen could be produced. To further improve the product yield, in this work, we evaluated L. vannamei trypsinogen production in P. pastoris using a bioreactor and two recombinant P. pastoris strains with different methanol utilization (Mut) phenotypes. The effect of pH and temperature during the induction step on the trypsinogen production was also evaluated. The results indicate that temperature, pH, and Mut phenotypes influence the production of the recombinant protein, with almost no observed effect on cell growth. All cultures with the Mut+ strain had significant operational difficulties, such as in lowering the induction temperature, maintaining dissolved oxygen (DO) above 20%, and maintaining the methanol concentration at a constant value, and showed a decrease in metabolic activity due to trypsinogen toxicity to the cell host. In the culture with the Muts strain, however, the temperature, methanol concentration, and DO could be more easily controlled, the temperature could be easily decreased, and the trypsinogen caused the lowest toxicity to the host cells. After 96 h of Muts strain induction (pH 6 and 25°C), about 250 mg/L recombinant trypsinogen was detected in the culture medium. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

5.
The methanol utilization (Mut) phenotype in the yeast Pichia pastoris (syn. Komagataella spp.) is defined by the deletion of the genes AOX1 and AOX2. The Mut phenotype cannot grow on methanol as a single carbon source. We assessed the Mut phenotype for secreted recombinant protein production. The methanol inducible AOX1 promoter (PAOX1) was active in the Mut phenotype and showed adequate eGFP fluorescence levels and protein yields (YP/X) in small-scale screenings. Different bioreactor cultivation scenarios with methanol excess concentrations were tested using PAOX1HSA and PAOX1vHH expression constructs. Scenario B comprising a glucose-methanol phase and a 72-hr-long methanol only phase was the best performing, producing 531 mg/L HSA and 1631 mg/L vHH. 61% of the HSA was produced in the methanol only phase where no biomass growth was observed, representing a special case of growth independent production. By using the Mut phenotype, the oxygen demand, heat output, and specific methanol uptake (qmethanol) in the methanol phase were reduced by more than 80% compared with the MutS phenotype. The highlighted improved process parameters coupled with growth independent protein production are overlooked benefits of the Mut strain for current and future applications in the field of recombinant protein production.  相似文献   

6.
This study describes the expression in Pichia pastoris of hepatitis B surface antigens (HBsAg) corresponding to the S region of the four major subtypes: adr, adw2, ayr and ayw3 and to the preS2-S region of the two subtypes adr and adw2. The recombinant yeast strains have been selected amongst methanol utilization positive (Mut+) or sensitive strains (Muts) and cultivated to high cell density in bioreactor using a short protocol. Our results prove the efficiency of P. pastoris to produce all the major HBsAg subtypes and confirm the ability of the methanol regulated promoter of alcohol oxidase I gene (AOX) to express heterologous protein through phenotype Mut+ or Muts strains.All these recombinant HBsAg proteins, including subtype ayr, whose production has never been presented, have been highly purified using a short original sequence of steps which includes high-pressure cell disruption associated with detergent treatment, ultrafiltration and immunopurification chromatography using a mAb anti-HBs. The whole process avoids possible alterations of antigenic properties and allows to obtain with high yield, high quality reagents for in vitro diagnosis.  相似文献   

7.
[目的]为解决溶栓后再栓塞问题,构建N-端含RGD(Arg-Gly-Asp)序列的葡激酶双功能突变体.研究突变体的表达和纯化,并进行性质分析.[方法]将突变后的葡激酶突变体序列连入pBV220质粒,转化大肠杆菌BL21进行表达.阳离子交换、凝胶过滤和阴离子交换三步层析法纯化表达产物,采用溶圈法对纯化产物进行生物学活性测定,并测定纯化产物对血小板聚集的抑制效应.[结果]PAGE扫描结果显示,葡激酶突变体蛋白在大肠杆菌BL21中的表达量约占菌体蛋白总量的40%~50%;三步层析纯化后,HPLC测定其纯度可达95%.酪蛋白凝胶板溶圈法测得其比活性分别为10.8×104和11.0×104HU/mg,与野生型葡激酶活性相当;且具有明显的抗血小板聚集活性,血小板聚集仪测定其血小板聚集抑制率分别为10.72%和19.71%,明显高于野生型葡激酶血小板聚集抑制率.本实验利用pBV220载体高效表达了葡激酶突变体基因,得到了高纯度、高活性的突变体蛋白,为葡激酶生产产业化和临床应用奠定了良好的基础.  相似文献   

