首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many manufacturers of biopharmaceuticals are moving from batch to continuous processing. While this approach offers advantages over batch processing, demonstration of viral clearance for continuous processes is challenging. Fluctuating output from a continuous process chromatography column results in a nonhomogeneous load for the subsequent column and must be considered when designing viral clearance studies. One approach to clearance studies is to downscale the connected unit operations and introduce virus by in-line spiking. This is challenging to be implemented at the contract research organization performing the clearance study given the complexity of systems and level of expertise required. Alternately, each unit operation could be evaluated in traditional batch mode but the spiking and loading conditions be modified to mimic the variance introduced by the transition between two connected columns. Using a standard chromatography system, we evaluated a flow-through anion exchange chromatography step in a monoclonal antibody (mAb) manufacturing process using five different methods to introduce the virus to the column. Our data show that whether the virus or the mAbs were introduced in concentrated peaks, or as a homogeneous batch, the clearance of mouse minute virus was similar. This study introduces an alternative way to evaluate viral clearance in a continuous process and demonstrates the robustness of anion exchange chromatography unit operating in continuous processing.  相似文献   

2.
Continuous processing for the production of monoclonal antibodies (mAb) gains more and more importance. Several solutions exist for all the necessary production steps, leading to the possibility to build fully continuous processes. Low pH viral inactivation is a part of the standard platform process for mAb production. Consequently, Klutz et al. introduced the coiled flow inverter (CFI) as a tool for continuous low pH viral inactivation. Besides theoretical calculations of viral reduction, no viral clearance study has been presented so far. In addition, the validation of continuous viral clearance is often neglected in the already existing studies for continuous processing. This study shows in detail the development and execution of a virus study for continuous low pH viral inactivation inside a CFI. The concept presented is also valid for adaptation to other continuous viral clearance steps. The development of this concept includes the technical rationale for an experimental setup, a valid spiking procedure, and finally a sampling method. The experimental results shown represent a viral study using xenotropic murine leukemia virus as a model virus. Two different protein A (ProtA) chromatography setups with varying pH levels were tested. In addition, one of these setups was tested against a batch experiment utilizing the same process material. The results show that sufficient low pH viral inactivation (decadic logarithm reduction value >4) was achieved in all experiments. Complete viral inactivation took place within the first 14.5 min for both continuous studies and the batch study, hence showing similar results. This study therefore represents a successful virus study concept and experiment for a continuous viral inactivation step. Moreover, it was shown that the transfer from batch results to the continuous process is possible. This is accomplished by the narrow residence time distribution of the CFI, showing how close the setup approaches the ideal plug flow and with that batch operation.  相似文献   

3.
Continuous bioprocessing holds the potential to improve product consistency, accelerate productivity, and lower cost of production. However, switching a bioprocess from traditional batch to continuous mode requires surmounting business and regulatory challenges. A key regulatory requirement for all biopharmaceuticals is virus safety, which is assured through a combination of testing and virus clearance through purification unit operations. For continuous processing, unit operations such as capture chromatography have aspects that could be impacted by a change to continuous multicolumn operation, for example, do they clear viruses as well as a traditional batch single column. In this study we evaluate how modifying chromatographic parameters including the linear velocity and resin capacity utilization could impact virus clearance in the context of moving from a single column to multicolumn operation. A Design of Experiment (DoE) approach was taken with two model monoclonal antibodies (mAbs) and two bacteriophages used as mammalian virus surrogates. The DoE enabled the identification of best and worst-case scenario for virus clearance overall. Using these best and worst-case conditions, virus clearance was tested in single column and multicolumn modes and found to be similar as measured by Log Reduction Values (LRV). The parameters identified as impactful for viral clearance in single column mode were predictive of multicolumn modes. Thus, these results support the hypothesis that the viral clearance capabilities of a multicolumn continuous Protein A system may be evaluated using an appropriately scaled-down single mode column and equipment.  相似文献   

