首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Process Analytical Technology (PAT) has been gaining a lot of momentum in the biopharmaceutical community because of the potential for continuous real time quality assurance resulting in improved operational control and compliance. In previous publications, we have demonstrated feasibility of applications involving use of high performance liquid chromatography (HPLC) and ultra performance liquid chromatography (UPLC) for real‐time pooling of process chromatography column. In this article we follow a similar approach to perform lab studies and create a model for a chromatography step of a different modality (hydrophobic interaction chromatography). It is seen that the predictions of the model compare well to actual experimental data, demonstrating the usefulness of the approach across the different modes of chromatography. Also, use of online HPLC when the step is scaled up to pilot scale (a 2294 fold scale‐up from a 3.4 mL column in the lab to a 7.8 L column in the pilot plant) and eventually to manufacturing scale (a 45930 fold scale‐up from a 3.4 mL column in the lab to a 158 L column in the manufacturing plant) is examined. Overall, the results confirm that for the application under consideration, online‐HPLC offers a feasible approach for analysis that can facilitate real‐time decisions for column pooling based on product quality attributes. The observations demonstrate that the proposed analytical scheme allows us to meet two of the key goals that have been outlined for PAT, i.e., “variability is managed by the process” and “product quality attributes can be accurately and reliably predicted over the design space established for materials used, process parameters, manufacturing, environmental, and other conditions”. The application presented here can be extended to other modes of process chromatography and/or HPLC analysis. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

2.
Model-based design of integrated continuous train coupled with online process analytical technology (PAT) tool can be a potent facilitator for monitoring and control of Critical Quality Attributes (CQAs) in real time. Charge variants are product related variants and are often regarded as CQAs as they may impact potency and efficacy of drug. Robust pooling decision is required for achieving uniform charge variant composition for mAbs as baseline separation between closely related variants is rarely achieved in process scale chromatography. In this study, we propose a digital twin of a continuous chromatography process, integrated with an online HPLC-PAT tool for delivering real time pooling decisions to achieve uniform charge variant composition. The integrated downstream process comprised continuous multicolumn capture protein A chromatography, viral inactivation in coiled flow inverter reactor (CFIR), and multicolumn CEX polishing step. An online HPLC was connected to the harvest tank before protein A chromatography. Both empirical and mechanistic modeling have been considered. The model states were updated in real time using online HPLC charge variant data for prediction of the initial and final cut point for CEX eluate, according to which the process chromatography was directed to switch from collection to waste to achieve the desired charge variant composition in the CEX pool. Two case studies were carried out to demonstrate this control strategy. In the first case study, the continuous train was run for initially 14 h for harvest of fixed charge variant composition as feed. In the second case study, charge variant composition was dynamically changed by introducing forced perturbation to mimic the deviations that may be encountered during perfusion cell culture. The control strategy was successfully implemented for more than ±5% variability in the acidic variants of the feed with its composition in the range of acidic (13%–17%), main (18%–23%), and basic (59%–68%) variants. Both the case studies yielded CEX pool of uniform distribution of acidic, main and basic profiles in the range of 15 ± 0.8, 31 ± 0.3, and 53 ± 0.5%, respectively, in the case of empirical modeling and 15 ± 0.5, 31 ± 0.3, and 53 ± 0.3%, respectively, in the case of mechanistic modeling. In both cases, process yield for main species was >85% and the use of online HPLC early in the purification train helped in making quicker decision for pooling of CEX eluate. The results thus successfully demonstrate the technical feasibility of creating digital twins of bioprocess operations and their utility for process control.  相似文献   

