首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
To obtain a high cell density of recombinant Saccharomyces cerevisiae (INVSc 1 strain bearing a 2 microm plasmid, pYES2 containing a GAL1 promoter for expression of the beta-galactosidase gene), the yeast was grown with glycerol as the substrate by fed-batch fermentation. The feeding strategy was based on an on-line response of the medium pH to the consumption of glycerol. The approach was to feed excess carbon into the medium to create a benign environment for rapid biomass buildup. During cell growth in the presence of glycerol, the release of protons in the medium caused a decrease in pH and the consumption rate of ammonium phosphate served as an on-line indicator for the metabolic rate of the organism. The extent of glycerol feeding in a fed-batch mode with pH control at 5.0 +/- 0.1 was ascertained from the automatic addition of ammonium phosphate to the medium. The glycerol feeding to ammonium phosphate addition ratio was found to be 2.5-3.0. On the basis of the experiments, a maximum dry cell biomass of 140 g per liter and a productivity of 5.5 g DCW/L/h were achieved. The high cell density of S. cerevisiae obtained with good plasmid stability suggested a simple and efficient fermentation protocol for recombinant protein production.  相似文献   

2.
Gluconobacter oxydans has a lower biomass yield. Uniform design (UD) was applied to determine the optimum composition of the critical media and their mutual interactions for increased biomass yield of Gluconobacter oxydans DSM 2003 in shake flasks. Fed-batch fermentation process for biomass was optimized in a 3.7-l fermentor. By undertaking a preliminary and improved fed-batch fermentation-process strategy, a cell density of 6.0 g/l (DCW) was achieved in 22 h and 14.1 g/l (DCW) in 35 h, which is the highest cell density of G. oxydans produced thus far in a 3.7-l bioreactor. The biomass production was increased by 135% compared with that using the original cultivation strategy. Bioconversion of ethylene glycol to glycolic acid was catalyzed by the resting cells of G. oxydans DSM 2003, and conversion rate reached 86.7% in 48 h. In summary, the approach including high-density fermentation of G. oxydans DSM 2003 and bioconversion process was established and proved to be an effective method for glycolic acid production.  相似文献   

3.
A fed-batch process for the high cell density cultivation of E. coli TG1 and the production of the recombinant protein phenylalanine dehydrogenase (PheDH) was developed. A model based on Monod kinetics with overflow metabolism and incorporating acetate utilization kinetics was used to generate simulations that describe cell growth, acetate production and reconsumption, and glucose consumption during fed-batch cultivation. Using these simulations a predetermined feeding profile was elaborated that would maintain carbon-limited growth at a growth rate below the critical growth rate for acetate formation (mu < mu(crit)). Two starvation periods are incorporated into the feed profile in order to induce acetate utilization. Cell concentrations of 53 g dry cell weight (DCW)/L were obtained with a final intracellular product concentration of recombinant protein corresponding to approximately 38% of the total cell protein. The yield of PheDH was 129 U/mL with a specific activity of 1.2 U/mg DCW and a maximum product formation rate of 0.41 U/mg DCW x h. The concentration of aectate was maintained below growth inhibitory levels until 3 h before the end of the fermentation when the concentration reached a maximum of 10.7 g/L due to IPTG induction of the recombinant protein.  相似文献   

4.
利用放射型根瘤菌WSH2 6 0 1(RhizobiumradiobacterWSH2 6 0 1)重点考察了葡萄糖、蔗糖、玉米浆和蛋白胨、添加物以及流加发酵对细胞生长和产辅酶Q1 0 的影响 ,结果表明 ,葡萄糖和蔗糖适合于生产辅酶Q1 0 的最佳浓度分别为 30g L和 40g L ;辅酶Q1 0 发酵时玉米浆和蛋白胨的最适浓度分别为 11g L和 16g L ;添加蕃茄汁、玉米浆能提高发酵液的生物量 ,玉米浆、异戊醇、L 甲硫氨基酸等能促进辅酶Q1 0 的积累 ;与分批发酵相比 ,在 7L罐上流加蔗糖其细胞生物量 (DCW)和辅酶Q1 0 积累量增加 ,若在流加蔗糖的同时流加适当浓度的玉米浆能显著提高辅酶Q1 0 的产量 ,最大产量达到 5 2 .4mg L ;最大生物量 (DCW)和胞内辅酶Q1 0 含量 (C B值 )分别达到 2 6 .4g L和 2 .38mg g DCW ,比不流加的分批发酵分别提高 5 3 %和 33% ,比只流加蔗糖分别提高 2 4%和 2 6 %。  相似文献   