4.
5.
Anion exchange chromatography (AEX) operated under weak partitioning mode has been proven to be a powerful polishing step as well as a robust viral clearance step in Pfizer's monoclonal antibody (mAb) platform purification process. A multivariate design of experiment (DoE) study was conducted to understand the impact of operating parameters and feedstream impurity levels on viral clearance by weak partitioning mode AEX. Bacteriophage was used initially as a surrogate for neutral and acidic isoelectric point mammalian viruses (e.g., retrovirus and parvovirus). Five different mAbs were used in the evaluation of process parameters such as load challenge (both product and impurities), load pH, load conductivity, and contact time (bed height and flow‐rate). The operating ranges obtained from phage clearance studies and Pfizer's historical data were used to define an appropriate operating range for a subsequent clearance study with model retrovirus and parvovirus. Both phage and virus clearance evaluations included feedstreams containing different levels of impurities such as high molecular mass species (HMMS), host cell proteins (HCPs), and host cell DNA. For all the conditions tested, over 5 log10 of clearance for both retrovirus and parvovirus was achieved. The results demonstrated that weak partitioning mode AEX chromatography is a robust step for viral clearance and has the potential to be included as part of the modular viral clearance approach. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:750–757, 2015  相似文献   

6.
During production of therapeutic monoclonal antibodies (mAbs) in mammalian cell culture, it is important to ensure that viral impurities and potential viral contaminants will be removed during downstream purification. Anion exchange chromatography provides a high degree of virus removal from mAb feedstocks, but the mechanism by which this is achieved has not been characterized. In this work, we have investigated the binding of three viruses to Q sepharose fast flow (QSFF) resin to determine the degree to which electrostatic interactions are responsible for viral clearance by this process. We first used a chromatofocusing technique to determine the isoelectric points of the viruses and established that they are negatively charged under standard QSFF conditions. We then determined that virus removal by this chromatography resin is strongly disrupted by the presence of high salt concentrations or by the absence of the positively charged Q ligand, indicating that binding of the virus to the resin is primarily due to electrostatic forces, and that any non‐electrostatic interactions which may be present are not sufficient to provide virus removal. Finally, we determined the binding profile of a virus in a QSFF column after a viral clearance process. These data indicate that virus particles generally behave similarly to proteins, but they also illustrate the high degree of performance necessary to achieve several logs of virus reduction. Overall, this mechanistic understanding of an important viral clearance process provides the foundation for the development of science‐based process validation strategies to ensure viral safety of biotechnology products. Biotechnol. Bioeng. 2009; 104: 371–380 © 2009 Wiley Periodicals, Inc.  相似文献   

7.
Viral safety is a critical concern with regard to monoclonal antibody (mAb) products produced in mammalian cells such as Chinese hamster ovary cells. Manufacturers are required to ensure the safety of such products by validating the clearance of viruses in downstream purification steps. Cation exchange (CEX) chromatography is widely used in bind/elute mode as a polishing step in mAb purification. However, bind/elute modes require a large volume of expensive resin. To reduce the production cost, the use of CEX chromatography in overloaded mode has recently been investigated. The viral clearance ability in overloaded mode was evaluated using murine leukemia virus (MLV). Even under high-load conditions such as 2,000 g mAb/L resin, MLV was removed from mAb solutions. This viral clearance ability was not significantly affected by resin type or mAb type. The overloaded mode can also remove other types of viruses such as pseudorabies virus and reovirus Type 3 from mAb solutions. Based on these results, this cost-effective overloaded mode is comparable to the bind-elute mode in terms of viral removal.  相似文献   

8.
Viral safety is required for biological products to treat human diseases, and the burden of inactivation and or virus removal lies on the downstream purification process. Minute virus of mice (MVM) is a nonenveloped parvovirus commonly used as the worst-case model virus in validation studies because of its small size and high chemical stability. In this study, we investigated the use of MVM-mock virus particle (MVP) and bacteriophage ΦX174 as surrogates for MVM to mimic viral clearance studies, with a focus on chromatography operations. Based on structural models and comparison of log reduction value among MVM, MVP, and ΦX174, it was demonstrated that MVP can be used as a noninfectious surrogate to assess viral clearance during process development in multiple chromatography systems in a biosafety level one (BSL-1) laboratory. Protein A (ProA) chromatography was investigated to strategically assess the impact of the resin, impurities, and the monoclonal antibody product on virus removal.  相似文献   