3.
Process analytical technology (PAT) has been gaining momentum in the biopharmaceutical community due to the potential for continuous real time quality assurance resulting in improved operational control and compliance. Two imperatives for implementing any PAT tool are that “variability is managed by the process” and “product quality attributes can be accurately and reliably predicted over the design space established for materials used, process parameters, manufacturing, environmental, and other conditions.” Recently, we have been examining the feasibility of applying different analytical tools to bioprocessing unit operations. We have previously demonstarted that commercially available online‐high performance liquid chromatography and ultra performance liquid chromatography systems can be used for analysis that can facilitate real‐time decisions for column pooling based on product quality attributes (Rathore et al., 2008 a,b). In this article, we review an at‐line tool that can be used for pooling of process chromatography columns. We have demonstrated that our tryptophan fluorescence method offers a feasible approach and meets the requirements of a PAT application. It is significantly faster than the alternative of fractionation, offline analysis followed by pooling. Although the method as presented here is not an online method, this technique may offer better resolution for certain applications and may be a more optimal approach as it is very conducive to implementation in a manufacturing environment. This technique is also amenable to be used as an online tool via front face fluorescence measurements done concurrently with product concentration determination by UV. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

4.
Process analytical technology (PAT) has been gaining a lot of momentum in the biopharmaceutical community due to the potential for continuous real time quality assurance resulting in improved operational control and compliance. This paper presents a PAT application for one of the most commonly used unit operation in bioprocessing, namely liquid chromatography. Feasibility of using a commercially available online-high performance liquid chromatography (HPLC) system for real-time pooling of process chromatography column is examined. Further, experimental data from the feasibility studies are modeled and predictions of the model are compared to actual experimental data. It is found that indeed for the application under consideration, the online-HPLC offers a feasible approach for analysis that can facilitate real-time decisions for column pooling based on product quality attributes. It is shown that implementing this analytical scheme allows us to meet two of the key goals that have been outlined for PAT, that is, "variability is managed by the process" and "product quality attributes can be accurately and reliably predicted over the design space established for materials used, process parameters, manufacturing, environmental, and other conditions." Finally, the implications of implementing such a PAT application in a manufacturing environment are discussed. The application presented here can be extended to other modes of process chromatography and/or HPLC analysis.  相似文献   

5.
Process analytical technology (PAT) has been gaining a lot of momentum in the biopharmaceutical community due to the potential for continuous real-time quality assurance resulting in improved operational control and compliance. Two of the key goals that have been outlined for PAT are "variability is managed by the process" and "product quality attributes can be accurately and reliably predicted over the design space established for materials used, process parameters, manufacturing, environmental, and other conditions". Recently, we have been examining the feasibility of applying different analytical tools for designing PAT applications for bioprocessing. We have previously shown that a commercially available online high performance liquid chromatography (HPLC) system can be used for analysis that can facilitate real-time decisions for column pooling based on product quality attributes (Rathore et al., 2008). In this article we test the feasibility of using a commercially available ultra- performance liquid chromatography (UPLC) system for real-time pooling of process chromatography columns. It is demonstrated that the UPLC system offers a feasible approach and meets the requirements of a PAT application. While the application presented here is of a reversed phase assay, the approach and the hardware can be easily applied to other modes of liquid chromatography.  相似文献   

6.
Tangential flow microfiltration (MF) is a cost‐effective and robust bioprocess separation technique, but successful full scale implementation is hindered by the empirical, trial‐and‐error nature of scale‐up. We present an integrated approach leveraging at‐line process analytical technology (PAT) and mass balance based modeling to de‐risk MF scale‐up. Chromatography‐based PAT was employed to improve the consistency of an MF step that had been a bottleneck in the process used to manufacture a therapeutic protein. A 10‐min reverse phase ultra high performance liquid chromatography (RP‐UPLC) assay was developed to provide at‐line monitoring of protein concentration. The method was successfully validated and method performance was comparable to previously validated methods. The PAT tool revealed areas of divergence from a mass balance‐based model, highlighting specific opportunities for process improvement. Adjustment of appropriate process controls led to improved operability and significantly increased yield, providing a successful example of PAT deployment in the downstream purification of a therapeutic protein. The general approach presented here should be broadly applicable to reduce risk during scale‐up of filtration processes and should be suitable for feed‐forward and feed‐back process control. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:108–115, 2016  相似文献   

