首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High throughput screening (HTS) of chromatography resins can accelerate downstream process development by rapidly providing information on product and impurity partitioning over a wide range of experimental conditions. In addition to the removal of typical product and process‐related impurities, chromatography steps are also used to remove potential adventitious viral contaminants and non‐infectious retrovirus‐like particles expressed by rodent cell lines used for production. This article evaluates the feasibility of using HTS in a 96‐well batch‐binding format to study removal of the model retrovirus xenotropic murine leukemia virus (xMuLV) from product streams. Two resins were examined: the anion exchange resin Q Sepharose Fast Flow? (QSFF) and Capto adhere?, a mixed mode resin. QSFF batch‐binding HTS data was generated using two mAbs at various pHs, NaCl concentrations, and levels of impurities. Comparison of HTS data to that generated using the column format showed good agreement with respect to virus retentation at different pHs, NaCl concentrations and impurity levels. Results indicate that NaCl concentration and impurity level, but not pH, are key parameters that can impact xMuLV binding to both resins. Binding of xMuLV to Capto adhere appeared to tolerate higher levels of NaCl and impurity than QSFF, and showed some product‐specific impact on binding that was not observed with QSFF. Overall, the results demonstrate that the 96‐well batch‐binding HTS technique can be an effective tool for rapidly defining conditions for robust virus clearance on chromatographic resins. Biotechnol. Bioeng. 2013; 110: 1984–1994. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Single‐chain variable fragments (scFv) are widely used in several fields. However, they can be challenging to purify unless using expensive Protein L‐based affinity adsorbents or affinity tags. In this work, a purification process for a scFv using mixed‐mode (MM) chromatography was developed by design of experiments (DoE) and proteomics for host cell protein (HCP) quantification. Capture of scFv from human embryonic kidney 293 (HEK293) cell feedstocks was performed by hydrophobic charge induction chromatography (MEP HyperCel?), whereafter polishing was performed by anion hydrophobic MM chromatography (Capto Adhere?). The DoE designs of the polishing step included both binding and flow‐through modes, the latter being the standard mode for HCP removal. Chromatography with Capto Adhere? in binding‐mode with elution by linear salt gradient at pH 7.5 resulted in optimal yield, purity and HCP reduction factor of 98.9 > 98.5%, and 14, respectively. Totally, 258 different HCPs were removed, corresponding to 84% of identified HCPs. The optimized conditions enabled binding of the scFv to Capto Adhere? below its theoretical pI, while the majority of HCPs were in the flow‐through. Surface property maps indicated the presence of hydrophobic patches in close proximity to negatively charged patches that could potentially play a role in this unique selectivity.  相似文献   

3.
Purification of target proteins from a crude biological mixture containing proteins, peptides and other biomolecules is the chromatographic challenge. Mixed mode chromatography offers additional selectivities to improve the overall productivity of commercial bioprocesses with novel chromatographic sorbents being introduced to overcome the problem. HEA HyperCel? (n-hexyl amine) and PPA HyperCel? (phenyl propyl amine) are industry scalable mixed mode chromatography sorbents where both hydrophobic and electrostatic interactions are predominant. Our study focuses on understanding the underlying mechanism of interaction of protein with the sorbent. Parameters like buffer conditions, pH and temperature were tuned to study the adsorption and desorption conditions of the protein. Dynamic binding capacity of HEA HyperCel? and PPA HyperCel? sorbents was studied with human IgG as a model protein. Our study shows that, in HEA the interaction of IgG to the sorbent is predominantly hydrophobic as the binding is enhanced (50–60 mg/ml of sorbent) by presence of salt in buffer and increase in temperature. Binding capacity of PPA is 50–60 mg/ml of sorbent irrespective of temperature effect and/or the presence of salt. The chromatographic experiments show that the interaction could be hydrophobic or ionic or some charge transfer mechanism depending upon the buffer conditions.  相似文献   