9.
Viral contamination is a common risk to continuous cell line-derived biologics. Viral validation is thus required for license applications. Viral validation for chromatography procedures is routinely performed by spiking a model virus into the load material and performing the chromatography procedures at small scale under conditions equivalent to the commercial scale. With traditional cell-based infectivity assays, one can only spike one model virus at one time. Quantitative PCR methods (TaqMan) make it possible to spike multiple model viruses for a chromatography procedure simultaneously. TaqMan assays can quantify multiple types of viruses and other types of nucleic acid in a single sample without cross interference because of its extremely high specificity. Therefore, a multivirus spike approach was evaluated and compared to a single virus spike approach. The study was further extended to the evaluation of host cell DNA clearance. The data shows highly comparable viral and host cell DNA clearance between the single and multiple virus spike approaches. Application of a multivirus spike approach provides significant time, manpower, and cost savings for new drug development.  相似文献   

10.
Viral contamination is an inherent risk during the manufacture of biopharmaceuticals. As such, biopharmaceutical companies must demonstrate the viral clearance efficacy of their downstream process steps prior to clinical trials and commercial approval. This is accomplished through expensive and logistically challenging spiking studies, which utilize live mammalian viruses. These hurdles deter companies from analyzing viral clearance during process development and characterization. We utilized a noninfectious minute virus of mice-mock virus particle (MVM-MVP) as a surrogate spiking agent during small scale viral filtration (VF) and anion exchange chromatography (AEX) studies. For VF experiments, in-process mAb material was spiked and processed through Asahi Kasei P15, P20, P35, and BioEX nanofilters. Across each filter type, flux decay profiles and log reduction values (LRVs) were nearly identical for either particle. For AEX experiments, loads were conditioned with various amounts of sodium chloride (9, 20, 23, and 41 mS/cm), spiked with either particle and processed through a Q-SFF packed column. LRV results met our expectations of predicting MVM removal.  相似文献   

11.
The potential of viral contamination is a regulatory concern for continuous cell line-derived pharmaceutical proteins. Complementary and redundant safety steps, including an evaluation of the viral clearance capacity of unit operations in the purification process, are performed prior to registration and marketing of biotechnology pharmaceuticals. Because process refinement is frequently beneficial, CBER/FDA has published guidance facilitating process improvement by delineating specific instances where the bracketing and generic approaches are appropriate for virus removal validation. In this study, a generic/matrix study was performed using Q-Sepharose Fast Flow (QSFF) chromatography to determine if bracketing and generic validation can be applied to anion exchange chromatography. Key operational parameters were varied to upper and lower extreme values and the impact on viral clearance was assessed using simian virus 40 (SV40) as the model virus. Operational ranges for key chromatography parameters were identified where an SV40 log(10) reduction value (LRV) of >or=4.7 log(10) is consistently achieved. On the basis of the apparent robustness of SV40 removal by Q-anion exchange chromatography, we propose that the concept of "bracketed generic" validation can be applied to this and potentially other chromatography unit operations.  相似文献   

12.
13.
Multi‐column capture processes show several advantages compared to batch capture. It is however not evident how many columns one should use exactly. To investigate this issue, twin‐column CaptureSMB, 3‐ and 4‐column periodic counter‐current chromatography (PCC) and single column batch capture are numerically optimized and compared in terms of process performance for capturing a monoclonal antibody using protein A chromatography. Optimization is carried out with respect to productivity and capacity utilization (amount of product loaded per cycle compared to the maximum amount possible), while keeping yield and purity constant. For a wide range of process parameters, all three multi‐column processes show similar maximum capacity utilization and performed significantly better than batch. When maximizing productivity, the CaptureSMB process shows optimal performance, except at high feed titers, where batch chromatography can reach higher productivity values than the multi‐column processes due to the complete decoupling of the loading and elution steps, albeit at a large cost in terms of capacity utilization. In terms of trade‐off, i.e. how much the capacity utilization decreases with increasing productivity, CaptureSMB is optimal for low and high feed titers, whereas the 3‐column process is optimal in an intermediate region. Using these findings, the most suitable process can be chosen for different production scenarios.  相似文献   