7.
We designed, built or 3D printed, and screened tubular reactors that minimize axial dispersion to serve as incubation chambers for continuous virus inactivation of biological products. Empirical residence time distribution data were used to derive each tubular design's volume equivalent to a theoretical plate (VETP) values at a various process flow rates. One design, the Jig in a Box (JIB), yielded the lowest VETP, indicating optimal radial mixing and minimal axial dispersion. A minimum residence time (MRT) approach was employed, where the MRT is the minimum time the product spends in the tubular reactor. This incubation time is typically 60 minutes in a batch process. We provide recommendations for combinations of flow rates and device dimensions for operation of the JIB connected in series that will meet a 60‐min MRT. The results show that under a wide range of flow rates and corresponding volumes, it takes 75 ± 3 min for 99% of the product to exit the reactor while meeting the 60‐min MRT criterion and fulfilling the constraint of keeping a differential pressure drop under 5 psi. Under these conditions, the VETP increases slightly from 3 to 5 mL though the number of theoretical plates stays constant at about 1326 ± 88. We also demonstrated that the final design volume was only 6% ± 1% larger than the ideal plug flow volume. Using such a device would enable continuous viral inactivation in a truly continuous process or in the effluent of a batch chromatography column. Viral inactivation studies would be required to validate such a design. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:954–965, 2017  相似文献   

8.
For many protein therapeutics including monoclonal antibodies, aggregate removal process can be complex and challenging. We evaluated two different process analytical technology (PAT) applications that couple a purification unit performing preparative hydrophobic interaction chromatography (HIC) to a multi-angle light scattering (MALS) system. Using first principle measurements, the MALS detector calculates weight-average molar mass, Mw and can control aggregate levels in purification. The first application uses an in-line MALS to send start/stop fractionation trigger signals directly to the purification unit when preset Mw criteria are met or unmet. This occurs in real-time and eliminates the need for analysis after purification. The second application uses on-line ultra-high performance size-exclusion liquid chromatography to sample from the purification stream, separating the mAb species and confirming their Mw using a µMALS detector. The percent dimer (1.5%) determined by the on-line method is in agreement with the data from the in-line application (Mw increase of approximately 2750 Da). The novel HIC-MALS systems demonstrated here can be used as a powerful tool for real-time aggregate monitoring and control during biologics purification enabling future real time release of biotherapeutics.  相似文献   

9.
目的:探讨叔丁基对苯二酚(t BHQ)和莱菔硫烷(SFN)在患有创伤性脑损伤大鼠的疗效差异性。方法:80只健康成年的雄性SD大鼠分为假手术组、常规损伤组、t BHQ治疗组和SFN治疗组,使用电子颅脑损伤仪(e CCI)制备TBI模型。其中t BHQ治疗组在伤前24 h大鼠腹腔注射三次t BHQ(50 mg/kg),每8 h一次;SFN治疗组在伤后15 min给予腹腔注射SFN(5 mg/kg)。给药24 h后,采用m NSS方法评价各组大鼠神经功能缺损状况,利用干湿称量法计算脑含水量,Western blot和ELISA方法分别测定大鼠脑组织的NOX2和Nrf2的表达水平。结果:损伤发生后第24 h,t BHQ治疗组和SFN治疗组在m NSS评分((4.5±0.71)vs(9.2±0.79),(6.0±0.82)vs(9.2±0.79))、脑水肿(79.4%vs 85.6%,80.3%vs 85.6%)、NOX2和Nrf2(0.93 ng/m L vs 0.81 ng/m L,0.87 ng/m L vs 0.81 ng/m L)表达上与常规损伤组差异明显,而t BHQ治疗组和SFN治疗组间在m NSS评分((4.5±0.71)vs(6.0±0.82))、NOX2和Nrf2(0.93 ng/m L vs 0.87 ng/m L)表达上差异显著。结论:在大鼠TBI模型中,t BHQ和SFN均可以有效的降低机体自身的氧化应激作用,并改善神经功能,但t BHQ的疗效要好于SFN。  相似文献   