4.
This work addresses the functional properties of the core-shell resins Capto Core 400 and 700 for a broad range of proteins spanning 66.5 to 660 kDa in molecular mass, including bovine serum albumin (BSA) in monomer and dimer form, fibronectin, thyroglobulin, and BSA conjugates with 10 and 30 kDa poly(ethylene glycol) chains. Negatively charged latex nanoparticles (NPs) with nominal diameters of 20, 40, and 100 nm are also studied as surrogates for bioparticles. Protein binding and its trends with respect to salt concentration depend on the protein size and are different for the two agarose-based multimodal resins. For the smaller proteins, the amount of protein bound over practical time scales is limited by the resin surface area and is larger for Capto Core 400 compared with Capto Core 700. For the larger proteins, diffusion is severely restricted in Capto Core 400, resulting in lower binding capacities than those observed for Capto Core 700 despite the larger surface area. Adding 500 mM NaCl reduces the local bound protein concentration and diffusional hindrance resulting in higher binding capacities for the large proteins in Capto Core 400 compared with low ionic strength conditions. The NPs are essentially completely excluded from the Capto Core 400 pores. However, 20 and 40 nm NPs bind significantly to Capto Core 700, further hindering protein diffusion. A model is provided to predict the dynamic binding capacities as a function of residence time.  相似文献   

5.
In biopharmaceutical process development time, cost and reliability are the relevant keywords. During the development of chromatographic processes these targets are challenged by many possible scaffolds, ligands and process parameters. The common response to this diversity is the establishment of platform processes in the development of chromatographic unit operations. However, while developing a platform library to simplify and accelerate chromatographic processes, the potential combination of scaffold, ligands and process parameters need to be characterized. This challenge is addressed in a case study on novel mixed mode (MM) adsorber for the removal of monoclonal antibody (mAb) aggregates. We propose a rigorous strategy to reduce the various experimental design space resulting from possible combinations in scaffolds, backbones and ligands. This strategy is based on theoretical considerations, identification of adsorber selectivity and capacity for the identification of a suitable membrane system. For this system, each potential MM membrane adsorber candidate is investigated in its high molecular weight species reduction potential for a given mAb feed stream and referenced to the performance of Capto™ Adhere. The introduced strategy can reduce the developmental effort in an early stage from three to two possible stationary phases. Thereafter, initial examinations at different ionic capacities enlighten one favorable stationary phase. Finalizing the development strategy procedure by studying five different MM ligands by HTS and confirming the study with a 2–3 MV higher dynamic breakthrough capacity in benchtop experiments and provides an insight in the benefits of a living process platform library.  相似文献   

6.
Product quality analyses are critical for developing cell line and bioprocess producing therapeutic proteins with desired critical product quality attributes. To facilitate these analyses, a high‐throughput small‐scale protein purification (SSP) is required to quickly purify many samples in parallel. Here we develop an SSP using ion exchange resins to purify a positively charged recombinant growth factor P1 in the presence of negatively charged dextran sulfate supplemented to improve the cell culture performance. The major challenge in this work is that the strong ionic interaction between P1 and dextran sulfate disrupts interaction between P1 and chromatography resins. To solve this problem, we develop a two‐step SSP using Q Sepharose Fast Flow (QFF) and SP Sepharose XL (SPXL) resins to purify P1. The overall yield of this two‐step SSP is 78%. Moreover, the SSP does not affect the critical product quality attributes. The SSP was critical for developing the cell line and process producing P1. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:516–520, 2014  相似文献   