5.
Escherichia coli harboring a recombinant plasmid was cultivated in fed-batch culture to enhance production of a gene product. Expression of the leucine gene from Thermus thermophilus in the recombinant plasmid was examined by the assay of beta-isopropylmalate dehydrogenase activity at 75 degrees C. When E. coli was cultivated in medium without leucine, biomass concentration reached 15 g/L and the specific activity became 0.082 U/mg protein. When leucine was fed in the medium throughout cultivation, although biomass concentration reached 63 g/L, the specific activity decreased to 0.016 U/mg protein. When E. coli was cultivated in medium containing 1 g leucine/L, the specific activity remained virtually constant (about 0.13 U/mg protein) and biomass concentration reached 32 g dry cells/L. In these cultivations, growth yields of several amino acids and glucose were examined. When leucine was not added to the medium, growth yields except for histidine were lowest. When leucine was fed throughout the cultivation, growth yields of glucose and tryptophan were highest. The pH-stat was useful for feeding amino acids.  相似文献   

6.
温度对大肠杆菌L-色氨酸发酵过程的影响   总被引:4,自引:0,他引:4  
目的:研究变温控制对大肠杆菌TRTH L-色氨酸补料分批发酵过程中生物量、色氨酸产量、比生长速率及质粒稳定性的影响。方法:利用5L自控发酵罐对L-色氨酸补料分批发酵过程进行温度控制,对不同温度下相关参数进行分析比较,确定优化的温度控制方案。结果:以30-36%顺序升温的工艺进行发酵得到理想结果,与单一温度控制策略相比,L-色氨酸产量提高了15.4%;色氨酸的比合成速率提高了21.6%;质粒稳定性增加,未出现质粒丢失现象,质粒拷贝数保持在恒定水平。结论:温度对大肠杆菌L-色氨酸发酵有重要影响。  相似文献   

7.
Pyruvate oxidase (PyOD) is a very powerful enzyme for clinical diagnostic applications and environmental monitoring. Influences of temperature on cell growth, plasmid stability, and PyOD expression during the PyOD fermentation process by recombinant Escherichia coli were investigated. Based on the influences of temperature on the physiological metabolism, a novel high-cell density fed-batch cultivation with gradient temperature decrease strategy for effective PyOD production was achieved, under which the biomass (OD600) of recombinant E. coli could reach to 71 and the highest PyOD activity in broth could reach to 3,307 U/L in 26?hr fermentation.  相似文献   

8.
In order to provide sufficient pharmaceutical-grade plasmid DNA material, it is essential to gain a comprehensive knowledge of the bioprocesses involved; so, the development of protocols and techniques that allow a fast monitoring of process performance is a valuable tool for bioprocess design. Regarding plasmid DNA production, the metabolic stress of the host strain as well as plasmid stability have been identified as two of the key parameters that greatly influence plasmid DNA yields. The present work describes the impact of batch and fed-batch fermentations using different C/N ratios and different feeding profiles on cell physiology and plasmid stability, investigating the potential of these two monitoring techniques as valuable tools for bioprocess development and design. The results obtained in batch fermentations showed that plasmid copy number values suffered a pronounced increase at the end of almost all fermentation conditions tested. Regarding fed-batch fermentations, the strategies with exponential feeding profiles, in contrast with those with constant feeding, showed higher biomass and plasmid yields, the maximum values obtained for these two parameters being 95.64 OD600 and 344.3 mg plasmid DNA (pDNA)/L, respectively, when using an exponential feed rate of 0.2 h−1. Despite the results obtained, cell physiology and plasmid stability monitoring revealed that, although higher pDNA overall yields were obtained, this fermentation exhibited lower plasmid stability and percentage of viable cells. In conclusion, this study allowed clarifying the bioprocess performance based on cell physiology and plasmid stability assessment, allowing improvement of the overall process and not only plasmid DNA yield and cell growth.  相似文献   