10.
Fusion‐tag affinity chromatography is a key technique in recombinant protein purification. Current methods for protein recovery from mammalian cells are hampered by the need for feed stream clarification. We have developed a method for direct capture using immobilized metal affinity chromatography (IMAC) of hexahistidine (His6) tagged proteins from unclarified mammalian cell feed streams. The process employs radial flow chromatography with 300–500 μm diameter agarose resin beads that allow free passage of cells but capture His‐tagged proteins from the feed stream; circumventing expensive and cumbersome centrifugation and/or filtration steps. The method is exemplified by Chinese Hamster Ovary (CHO) cell expression and subsequent recovery of recombinant His‐tagged carcinoembryonic antigen (CEA); a heavily glycosylated and clinically relevant protein. Despite operating at a high NaCl concentration necessary for IMAC binding, cells remained over 96% viable after passage through the column with host cell proteases and DNA detected at ~8 U/mL and 2 ng/μL in column flow‐through, respectively. Recovery of His‐tagged CEA from unclarified feed yielded 71% product recovery. This work provides a basis for direct primary capture of fully glycosylated recombinant proteins from unclarified mammalian cell feed streams. Biotechnol. Bioeng. 2016;113: 130–140. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Recently, multimodal chromatography using restricted access media (RAM) for the purification of nanoparticles, such as viruses has regained increasing attention. These chromatography resins combine size exclusion on the particle shell and adsorptive interaction within the core. Accordingly, smaller process-related impurities, for example, DNA and proteins, can be retained, while larger product viruses can pass unhindered. We evaluated a range of currently available RAM, differing in the shells’ pore cut-off and the core chemistry, for the purification of a cell culture-derived clarified model virus, namely the Orf virus (ORFV). We examined impurity depletion and product recovery as relevant criteria for the evaluation of column performance, as well as scale-up robustness and regeneration potential for evaluating a multiple use application. The results indicate that some columns, for example, the Capto Core, enable both a high DNA and protein removal, while others, for example, the Monomix Core 60 (MC60), are more suitable for DNA depletion. Furthermore, column regeneration is facilitated by using columns with larger shell pores (5000 vs. 700 kDa) and weaker binding interactions (anion exchange vs. multimodal). According to these findings, the choice of RAM resins should be selected according to the respective feed sample composition and the planned number of application cycles.  相似文献   

12.
Objective: The objective was to determine if physiological hyperglycemia induces a proatherogenic inflammatory response in mononuclear cells (MNCs) in obese reproductive‐age women. Research Methods and Procedures: Seven obese and 6 age‐matched lean women (20 to 39 years of age) underwent a 2‐hour 75‐g oral glucose tolerance test. The release of interleukin‐6 (IL‐6) and interleukin‐1β (IL‐1β) from MNCs cultured in the presence of lipopolysaccharide (LPS) was measured after isolation from blood samples drawn fasting and 2 hours after glucose ingestion. Reactive oxygen species (ROS) generation and intra‐nuclear nuclear factor κB (NFκB) from MNCs were quantified from the same blood samples. Insulin resistance was estimated by homeostasis model assessment of insulin resistance (HOMA‐IR). Total body fat and truncal fat were determined by DXA. Results: Obese women had a higher (p < 0.03) total body fat (42.2 ± 1.1 vs. 27.7 ± 2.0%), truncal fat (42.1 ± 1.2 vs. 22.3 ± 2.4%), and HOMA‐IR (3.3 ± 0.5 vs. 1.8 ± 0.2). LPS‐stimulated IL‐6 release from MNCs was suppressed during hyperglycemia in lean subjects (1884 ± 495 vs. 638 ± 435 pg/mL, p < 0.05) but not in obese women (1184 ± 387 vs. 1403 ± 498 pg/mL). There was a difference (p < 0.05) between groups in the hyperglycemia‐induced MNC‐mediated release of IL‐6 (?1196 ± 475 vs. 219 ± 175 pg/mL) and IL‐1β (?79 ± 43 vs. 17 ± 12 pg/mL). In addition, the obese group exhibited increased (p < 0.05) MNC‐derived ROS generation (39.3 ± 9.9 vs. ?1.0 ± 12.8%) and intra‐nuclear NFκB (9.4 ± 7.3 vs. ?23.5 ± 13.5%). Truncal fat was positively correlated with the MNC‐derived IL‐6 response (ρ = 0.58, p < 0.05) and intra‐nuclear NFκB (ρ = 0.64, p < 0.05). Discussion: These data suggest that obese reproductive‐age women are unable to suppress proatherogenic inflammation during physiological hyperglycemia. Increased adiposity may be a significant contributor to this pro‐inflammatory susceptibility.  相似文献   