14.
Chinese hamster ovary cells used for pharmaceutical protein production express noninfectious retrovirus-like particles. To assure the safety of pharmaceutical proteins, validation of the ability of manufacturing processes to clear retrovirus-like particles is required for product registration. Xenotropic murine leukemia virus (X-MuLV) is often used as a model virus for clearance studies. Traditionally, cell-based infectivity assay has been the standard virus quantification method. In this article, a real time quantitative PCR (Q-PCR) method has been developed for X-MuLV detection/quantification. This method provides accurate and reproducible quantification of X-MuLV particle RNA (pRNA) over a linear dynamic range of at least 100,000-fold with a quantification limit of approximately 1.5 pRNA copies microL(-1). It is about 100-fold more sensitive than the cell-based infectivity assay. High concentrations of protein and cellular DNA present in test samples have been demonstrated to have no impact on X-MuLV quantification. The X-MuLV clearance during chromatography and filtration procedures determined by this method is highly comparable with that determined by the cell-based infectivity assay. X-MuLV clearance measured by both methods showed that anion exchange chromatography (QSFF) and DV50 viral filtration are robust retroviral removal steps. In addition, combination of the two methods was able to distinguish the viral removal from inactivation by the Protein A chromatography, and fully recognize the viral clearance capacity of this step. This new method offers significant advantages over cell-based infectivity assays. It could be used to substitute cell-based infectivity assays for process validation of viral removal procedures, but not inactivation steps. Its availability should greatly facilitate and reduce the cost of viral clearance evaluations for new biologic product development.  相似文献   

15.
Biologics produced from CHO cell lines with endogenous virus DNA can produce retrovirus-like particles in cell culture at high titers, and other adventitious viruses can find their way through raw materials into the process to make a product. Therefore, it is the industry standard to have controls to avoid introduction of viruses into the production process, to test for the presence of viral particles in unclarified cell culture, and to develop purification procedures to ensure that manufacturing processes are robust for viral clearance. Data have been accumulated over the past four decades on unit operations that can inactivate and clear adventitious virus and provide a high degree of assurance for patient safety. During clinical development, biological products are traditionally tested at process set points for viral clearance. However, the widespread implementation of platform production processes to produce highly similar IgG antibodies for many indications makes it possible to leverage historical data and knowledge from representative molecules to allow for better understanding and control of virus safety. More recently, individualized viral clearance studies are becoming the rate-limiting step in getting new antibody molecules to clinic, particularly in Phase 0 and eIND situations. Here, we explore considerations for application of a generic platform virus clearance strategy that can be applied for relevant investigational antibodies within defined operational parameters in order to increase speed to the clinic and reduce validation costs while providing a better understanding and assurance of process virus safety.  相似文献   

16.
There are few reports of the adoption of continuous processes in bioproduction, particularly the implementation of end-to-end continuous or integrated processes, due to difficulties such as feed adjustment and incorporating virus filtration. Here, we propose an end-to-end integrated continuous process for a monoclonal antibody (mAb) with three integrated process segments: upstream production processes with pool-less direct connection, pooled low pH virus inactivation with pH control and a total flow-through integrated polishing process in which two columns were directly connected with a virus filter. The pooled virus inactivation step defines the batch, and high impurities reduction and mAb recovery were achieved for batches conducted in succession. Viral clearance tests also confirmed robust virus reduction for the flow-through two-column chromatography and the virus filtration steps. Additionally, viral clearance tests with two different hollow fiber virus filters operated at flux ranging from 1.5 to 40 LMH (liters per effective surface area of filter in square meters per hour) confirmed robust virus reduction over these ranges. Complete clearance with virus logarithmic reduction value ≥4 was achieved even with a process pause at the lowest flux. The end-to-end integrated continuous process proposed in this study is amenable to production processes, and the investigated virus filters have excellent applicability to continuous processes conducted at constant flux.  相似文献   