9.
Optimal conditions for a high cell density fermentation were investigated in a recombinant Escherichia coli producing salmosin, a platelet aggregation inhibitor. The optimized carbon and nitrogen sources were glycerol 10 g/l, yeast extract 30 g/l, and bacto-tryptone 10 g/l, yielding the dry cell weight (DCW) of 10.61 g/l in a 500 ml flask culture. The late-stage induction with 1% L-arabinose in a 5 l jar fermentor showed the highest DCW of 65.70 g/l after 27 h of the fed-batch fermentation. Around 2,200 mg/l of the protein was expressed as an inclusion body that was then refolded to obtain the active salmosin of 96 mg/l. We also confirmed the inhibitory activity against platelet aggregation of the active salmosin from the high cell density fermentation.  相似文献   

10.
Phenylpyruvic acid is a deaminated form of phenylalanine and is used in various areas such as development of cheese and wine flavors, diagnosis of phenylketonuria, and to decrease excessive nitrogen accumulation in the manure of farm animals. However, reported phenylpyruvic acid fermentation studies in the literature have been usually performed at shake-flask scale with low production. In this study, phenylpyruvic acid production was evaluated in bench-top bioreactors by conducting fed-batch and continuous fermentation for the first time. As a result, maximum phenylpyruvic acid concentrations increased from 1350 mg/L (batch fermentation) to 2958 mg/L utilizing fed-batch fermentation. Furthermore, phenylpyruvic acid productivity was increased from 48 mg/L/hr (batch fermentation) to 104 and 259 mg/L/hr by conducting fed-batch and continuous fermentation, respectively. Overall, this study demonstrated that fed-batch and continuous fermentation significantly improved phenylpyruvic acid production in bench-scale bioreactor production.  相似文献   

11.
Nitrile hydratases are important industrial catalysts to produce valuable amides. In this study, we describe a comprehensive and systematic approach to the development of an inducible expression system for enhanced nitrile hydratase expression in Corynebacterium glutamicum. Through promoter engineering, codon optimization and design of ribosome binding site sequences, the nitrile hydratase activity toward 3-cyanopyridine was improved from 0.33 U/mg DCW to 12.03 U/mg DCW in shake-flask culture. By introduction of the novel inducible mmp expression system, the nitrile hydratase activity was further elevated to 14.97 U/mg DCW. Finally, a high nitrile hydratase yield of 1432 U/mL was achieved in a fed-batch fermentation process and used for nicotinamide production. These results provide new insights for the development of heterologous protein expression systems in C. glutamicum.  相似文献   

12.
Human granulocyte–macrophage colony-stimulating factor (hGM-CSF) is a therapeutically important cytokine that is poorly expressed because of its toxic effects on the host cells. Extracellular expression of hGM-CSF was obtained by cloning its gene in Pichia pastoris under the constitutive glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter with an N-terminal α peptide sequence for its extracellular production. The clones obtained were screened for a hyper producer following which media and cultivation conditions were optimized in shake flasks. Batch and fed-batch studies were performed in a bioreactor where different feed compositions were fed exponentially to obtain high biomass concentrations. Feeding of complex media allowed us to maintain a high specific growth rate of 0.2 h−1 for the longest time period, and a final biomass of 98 g DCW/l was obtained in 34 h. Product formation was found to be growth associated, and the product yield with respect to biomass (Y P/X) was ∼2.5 mg/g DCW. The above fed-batch strategy allowed us to obtain fairly pure glycosylated hGM-CSF at a final product concentration of 250 mg/l in the culture supernatant with a high volumetric productivity of 7.35 mg l−1 h−1.  相似文献   