8.
Cost effective 13C/15N-isotope labeling of the avirulence protein AVR4 (10 kDa) of the fungal tomato pathogen Cladosporium fulvum was achieved with the methylotrophic yeast Pichia pastoris in a fermentor. The 13C/15N-labeled AVR4 protein accumulated to 30 mg/L within 48 h in an initial fermentation volume of only 300 mL, while prolonged optimized overexpressions yielded 126 mg/L. These protein yields were 24-fold higher in a fermentor than in flask cultures. In order to achieve these protein expression levels, we used the methanol-utilizing strain (Mut+) of Pichia pastoris which has a high growth rate while growing on methanol as the only carbon source. In contrast, the methanol-sensitive strain (MutS) could intrinsically yield comparable protein expression levels, but at the expense of additional carbon sources. Although both strains are generally used for heterologous protein expression, we show that the costs for 13C-isotope labeling can be substantially reduced using the Mut+ strain compared to the MutS strain, as no 13C3-glycerol is required during the methanol-induction phase. Finally, nitrogen limitations were precluded for 15N-labeling by an optimal supply of 10 g/L (15NH4)2SO4 every 24 h.  相似文献   

9.
It is difficult to control concentrations of methanol/dissolved oxygen at high levels simultaneously in heterologous proteins productions by Pichia pastoris during induction phase. Two strains, a methanol utilization slow (MutS) type and a plus (Mut+) type were used with methanol/sorbitol co-feeding strategy to induce porcine interferon-α and human serum albumin-human granulocyte colony stimulating factor respectively, under the conditions of “methanol sufficient-oxygen limited (MS-OL)” and “methanol limited-oxygen sufficient (ML-OS)”. For the MutS/Mut+ strains, the target proteins titers under “MS-OL” were 6-fold/19.2% of those under “ML-OS”. The key genes in methanol metabolism of the MutS strain were up-regulated under “MS-OL”, but they were not differently expressed in the Mut+ strain. Methanol utilization rate (rMeOH) of the MutS strain reduced when decreasing methanol concentration, but rMeOH of the Mut+ strain unchanged unless methanol concentration decreased to a low-limit of 0.6 g/L. Finally, kinetic models were designed to describe the methanol/sorbitol co-feeding process.  相似文献   

10.
Abstract

Most of the reported bioprocesses carried out by the methylotrophic yeast Pichia pastoris have been performed at laboratory scale using high power inputs and pure oxygen, such conditions are not feasible for industrial large-scale processes. In this study, volumetric mass transfer (kLa) and volumetric gassed power input (Pg/V) were evaluated within values attainable in large-scale production as scale-up criteria for recombinant dextranase production by MutS P. pastoris strain. Cultures were oxygen limited when the volumetric gassed power supply was limited to 2?kW m?3. Specific growth rate, and then dextranase production, increased as kLa and Pg/V did. Meanwhile, specific production and methanol consumption rates were constant, due to the limited methanol condition also achieved at 2?L bioprocesses. The specific dextranase production rate was two times higher than the values previously reported for a Mut+ strain. After a scale-up process, at constant kLa, the specific growth rate was kept at 30?L bioprocess, whereas dextranase production decreased, due to the effect of methanol accumulation. Results obtained at 30?L bioprocesses suggest that even under oxygen-limited conditions, methanol saturated conditions are not adequate to express dextranase with the promoter alcohol oxidase. Bioprocesses developed within feasible and scalable operational conditions are of high interest for the commercial production of recombinant proteins from Pichia pastoris.  相似文献   

11.
Pichia pastoris KM71H (MutS) is an efficient producer of hard-to-express proteins such as the membrane protein P-glycoprotein (Pgp), an ATP-powered efflux pump which is expressed properly, but at very low concentration, using the conventional induction strategy. Evaluation of different induction strategies indicated that it was possible to increase Pgp expression by inducing the culture with 20% media containing 2.5% methanol. By quantifying methanol, formaldehyde, hydrogen peroxide and formate, and by measuring alcohol oxidase, catalase, formaldehyde dehydrogenase, formate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenases, it was possible to correlate Pgp expression to the induction strategy. Inducing the culture by adding methanol with fresh media was associated with decreases in formaldehyde and hydrogen peroxide, and increases in formaldehyde dehydrogenase, formate dehydrogenase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenases. At these conditions, Pgp expression was 1400-fold higher, an indication that Pgp expression is affected by increases in formaldehyde and hydrogen peroxide. It is possible that Pgp is responsible for this behaviour, since the increased metabolite concentrations and decreased enzymatic activities were not observed when parental Pichia was subjected to the same growth conditions. This report adds information on methanol metabolism during expression of Pgp from P. pastoris MutS strain and suggests an expression procedure for hard-to-express proteins from P. pastoris.  相似文献   

12.