7.
A stochastic approach of copurification of the protease Cathepsin L that results in product fragmentation during purification processing and storage is presented. Cathepsin L was identified using mass spectroscopy, characterization of proteolytic activity, and comparison with fragmentation patterns observed using recombinant Cathepsin L. Cathepsin L existed in Chinese hamster ovary cell culture fluids obtained from cell lines expressing different products and cleaved a variety of recombinant proteins including monoclonal antibodies, antibody fragments, bispecific antibodies, and fusion proteins. Therefore, characterization its chromatographic behavior is essential to ensure robust manufacturing and sufficient shelf life. The chromatographic behaviors of Cathepsin L using a variety of techniques including affinity, cation exchange, anion exchange, and mixed mode chromatography were systematically evaluated. Our data demonstrates that copurification of Cathepsin L on nonaffinity modalities is principally because of similar retention on the stationary phase and not through interactions with product. Lastly, Cathespin L exhibits a broad elution profile in cation exchange chromatography (CEX) likely because of its different forms. Affinity purification is free of fragmentation issue, making affinity capture the best mitigation of Cathepsin L. When affinity purification is not feasible, a high pH wash on CEX can effectively remove Cathepsin L but resulted in significant product loss, while anion exchange chromatography operated in flow-through mode does not efficiently remove Cathepsin L. Mixed mode chromatography, using Capto™ adhere in this example, provides robust clearance over wide process parameter range (pH 7.7 ± 0.3 and 100 ± 50 mM NaCl), making it an ideal technique to clear Cathepsin L. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2732, 2019  相似文献   

8.
Technology development initiatives targeted for monoclonal antibody purification may be motivated by manufacturing limitations and are often aimed at solving current and future process bottlenecks. A subject under debate in many biotechnology companies is whether conventional unit operations such as chromatography will eventually become limiting for the production of recombinant protein therapeutics. An evaluation of the potential limitations of process chromatography and filtration using today's commercially available resins and membranes was conducted for a conceptual process scaled to produce 10 tons of monoclonal antibody per year from a single manufacturing plant, a scale representing one of the world's largest single-plant capacities for cGMP protein production. The process employs a simple, efficient purification train using only two chromatographic and two ultrafiltration steps, modeled after a platform antibody purification train that has generated 10 kg batches in clinical production. Based on analyses of cost of goods and the production capacity of this very large scale purification process, it is unlikely that non-conventional downstream unit operations would be needed to replace conventional chromatographic and filtration separation steps, at least for recombinant antibodies.  相似文献   

9.
Current platforms for purification of monoclonal antibodies, mostly relying on Protein A as a first capture step, are robust and efficient but significantly increase downstream purification costs, mainly due to Protein A resins. To decrease manufacturing costs, industry is increasingly considering the use of purification schemes without affinity Protein A resins. Mixed-mode chromatography can be used as a powerful alternative to standard purification platforms as it offers new selectivity and separation mechanisms exploiting a combination of both ionic and hydrophobic characteristics of antibodies and contaminating proteins. By using a design of experiments (DoE) approach and high throughput screening in 96-well plates, we developed four different two-steps MAb purification processes, based on the use of mixed-mode sorbents. Finally, three of the tested processes resulted in final purified Mab fractions containing less than 100 ppm of residual CHO proteins (CHOP), with overall process yields above 70%. These data show that mixed-mode chromatography sorbents, used at capture or intermediate purification steps, really expand the options of MAb purification process development with or without Protein A affinity chromatography.  相似文献   