13.
《Process Biochemistry》2007,42(7):1039-1049
The production of plasmid pEGFP-N1 in Escherichia coli DH5α was optimised. A strategy evaluating different media components separately was not successful (OD < 2.5, low plasmid titres), a statistical approach via a Plackett Burman design (11 parameters) allowed some improvement (7 mg/L plasmid, OD600 8.5). Generally, high biomass did not correlate with high plasmid titres. When conditions were transferred to the bioreactor (batch operation) little improvement in plasmid titres (10 mg/L plasmid, OD600 20) was observed. By switching to a fed-batch procedure with linear feeding these values increased to 20 mg/L plasmid (OD600 50). By using an adaptive feeding strategy, plasmid titres could be increased to 50 mg/L. Finally, by combining a growth controlled (reduced temperature (35 °C), low dO2) initial batch phase with an adaptive feeding strategy in the fed-batch phase (37 °C, glucose-/dO2-limitation) we were reproducibly able to produce up to 250 mg/L of plasmid DNA in cultures that reached a final OD600 of 80.  相似文献   

14.
A higher Coenzyme Q10 (CoQ10) concentration of 25.04 mg/l was found in airlift bioreactor than the value of 18.11 mg/l obtained in stirred tank under the aerobic-dark cultivation of Rhodobacter sphaeroides. Aeration rate didn’t show obvious impact to CoQ10 production in airlift bioreactor. The fed-batch operation in airlift bioreactor could increase the biomass concentration and led to the maximum CoQ10 concentration of 33.91 mg/l measured, but a lower CoQ10 cell content (3.5 mg CoQ10/DCW) was observed in the fed-batch operation as compared to the batch operation. To enhance the CoQ10 content, an aeration-change strategy was proposed in the fed-batch operation of airlift bioreactor. This strategy led to the maximum CoQ10 concentration of 45.65 mg/l, a 35% increase as compared to the simple fed-batch operation. The results of this study suggested that a fed-batch operation in airlift bioreactor accompanying aeration-change could be suitable for CoQ10 production.  相似文献   

15.
For the commercial production of CoQ10, batch-type fermentations were attempted in a 150-l fermenter using a mutant strain of R. sphaeroides. Optimum temperature and initial aeration rate were found to be 30°C and 2 vvm, respectively. Under optimum fermentation conditions, the maximum value of specific CoQ10 content was achieved reproducibly as 6.34 mg/g DCW after 24 h, with 3.02 g/l of DCW. During the fermentation, aeration shift (from the adequate aeration at the early growth phase to the limited aeration in active cellular metabolism) was a key factor in CoQ10 production for scale-up. A higher value of the specific CoQ10 content (8.12 mg/g DCW) was achieved in fed-batch fermentation and comparable to those produced by the pilot-scale fed-batch fermentations of A. tumefaciens, which indicated that the mutant strain of R. sphaeroides used in this study was a potential high CoQ10 producer. This is the first detailed study to demonstrate a pilot-scale production of CoQ10 using a mutant strain of R. sphaeroides.  相似文献   

16.
为了评价虾青素高产菌株-法夫酵母JMU-MVP14的生产性能及建立虾青素高产发酵技术,通过测定糖、生物量、虾青素产量、总类胡萝卜素产量等发酵参数,用摇瓶试验对比了法夫酵母JMU-MVP14和出发菌株的差异,用7 L罐试验对比了pH值调控方式及补料培养基成分对发酵的影响,用1 m3罐试验评估了法夫酵母JMU-MVP14高密度发酵虾青素的产量水平。摇瓶发酵结果表明,法夫酵母JMU-MVP14虾青素及总类胡萝卜素的细胞产率分别达到6.01 mg/g及10.38 mg/g;7 L罐分批发酵试验结果表明,自动流加调  相似文献   