13.
Process analytical technology (PAT) tools such as Raman Spectroscopy have become established tools for real time measurement of CHO cell bioreactor process variables and are aligned with the QbD approach to manufacturing. These tools can have a significant impact on process development if adopted early, creating an end-to-end PAT/QbD focused process. This study assessed the impact of Raman based feedback control on early and late phase development bioreactors by using a Raman based PLS model and PAT management system to control glucose in two CHO cell line bioreactor processes. The impact was then compared to bioreactor processes which used manual bolus fed methods for glucose feed delivery. Process improvements were observed in terms of overall bioreactor health, product output and product quality. Raman controlled batches for Cell Line 1 showed a reduction in glycation of 43.4% and 57.9%, respectively. Cell Line 2 batches with Raman based feedback control showed an improved growth profile with higher VCD and viability and a resulting 25% increase in overall product titer with an improved glycation profile. The results presented here demonstrate that Raman spectroscopy can be used in both early and late-stage process development and design for consistent and controlled glucose feed delivery.  相似文献   

14.
Cation exchange chromatography (CEX) is an essential part of most monoclonal antibody (mAb) purification platforms. Process characterization and root cause investigation of chromatographic unit operations are performed using scale down models (SDM). SDM chromatography columns typically have the identical bed height as the respective manufacturing-scale, but a significantly reduced inner diameter. While SDMs enable process development demanding less material and time, their comparability to manufacturing-scale can be affected by variability in feed composition, mobile phase and resin properties, or dispersion effects depending on the chromatography system at hand. Mechanistic models can help to close gaps between scales and reduce experimental efforts compared to experimental SDM applications. In this study, a multicomponent steric mass-action (SMA) adsorption model was applied to the scale-up of a CEX polishing step. Based on chromatograms and elution pool data ranging from laboratory- to manufacturing-scale, the proposed modeling workflow enabled early identification of differences between scales, for example, system dispersion effects or ionic capacity variability. A multistage model qualification approach was introduced to measure the model quality and to understand the model's limitations across scales. The experimental SDM and the in silico model were qualified against large-scale data using the identical state of the art equivalence testing procedure. The mechanistic chromatography model avoided limitations of the SDM by capturing effects of bed height, loading density, feed composition, and mobile phase properties. The results demonstrate the applicability of mechanistic chromatography models as a possible alternative to conventional SDM approaches.  相似文献   

15.
The implementation of continuous processing in the biopharmaceutical industry is hindered by the scarcity of process analytical technologies (PAT). To monitor and control a continuous process, PAT tools will be crucial to measure real-time product quality attributes such as protein aggregation. Miniaturizing these analytical techniques can increase measurement speed and enable faster decision-making. A fluorescent dye (FD)-based miniaturized sensor has previously been developed: a zigzag microchannel which mixes two streams under 30 s. Bis-ANS and CCVJ, two established FDs, were employed in this micromixer to detect aggregation of the biopharmaceutical monoclonal antibody (mAb). Both FDs were able to robustly detect aggregation levels starting at 2.5%. However, the real-time measurement provided by the microfluidic sensor still needs to be implemented and assessed in an integrated continuous downstream process. In this work, the micromixer is implemented in a lab-scale integrated system for the purification of mAbs, established in an ÄKTA™ unit. A viral inactivation and two polishing steps were reproduced, sending a sample of the product pool after each phase directly to the microfluidic sensor for aggregate detection. An additional UV sensor was connected after the micromixer and an increase in its signal would indicate that aggregates were present in the sample. The at-line miniaturized PAT tool provides a fast aggregation measurement, under 10 min, enabling better process understanding and control.  相似文献   