Porcine follicle-stimulating hormone (pFSH), comprising α and β subunits, is commonly used to induce superovulation in domestic animals in assisted reproduction technologies; however, the practical application of pFSH is inhibited by the limited efficiency of its production. Recombinant yeast-derived FSH offers a practical alternative; however, the heterologous expression efficiency remains disappointingly low. To improve FSH production in Pichia pastoris, a series of molecular strategies, together with fermentation optimization, were tested in the present study. By comparing clones of the Muts phenotype strain, it was observed that the yield of soluble pFSH increased by approximately 96% in clones of the Mut+ phenotype strain. The protein levels of soluble pFSHβ, which confers biological specificity, increased by approximately 143 and 22% after two kinds of codon optimization strategies, respectively. Moreover, compared with the production of soluble pFSHβ and SUMO-pFSHβ, the production of soluble protein HSA-pFSHβ was significantly improved. Furthermore, the optimum pH and methanol concentration for expressing soluble HSA-pFSH in strain H3-3 were determined as 5.0–6.0 and 1.5–2% in shake-flask, and the yield of soluble HSA-pFSH could reach 40.8 mg/l after purification. In vitro bioactivity assays showed that recombinant HSA-pFSH could efficiently stimulate cAMP synthesis in HEK293 cells expressing porcine FSHR. In conclusion, our results demonstrated that the application of phenotypic selection of aox1 mutants, combined with codon optimization, the choice of fusion partners, and fermentation optimization, considerably increased the yield of pFSH in supernatant of P. pastoris and thus provided a valuable reference for the large-scale recombinant expression of pFSH.

  相似文献   

13.
The staphylokinase (SAK) gene from Staphylococcus aureus NCTC10033 was inserted into an expression vector, pKK-ompA, having a tac promoter and an ompA signal sequence. Escherichia coli JM109 carrying the recombinant plasmid produced and secreted the recombinant SAK (rSAK) at 15ug/ml into periplasm and 5ug/ml to extracellular media, respectively. The rSAK was purified with 59% yield by simple procedures from the periplasm of E. coli. The amino-terminal sequence and human plasminogen activating activity of rSAK were coincided with the authentic SAK.  相似文献   

14.
A simple, accurate model capable of predicting cell growth and methanol utilization during the mixed substrate fed-batch fermentation of MutS recombinant Pichia pastoris was developed and was used to design an exponential feeding strategy for mixed substrate fed-batch fermentation at a constant specific growth rate. Mixed substrate feeding has been shown to boost productivity in recombinant fed-batch culture of P. pastoris, while fixed growth rate exponential feeding during fed-batch culture is a useful tool in process optimization and control.  相似文献   

15.
A 777-bp cDNA fragment encoding a mature alkaline lipase (LipI) from Penicillium cyclopium PG37 was amplified by RT–PCR, and inserted into the expression plasmid pPIC9 K. The recombinant plasmid, designated as pPIC9 K-lipI, was linearized with SalI and transformed into Pichia pastoris GS115 (his4, Mut+) by electroporation. MD plate and YPD plates containing G418 were used for screening of the multi-copy P. pastoris transformants (His+, Mut+). One transformant resistant to 4.0 mg/ml of G418, numbered as P. pastoris GSL4-7, expressing the highest recombinant LipI (rLipI) activity was chosen for optimizing expression conditions. The integration of the gene LipI into the P. pastoris GS115 genome was confirmed by PCR analysis using 5′- and 3′-AOX1 primers. SDS–PAGE and lipase activity assays demonstrated that the rLipI, a glycosylated protein with an apparent molecular weight of about 31.5 kDa, was extracellularly expressed in P. pastoris. When the P. pastoris GSL4-7 was cultured under the optimized conditions, the expressed rLipI activity was up to 407 U/ml, much higher than that (10.5 U/ml) expressed with standard protocol. The rLipI showed the highest activity at pH 10.5 and 25°C, and was stable at a broad pH range of 7.0–10.5 and at a temperature of 30°C or below.  相似文献   

16.
We have expressed both S and preS2-S genes coding for the hepatitis B small (S) and medium (M) proteins, respectively, in different yeast based expression systems and compared the production level of the recombinant proteins. In Saccharomyces cerevisiae, viral genes were expressed under the inducible Gal10/cyc1 and the constitutive PGK promoters using 2 μ replicating vectors. We showed that the yield of S protein was higher than M protein under both inducible (14.27 vs 10.9 mg/l) and constitutive (9.18 vs 6.39 mg/l) conditions, respectively. In the methylotrophic yeast Pichia pastoris, the viral genes were expressed in GS115 (Mut+: Methanol Utilizing) and KM71 (MutS: Methanol Utilizing Slow) under the control of the alcohol oxidase promoter (AOX1). In MutS background, both S and preS2-S genes were expressed at higher levels than in Mut+. In attempt to increase the yield of recombinant viral proteins in S. cerevisiae, we have co-expressed both inducible and constitutive vectors harboring the S or preS2-S genes leading to recombinant strains called UTS (containing pDP/S + pYePIT/S) and UTP (containing pDP/preS2-S + pYePIT/preS2-S). We showed that the recombinant S and preS2-S proteins were successfully detected and the production level reached 18.31 mg/l for the S and 13.22 mg/l for the M proteins.Our comparative study provides evidence that in small scale, S. cerevisiae is more suitable for HBsAg and preS2-S proteins production than P. pastoris under inducible rather than constitutive condition.  相似文献   