17.
对法夫酵母的不同补料发酵方式进行了研究.基于底物抑制模型,提出了一种优化的两阶段补料策略,用于法夫酵母产虾青素的高密度发酵.在发酵的延迟期和对数生长期早期,糖浓度控制在25 g/L左右,在此条件下,生物量可以达到最大,且时间缩短.在对数生长期后期及稳定期,糖浓度控制在5 g/L,虾青素的合成时间可以有效延长.与传统的补料方式相比,采用此补料策略取得了较好的发酵效果.发酵终点细胞干重达到23.8g/L,虾青素产量达到29.05 mg/L,分别比分批发酵提高了52.8%和109%.  相似文献   

18.
Controlled nitrate feeding strategies for fed-batch cultures of microalgae were applied for the enhancement of lipid production and microalgal growth rates. In particular, in this study, the effect of nitrate feeding rates on lipid and biomass productivities in fed-batch cultures of Nannochloropsis gaditana were investigated using three feeding modes (i.e., pulse, continuous, and staged) and under two light variations on both lipid productivity and fatty acid compositions. Higher nitrate levels negatively affected lipid production in the study. Increasing the light intensity increased the lipid contents of the microalgae in all three fed-batch feeding modes. A maximum of 58.3% lipid- to dry weight ratio was achieved when using pulse-fed cultures at an illumination of 200 μmol photons m−2 s−1 and 10 mg/day of nitrate feeding. This condition also resulted in the maximum lipid productivity of 44.6 mg L−1 day−1. The fatty acid compositions of the lipids consisted predominantly of long-chain fatty acids (C:16 and C:18) and accounted for 70% of the overall fatty acid methyl esters. Pulse feeding mode was found to significantly enhance the biomass and lipid production. The other two feeding modes (continuous and staged) were not ideal for lipid and biomass production. This study demonstrates the applicability of pulse feeding strategies in fed-batch cultures as an appropriate cultivation strategy that can increase both lipid accumulation and biomass production.  相似文献   

19.
辅酶Q10(CoQ10)是一种脂溶性抗氧化剂,具有提高人体免疫力、延缓衰老和增强人体活力等功能,广泛应用于制药行业和化妆品行业。微生物发酵法能可持续性生产辅酶Q10,具有越来越多的商业价值。本研究首先将来自类球红细菌的十聚异戊二烯焦磷酸合成酶基因(dps)整合到大肠杆菌ATCC 8739染色体上,敲除内源的八聚异戊二烯焦磷酸合成酶基因(ispB),使内源的辅酶Q8合成途径被辅酶Q10合成途径取代,得到稳定生产辅酶Q10的菌株GD-14,其辅酶Q10产量达0.68 mg/L,单位细胞含量达0.54 mg/g DCW。随后用多个固定强度调控元件在染色体上对MEP途径的关键基因dxs和idi基因以及ubiCA基因进行组合调控,将辅酶Q10单位细胞含量提高2.46倍(从0.54到1.87 mg/g)。进一步引入运动发酵单胞菌Zymomonas mobilis的Glf转运蛋白代替自身的磷酸烯醇式丙酮酸:碳水化合物磷酸转移酶系统(PTS),使辅酶Q10产量进一步提高16%。最后,对高产菌株GD-51进行分批补料发酵,辅酶Q10产量达433 mg/L,单位细胞含量达11.7 mg/g DCW。这是目前为止文献报道的大肠杆菌产辅酶Q10最高菌株。  相似文献   

20.
法夫酵母高密度培养及虾青素的高产研究*   总被引:1,自引:1,他引:0  
本文对法夫酵母Phaffia rhodozyma的不同流加培养模式进行了研究。实验结果表明,采用指数流加,虾青素产率和细胞干重具有较大值,分别达到14.52mg/l和32.56g/l;其次是恒pO2流加和恒速流加培养,虾青素产率分别达到8.89mg/l和6.70mg/l; 恒pH流加方式更有利于法夫酵母细胞的生长(14.62g/l DCW)。但是,不同流加培养模式所得的μmax和qasta具有较大的差距。恒pH、恒pO2流加培养及间歇培养有较大值,分别为0.0613 h-1、0.056 h-1、0.053 h-1;指数流加的μmax较小。间歇培养中虾青素生成比率最大,qasta=0.048×10-3h-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号