17.
Continuous production of monoclonal antibodies is gaining more and more importance. To ensure continuous flow through the entire process as well as viral safety, continuous viral clearance needs to be investigated as well. This study focuses on low pH viral inactivation inside a coiled flow inverter (CFI). Computational fluid dynamics (CFD) simulation is used to gain further insight into the inactivation process inside the apparatus. The influence of viruses in comparison to different tracer elements on the residence time distribution (RTD) behavior is investigated. Finally, the viral inactivation kinetics are implemented into the CFD simulation and real process conditions are simulated. These are compared to experimental results. To the authors' knowledge, this study represents the first successful simulation of continuous viral inactivation inside a CFI. It allows the detailed analysis of processes inside the apparatus and the prediction of experimental virus study results and will therefore contribute to the effective planning of future validation studies.  相似文献   

18.
L Shi  L A Norling  A S Lau  S Krejci  A J Laney  Y Xu 《Biologicals》1999,27(3):253-262
Continuous cell lines used for pharmaceutical protein manufacturing have the potential to be contaminated by viruses. To ensure the safety of pharmaceutical proteins derived from continuous cell lines, validation of the ability of the manufacturing process to clear potential contaminating viruses is required for product registration. In this paper, a real time quantitative PCR method has been applied to the evaluation of simian virus 40 (SV40) removal during chromatography and filtration procedures. This method takes advantage of the 5'-3' exonuclease activity of Taq DNA polymerase and utilizes the PRISM 7700 sequence detection system of PE Applied Biosystems for automated SV40 DNA quantification through a dual-labeled fluorogenic probe. This method provides accurate and reproducible quantification of SV40 DNA. The SV40 clearance during chromatography and filtration procedures determined by this method is highly comparable with that determined by the cell-based infectivity assay. This method offers significant advantages over cell-based infectivity assays, such as higher sensitivity, greater reliability, higher sample throughput and lower cost. This method can be potentially used to evaluate the clearance of all model viruses during chromatography and filtration procedures. This method can be used to substitute cell-based infectivity assays for process validation of viral removal procedures and the availability of this method should greatly facilitate and reduce the cost of viral clearance evaluations required for new biologic product development.  相似文献   

19.
Traditionally, post-production culture harvest capture of therapeutic monoclonal antibodies (mAbs) is performed using Protein A chromatography. We investigated the efficiency and robustness of cation exchange chromatography (CEX) in an effort to evaluate alternative capture methodologies. Up to five commercially available CEX resins were systematically evaluated using an experimentally optimized buffer platform and a design-of-experiment (DoE) approach for their ability to (a) capture a model mAb with a neutral isoelectric point, (b) clear three model viruses (porcine parvovirus, CHO type-C particles, and a bacteriophage). This approach identified a narrow operating space where yield, purity, and viral clearance were optimal under a CEX capture platform, and revealed trends between viral clearance of PPV and product purity (but not yield). Our results suggest that after unit operation optimization, CEX can serve as a suitable capture step.  相似文献   

20.
Coiled Flow Inverter Reactor (CFIR) has recently been explored for facilitating continuous operation of several unit operations involved in downstream processing of biopharmaceuticals such as viral inactivation and protein refolding. The application of CFIR for continuous precipitation of clarified cell culture supernatant has been explored. The pH based precipitation is optimized in the batch mode and then in the continuous mode in CFIR using a design of experiments (DOE) study. Improved clearance of host cell DNA (52× vs. 39× in batch), improved clearance of host cell proteins (HCP) (7× vs. 6× in batch) and comparable recovery (90 vs. 91.5 % in batch) are observed along with six times higher productivity. To further demonstrate wider applicability of CFIR in performing continuous precipitation, two more case studies involving use of two different precipitation protocols (CaCl2 based and caprylic acid based) are also performed. In both cases, clearance of host cell DNA, HCP, and product recovery are found to be comparable or better in CFIR than in batch operations. Moreover, increase in productivity of 16 times (CaCl2 based) and eight times (caprylic acid based) is obtained for the two precipitation protocols, respectively. The data clearly demonstrate that CFIR can be seamlessly integrated into a continuous bioprocess train for performing continuous precipitation of clarified cell culture supernatant. To our knowledge this is the first report of such use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号