17.
The induction using substrate mixtures is an operational strategy for improving the productivity of heterologous protein production with Pichia pastoris. Glycerol as a cosubstrate allows for growth at a higher specific growth rate, but also has been reported to be repressor of the expression from the AOX1 promoter. Thus, further insights about the effects of glycerol are required for designing the induction stage with mixed substrates. The production of Rhizopus oryzae lipase (ROL) was used as a model system to investigate the application of methanol‐glycerol feeding mixtures in fast metabolizing methanol phenotype. Cultures were performed in a simple chemostat system and the response surface methodology was used for the evaluation of both dilution rate and methanol‐glycerol feeding composition as experimental factors. Our results indicate that productivity and yield of ROL are strongly affected by dilution rate, with no interaction effect between the involved factors. Productivity showed the highest value around 0.04–0.06 h?1, while ROL yield decreased along the whole dilution rate range evaluated (0.03–0.1 h?1). Compared to production level achieved with methanol‐only feeding, the highest specific productivity was similar in mixed feeding (0.9 UA g‐biomass?1 h?1), but volumetric productivity was 70% higher. Kinetic analysis showed that these results are explained by the effects of dilution rate on specific methanol uptake rate, instead of a repressor effect caused by glycerol feeding. It is concluded that despite the effect of dilution rate on ROL yield, mixed feeding strategy is a proper process option to be applied to P. pastoris Mut+ phenotype for heterologous protein production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:707–714, 2015  相似文献   

18.
Recently, we engineered Pichia pastoris Muts strains to produce several beta‐propeller phytases, one from Bacillus subtilis and the others designed by a structure‐guided consensus approach. Furthermore, we demonstrated the ability of P. pastoris to produce and secrete these phytases in an active form in shake‐flask cultures. In the present work, we used a design of experiments strategy (Simplex optimization method) to optimize five environmental factors that define the culture conditions in the induction step to increase beta‐propeller phytase production in P. pastoris bioreactor cultures. With the optimization process, up to 347,682 U (82,814 U/L or 6.4 g/L culture medium) of phytase at 68 h of induction was achieved. In addition, the impact of the optimization process on the physiological response of the host was evaluated. The results indicate that the increase in extracellular phytase production through the optimization process was correlated with an increase in metabolic activity of P. pastoris, shown by an increase in oxygen demand and methanol consumption, that increase the specific growth rate. The increase in extracellular phytase production also occurred with a decrease in extracellular protease activity. Moreover, the optimized culture conditions increased the recombinant protein secretion by up to 88%, along with the extracellular phytase production efficiency per cell. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1377–1385, 2013  相似文献   

19.
The intracellular metabolic fluxes through the central carbon pathways in the bioprocess for recombinant human erythropoietin (rHuEPO) production by Pichia pastoris (Mut+) were calculated to investigate the metabolic effects of dual carbon sources (methanol/sorbitol) and the methanol feed rate, and to obtain a deeper understanding of the regulatory circuitry of P. pastoris, using the established stoichiometry‐based model containing 102 metabolites and 141 reaction fluxes. Four fed‐batch operations with (MS‐) and without (M‐) sorbitol were performed at three different constant specific growth rates (h?1), and denoted as M‐0.03, MS‐0.02, MS‐0.03, and MS‐0.04. Considering the methanol consumption pathway, the M‐0.03 and MS‐0.02 conditions produced similar effects and had >85% of formaldehyde flux towards the assimilatory pathway. In contrast, the use of the dual carbon source condition generated a shift in metabolism towards the dissimilatory pathway that corresponded to the shift in dilution rate from MS‐0.03 to MS‐0.04, indicating that the methanol feed exceeded the metabolic requirements at the higher µ0. Comparing M‐0.03 and MS‐0.03 conditions, which had the same methanol feeding rates, sorbitol addition increased the rHuEPO synthetic flux 4.4‐fold. The glycolysis, gluconeogenesis, and PPP pathways worked uninterruptedly only at MS‐0.02 condition. PPP and TCA cycles worked with the highest disturbances at MS‐0.04 condition, which shows the stress of increased feeding rates of methanol on cell metabolism. Biotechnol. Bioeng. 2010; 105: 317–329. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号