10.
Most mAb platform purification processes consist of an affinity capture step followed by one or two polishing steps. An understanding of the performance linkages between the unit operations can lead to robust manufacturing processes. In this study, a weak‐partitioning anion‐exchange chromatography polishing step used in a mAb purification process was characterized through high‐throughput screening (HTS) experiments, small‐scale experiments including a cycling study performed on qualified scale‐down models, and large‐scale manufacturing runs. When material from a Protein A column that had been cycled <10× was loaded on the AEX resin, early breakthrough of impurities and premature loss of capacity was observed. As the cycle number on the Protein A resin increased, the capacity of the subsequent AEX step increased. Different control strategies were considered for preventing impurity breakthrough and improving AEX resin lifetimes. Depth filtration of the Protein A peak pool significantly improved the AEX resin capacity, robustness, and lifetime. Further, the turbidity of the Protein A pool has the potential for use as an in‐process control parameter for monitoring the performance of the AEX step. Biotechnol. Bioeng. 2013; 110: 1142–1152. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Protein A chromatography is widely employed for the capture and purification of monoclonal antibodies (mAbs). Because of the high cost of protein A resins, there is a significant economic driving force to seek new downstream processing strategies. Membrane chromatography has emerged as a promising alternative to conventional resin based column chromatography. However, to date, the application has been limited to mostly ion exchange flow through (FT) mode. Recently, significant advances in Natrix hydrogel membrane has resulted in increased dynamic binding capacities for proteins, which makes membrane chromatography much more attractive for bind/elute operations. The dominantly advective mass transport property of the hydrogel membrane has also enabled Natrix membrane to be run at faster volumetric flow rates with high dynamic binding capacities. In this work, the potential of using Natrix weak cation exchange membrane as a mAb capture step is assessed. A series of cycle studies was also performed in the pilot scale device (> 30 cycles) with good reproducibility in terms of yield and product purities, suggesting potential for improved manufacturing flexibility and productivity. In addition, anion exchange (AEX) hydrogel membranes were also evaluated with multiple mAb programs in FT mode. Significantly higher binding capacity for impurities (support mAb loads up to 10Kg/L) and 40X faster processing speed were observed compared with traditional AEX column chromatography. A proposed protein A free mAb purification process platform could meet the demand of a downstream purification process with high purity, yield, and throughput. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:974–982, 2015  相似文献   

12.
Weak partitioning chromatography (WPC) is an isocratic chromatographic protein separation method performed under mobile phase conditions where a significant amount of the product protein binds to the resin, well in excess of typical flowthrough operations. The more stringent load and wash conditions lead to improved removal of more tightly binding impurities, although at the cost of a reduction in step yield. The step yield can be restored by extending the column load and incorporating a short wash at the end of the load stage. The use of WPC with anion exchange resins enables a two-column cGMP purification platform to be used for many different mAbs. The operating window for WPC can be easily established using high throughput batch-binding screens. Under conditions that favor very strong product binding, competitive effects from product binding can give rise to a reduction in column loading capacity. Robust performance of WPC anion exchange chromatography has been demonstrated in multiple cGMP mAb purification processes. Excellent clearance of host cell proteins, leached Protein A, DNA, high molecular weight species, and model virus has been achieved.  相似文献   

13.
Multimodal chromatography is widely used for isolation of proteins because it often results in improved selectivity compared to conventional separation resins. The binding potential and chromatographic behavior of plasmid DNA have here been examined on a Capto Adhere resin. Capto Adhere is a recent multimodal chromatography material allowing molecular recognition between the ligand and target molecule, which is based on combined ionic and aromatic interactions. Capto Adhere proved to offer a very strong binding of nucleic acids. This property could be used to isolate plasmid DNA from a crude Escherichia coli extract. Using a stepwise NaCl gradient, pure plasmid DNA could be obtained without protein and endotoxin contaminations. The RNA fraction bound most strongly to the resin and could be eluted only at very high salt concentrations (2.0 M NaCl). The chromatographic separation behavior was very robust between pH values 6 and 9, and the dynamic binding capacity was estimated to 60 µg/ml resin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The biopharmaceutical industry is evolving toward process intensification that can offer increased productivity and improved economics without sacrificing process robustness. A semi‐continuous downstream process linking purification/polishing unit operations in series can reduce or eliminate intermediate holding tanks and reduce overall processing time. Accordingly, we have developed a therapeutic monoclonal antibody polishing template comprised of a connected flow‐through polishing technologies that include activated carbon, cation exchange, and anion‐exchange chromatography. In this report, we evaluated fully‐connected pool‐less polishing with three flow‐through technologies, operating as a single skid to streamline and improve an mAb purification platform. Laboratory‐scale pool‐less processing was achieved without utilizing in‐line pH adjustment and conductivity dilution based on the previously optimized single process parameter. Two connected flow‐through configurations of polishing steps were evaluated: a two‐step process using anion exchange and cation exchange and a three step process using activated carbon, anion exchange and cation exchange chromatography. Laboratory‐scale proof of concept studies showed comparable performance between the batch purification process and the pool‐less process configuration. Three step polishing highly intensified the processes and provided higher process loading and achieved bulk drug specification with higher impurity clearance (>95%) and high overall mAb yield (>95%).  相似文献   