16.
This study was carried out to investigate the effects of chromium intake on glycemic control, markers of cardio-metabolic risk, and oxidative stress in infertile polycystic ovary syndrome (PCOS) women candidate for in vitro fertilization (IVF). This randomized double-blind, placebo-controlled trial was done among 40 subjects with infertile PCOS candidate for IVF, aged 18–40 years old. Individuals were randomly allocated into two groups to take either 200 μg/day of chromium (n?=?20) or placebo (n?=?20) for 8 weeks. Biochemical parameters were assessed at baseline and at end-of-trial. Compared with the placebo, taking chromium supplements led to significant reductions in fasting plasma glucose (??2.3?±?5.7 vs. +?0.9?±?3.1 mg/dL, P?=?0.03), insulin levels (??1.4?±?2.1 vs. +?0.4?±?1.7 μIU/mL, P?=?0.004), homeostatic model of assessment for insulin resistance (??0.3?±?0.5 vs. +?0.1?±?0.4, P?=?0.005), and a significant increase in quantitative insulin sensitivity check index (+?0.004?±?0.008 vs. ??0.001?±?0.008, P?=?0.03). In addition, chromium supplementation significantly decreased serum triglycerides (??19.2?±?33.8 vs. +?8.3?±?21.7 mg/dL, P?=?0.004), VLDL- (??3.8?±?6.8 vs. +?1.7?±?4.3 mg/dL, P?=?0.004) and total cholesterol concentrations (??15.3?±?26.2 vs. ??0.6?±?15.9 mg/dL, P?=?0.03) compared with the placebo. Additionally, taking chromium supplements was associated with a significant increase in plasma total antioxidant capacity (+?153.9?±?46.1 vs. ??7.8?±?43.9 mmol/L, P?<?0.001) and a significant reduction in malondialdehyde values (?0.3?±?0.3 vs. +?0.1?±?0.2 μmol/L, P?=?0.001) compared with the placebo. Overall, our study supported that chromium administration for 8 weeks to infertile PCOS women candidate for IVF had beneficial impacts on glycemic control, few variables of cardio-metabolic risk, and oxidative stress.  相似文献   

17.
To enable subcutaneous administration of monoclonal antibodies, drug product solutions are often needed at high concentrations. A significant risk associated with high drug product concentrations is an increase in aggregate level over the shelf‐life dating period. While much work has been done to understand the impact of drug product formulation on aggregation, there is limited understanding of the link between cell culture process conditions and soluble aggregate growth in drug product. During cell culture process development, soluble aggregates are often measured at harvest using cell‐free material purified by Protein A chromatography. In the work reported here, cell culture media components were evaluated with respect to their impact on aggregate levels in high concentration solution drug product during accelerated stability studies. Two components, cysteine and ferric ammonium citrate, were found to impact aggregate growth rates in our current media (version 1) leading to the development of new chemically defined media and concentrated feed formulations. The new version of media and associated concentrated feeds (version 2) were evaluated across four cell lines producing recombinant IgG4 monoclonal antibodies and a bispecific antibody. In all four cell lines, the version 2 media reduced aggregate growth over the course of a 12 week accelerated stability study compared with the version 1 media, although the degree to which aggregate growth decreased was cell line dependent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:998–1008, 2016  相似文献   

18.
Mixed matrix membranes (MMMs), which incorporate adsorptive particles during membrane casting, can be prepared simply and have performances that are competitive with other membrane chromatography materials. The application of MMM chromatography for fractionation of β‐Lactoglobulin from bovine whey is described in this article. MMM chromatography was prepared using ethylene vinyl alcohol polymer and lewatit anion exchange resin to form a flat sheet membrane. The membrane was characterized in terms of structure and its static and dynamic binding capacities were measured. The optimum binding for β‐Lactoglobulin was found to be at pH 6.0 using 20 mM sodium phosphate buffer. The MMM had a static binding capacity of 120 mg/g membrane (36 mg/mL membrane) and 90 mg/g membrane (27 mg/mL membrane) for β‐Lactoglobulin and α‐Lactalbumin, respectively. In batch fractionation of whey, the MMM showed selective binding towards β‐Lactoglobulin compared to other proteins. The dynamic binding capacity of β‐Lactoglobulin in whey solution was about 80 mg/g membrane (24 mg β‐Lac/mL of MMM), which is promising for whey fractionation using this technology. This is the first reported application of MMM chromatography to a dairy feed stream. Biotechnol. Bioeng. 2009;103: 138–147. © 2008 Wiley Periodicals, Inc.  相似文献   