15.
Recently, multimodal chromatography using restricted access media (RAM) for the purification of nanoparticles, such as viruses has regained increasing attention. These chromatography resins combine size exclusion on the particle shell and adsorptive interaction within the core. Accordingly, smaller process-related impurities, for example, DNA and proteins, can be retained, while larger product viruses can pass unhindered. We evaluated a range of currently available RAM, differing in the shells’ pore cut-off and the core chemistry, for the purification of a cell culture-derived clarified model virus, namely the Orf virus (ORFV). We examined impurity depletion and product recovery as relevant criteria for the evaluation of column performance, as well as scale-up robustness and regeneration potential for evaluating a multiple use application. The results indicate that some columns, for example, the Capto Core, enable both a high DNA and protein removal, while others, for example, the Monomix Core 60 (MC60), are more suitable for DNA depletion. Furthermore, column regeneration is facilitated by using columns with larger shell pores (5000 vs. 700 kDa) and weaker binding interactions (anion exchange vs. multimodal). According to these findings, the choice of RAM resins should be selected according to the respective feed sample composition and the planned number of application cycles.  相似文献   

16.
Low pH viral inactivation is typically performed in the eluate pool following the protein A capture step during the manufacturing of monoclonal antibodies and Fc‐fusion proteins. However, exposure to low pH has the potential to alter protein quality. To avoid these difficulties, novel wash buffers capable of inactivating viruses while antibodies or Fc‐fusion proteins were bound to protein A or mixed mode resins were developed. By equilibrating the column in high salt buffer (2 M ammonium sulfate or 3 M sodium chloride) after loading, the hydrophobic interactions between antibodies and protein A ligands were increased enough to prevent elution at pH 3. The ammonium sulfate was also found to cause binding of an antibody to a mixed mode cation exchange and a mixed mode anion exchange resin at pH values that caused elution in conventional cation and anion exchange resins (pH 3.5 for Capto Adhere and pH 8.0 for Capto MMC), indicating that retention was due to enhanced hydrophobic interactions. The potential of the 2 M ammonium sulfate pH 3 buffer, a 1 M arginine buffer, and a buffer containing the detergent LDAO to inactivate XMuLV virus when used as protein A wash buffers with a 1 hour contact time were studied. The high salt and detergent containing wash buffers provided about five logs of removal, determined using PCR, and complete combined removal and inactivation (> 6 logs), determined by measuring infectivity. The novel protein A washes could provide more rapid, automated viral inactivation steps with lower pool conductivities. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:406–413, 2015  相似文献   

17.
Target validation is one of rate-limiting steps in the modern drug discovery. The authors developed a strategy of combining adenovirus-mediated gene transfer for efficient target functionality validation, both in vivo and in vitro, with baculovirus expression to produce sufficient quantities of protein for high-throughput screening (HTS). The incorporation of green fluorescent protein (GFP) in the adenovirus vectors accelerates recombinant adenovirus plaque purification, whereas the use of epitope and affinity tags facilitates the identification and purification of recombinant protein. In this generalized scheme, the flexible modular design of viral vectors facilitates the transition between target validation and HTS. In the example presented, functional target validation in vivo was achieved by overexpressing the target gene in cell-based models and in the mouse cortex following adenovirus-mediated gene delivery. In this context, target overexpression resulted in the accumulation of a disease-related biomarker both in vitro and in vivo. A baculovirus-based expressional system was then generated to produce enough target protein for HTS. Thus, the use of these viral expression systems represents a generalized method for rapid target functionality validation and HTS assay development, which could be applied to numerous target candidates being elucidated in gene discovery programs.  相似文献   

18.
Anion exchange (AEX) chromatography in the flow-through mode is a widely employed purification process for removal of process/product-related impurities and exogenous/endogenous viruses from monoclonal antibodies (mAbs). The pH of the mobile phase for AEX chromatography is typically set at half a unit below the isoelectric point (pI) of each mAb (i.e., pI − 0.5) or lower and, in combination with a low ionic strength, these conditions are usually satisfactory for both the recovery of the mAb and removal of impurities. However, we have recently encountered a tight binding of mAb1 to AEX resins under these standard chromatographic conditions. This anomalous adsorption behavior appears to be an effect of the asymmetric charge distribution on the surface of the mAb1. We found that mAb1 did not bind to the AEX resins if the mobile phase has a much lower pH and higher ionic strength, but those conditions would not allow adequate virus removal. We predicted that the use of membrane adsorbers might provide effective mAb1 purification, since the supporting matrix has a network structure that would be less susceptible to interactions with the asymmetric charge distribution on the protein surface. We tested the Natriflo HD-Q AEX membrane adsorber under standard chromatographic conditions and found that mAb1 flowed through the membrane adsorber, resulting in successful separation from murine leukemia virus. This AEX membrane adsorber is expected to be useful for process development because mAbs can be purified under similar standard chromatographic conditions regardless of their charge distributions.  相似文献   

19.
An increasing number of non-mAb recombinant proteins are being developed today. These biotherapeutics provide greater purification challenges where multiple polishing steps may be required to meet final purity specifications or the process steps may require extensive optimization. Recent studies have shown that activated carbon can be employed in downstream purification processes to selectively separate host cell proteins (HCPs) from monoclonal antibodies (mAb). However, the use of activated carbon as a unit operation in a cGMP purification process is relatively new. As such, the goal of this work is to provide guidance on development approaches, insight into operating parameters and solution conditions that can impact HCP removal, as well as further investigate the mechanism of removal by using mass spectrometry. In this work, activated carbon was evaluated to remove HCPs in the downstream purification process of a recombinant enzyme. Impact of process placement, flux (or residence time), and mass loading on HCP removal was investigated. Feasibility of high throughput screening (HTS) using loose activated carbon was assessed to reduce the amount of therapeutic protein needed and enable testing of a larger number of solution conditions. Finally, mass spectrometry was used to determine the population of HCPs removed by activated carbon. Our work demonstrates that activated carbon can be used effectively in downstream processes of biopharmaceuticals to remove HCPs (up to a 3 log10 reduction) and that an HTS format can be implemented to reduce material demands by up to 23x and allow for process optimization of this adsorbent for purification purposes.  相似文献   

20.
Purification and characterization of osteopontin from human milk   总被引:3,自引:0,他引:3  
Osteopontin (OPN) is expressed in many organs and tissues and has different biological properties related to different molecular forms in respect to size and posttranslational modifications. However, a purification procedure for authentic intact OPN as well as fragments of OPN from an accessible biological source is missing. A four-step procedure was used to purify OPN from human milk, based on its crystal growth inhibitory activity, including anion exchange chromatography, the elimination of casein, hydroxyapatite chromatography, and negative affinity chromatography. Purified OPN was further separated into its different molecular forms by means of a two-step procedure, involving size exclusion chromatography and reverse phase chromatography. A rabbit polyclonal antibody was raised to purified intact OPN and high M(r) OPN components; the immunoreactivity of both forms was almost equal when investigated by enzyme immunoassay (EIA). The procedures facilitate the purification of intact OPN and OPN fragments for purposes of standardization, preparation of monospecific antibodies, and functional studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号