19.
Whether sex differences in intramuscular triglyceride (IMTG) metabolism underlie sex differences in the progression to diabetes are unknown. Therefore, the current study examined IMTG concentration and fractional synthesis rate (FSR) in obese men and women with normal glucose tolerance (NGT) vs. those with prediabetes (PD). PD (n = 13 men and 7 women) and NGT (n = 7 men and 12 women) groups were matched for age and anthropometry. Insulin action was quantified using a hyperinsulinemic‐euglycemic clamp with infusion of [6,6?2H2]‐glucose. IMTG concentration was measured by gas chromatography/mass spectrometry (GC/MS) and FSR by GC/combustion isotope ratio MS (C‐IRMS), from muscle biopsies taken after infusion of [U?13C]palmitate during 4 h of rest. In PD men, the metabolic clearance rate (MCR) of glucose was lower during the clamp (4.71 ± 0.77 vs. 8.62 ± 1.26 ml/kg fat‐free mass (FFM)/min, P = 0.04; with a trend for lower glucose rate of disappearance (Rd), P = 0.07), in addition to higher IMTG concentration (41.2 ± 5.0 vs. 21.2 ± 3.4 µg/mg dry weight, P ≤ 0.01), lower FSR (0.21 ± 0.03 vs. 0.42 ± 0.06 %/h, P ≤ 0.01), and lower oxidative capacity (P = 0.03) compared to NGT men. In contrast, no difference in Rd, IMTG concentration, or FSR was seen in PD vs. NGT women. Surprisingly, glucose Rd during the clamp was not different between NGT men and women (P = 0.25) despite IMTG concentration being higher (42.6 ± 6.1 vs. 21.2 ± 3.4 µg/mg dry weight, P = 0.03) and FSR being lower (0.23 ± 0.04 vs. 0.42 ± 0.06 %/h, P = 0.02) in women. Alterations in IMTG metabolism relate to diminished insulin action in men, but not women, in the progression toward diabetes.  相似文献   

20.
This paper analyzes possible dopamine (DA) mediated cadmium effects on plasma levels of prolactin, growing hormone (GH) and adrenocorticotropic hormone (ACTH), and if these changes are related to metal accumulation. For that purpose, adult male rats were treated with 50 mg/L of CdCl2 in the drinking water for one month. Plasma levels of prolactin, ACTH and GH were measured by specific double antibody radioimmunoassays. DA was measured by high performance liquid chromatography using electrochemical detection. Cadmium content in the tissues was measured by atomic absorption spectometry with graphite furnace. Analysis was performed by using a T-Student test. Metal exposure increased DA content (34.79±3.06vs. 18.2±2.88 pg/mg protein) and decreased its turnover (0.40±0.07vs. 0.75±0.06) in posterior hypothalamus. Cadmium also decreased DA turnover in median eminence (0.48±0.15vs. 1.50±0.63). Plasma levels of prolactin and GH decreased (2.4±0.11vs. 3.1±0.15 ng/mL and 5.37±0.05vs. 9.87±1.8 ng/mL respectively), while those of ACTH increased (2.73±0.14vs. 1.7±0.16 ng/mL). Cadmium concentration increased in both hypothalamus (4.88±0.34vs. 0.72±0.2 μg/g) and pituitary (22.82±4.57vs. 5.02±1.25 μg/g) after the metal exposure. These results suggest that cadmium effects on the secretion of these hormones are not mediated by dopamine and might be correlated to the metal accumulation at pituitary level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号