首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are few reports of the adoption of continuous processes in bioproduction, particularly the implementation of end-to-end continuous or integrated processes, due to difficulties such as feed adjustment and incorporating virus filtration. Here, we propose an end-to-end integrated continuous process for a monoclonal antibody (mAb) with three integrated process segments: upstream production processes with pool-less direct connection, pooled low pH virus inactivation with pH control and a total flow-through integrated polishing process in which two columns were directly connected with a virus filter. The pooled virus inactivation step defines the batch, and high impurities reduction and mAb recovery were achieved for batches conducted in succession. Viral clearance tests also confirmed robust virus reduction for the flow-through two-column chromatography and the virus filtration steps. Additionally, viral clearance tests with two different hollow fiber virus filters operated at flux ranging from 1.5 to 40 LMH (liters per effective surface area of filter in square meters per hour) confirmed robust virus reduction over these ranges. Complete clearance with virus logarithmic reduction value ≥4 was achieved even with a process pause at the lowest flux. The end-to-end integrated continuous process proposed in this study is amenable to production processes, and the investigated virus filters have excellent applicability to continuous processes conducted at constant flux.  相似文献   

2.
Continuous production of monoclonal antibodies is gaining more and more importance. To ensure continuous flow through the entire process as well as viral safety, continuous viral clearance needs to be investigated as well. This study focuses on low pH viral inactivation inside a coiled flow inverter (CFI). Computational fluid dynamics (CFD) simulation is used to gain further insight into the inactivation process inside the apparatus. The influence of viruses in comparison to different tracer elements on the residence time distribution (RTD) behavior is investigated. Finally, the viral inactivation kinetics are implemented into the CFD simulation and real process conditions are simulated. These are compared to experimental results. To the authors' knowledge, this study represents the first successful simulation of continuous viral inactivation inside a CFI. It allows the detailed analysis of processes inside the apparatus and the prediction of experimental virus study results and will therefore contribute to the effective planning of future validation studies.  相似文献   

3.
In the production of monoclonal antibodies (mAbs) intended for use in humans, it is a global regulatory requirement that the manufacturing process includes unit operations that are proven to inactivate or remove adventitious agents to ensure viral safety. Viral inactivation by low pH hold (LPH) is typically used to ensure this viral safety in the purification process of mAbs and other biotherapeutics derived from mammalian cell lines. To ascertain the effectiveness of the LPH step, viral clearance studies have evaluated LPH under worst-case conditions of pH above the manufacturing set point and hold duration at or below the manufacturing minimum. Highly acidic conditions (i.e., pH < 3.60) provide robust and effective enveloped virus inactivation but may lead to reduced product quality of the therapeutic protein. However, when viral inactivation is operated above pH 3.60 to ensure product stability, effective (>4 log10 reduction factor) viral inactivation may not be observed under these worst-case pH conditions in viral clearance studies. A multivariate design of experiments was conducted to further characterize the operating space for low pH viral inactivation of a model retrovirus, xenotropic murine leukemia virus (X-MuLV). The statistically designed experiment evaluated the effect of mAb isotype, pH, temperature, acid titrant, sodium chloride (NaCl) concentration, virus spike timing, and post-spike filtration on X-MuLV inactivation. Data from the characterization study were used to generate predictive models to identify conditions that reliably achieve effective viral inactivation at pH ≥ 3.60. Results of the study demonstrated that NaCl concentration has the greatest effect on virus inactivation in the range studied, and pH has a large effect when the load material has no additional NaCl. Overall, robust and effective inactivation of X-MuLV at pH 3.65–3.80 can be achieved by manipulating either the pH or the NaCl concentration of the load material. This study contributes to the understanding of ionic strength as an influential parameter in low pH viral inactivation studies.  相似文献   

4.
Many manufacturers of biopharmaceuticals are moving from batch to continuous processing. While this approach offers advantages over batch processing, demonstration of viral clearance for continuous processes is challenging. Fluctuating output from a continuous process chromatography column results in a nonhomogeneous load for the subsequent column and must be considered when designing viral clearance studies. One approach to clearance studies is to downscale the connected unit operations and introduce virus by in-line spiking. This is challenging to be implemented at the contract research organization performing the clearance study given the complexity of systems and level of expertise required. Alternately, each unit operation could be evaluated in traditional batch mode but the spiking and loading conditions be modified to mimic the variance introduced by the transition between two connected columns. Using a standard chromatography system, we evaluated a flow-through anion exchange chromatography step in a monoclonal antibody (mAb) manufacturing process using five different methods to introduce the virus to the column. Our data show that whether the virus or the mAbs were introduced in concentrated peaks, or as a homogeneous batch, the clearance of mouse minute virus was similar. This study introduces an alternative way to evaluate viral clearance in a continuous process and demonstrates the robustness of anion exchange chromatography unit operating in continuous processing.  相似文献   

5.
The continuous production of monoclonal antibodies (mAbs) with the help of disposable equipment poses one of the future major changes in the pharmaceutical industry. Consequently, continuous viral clearance needs to be developed as well. The coiled flow inverter (CFI) was successfully implemented in the continuous downstream as a residence time module for low pH viral inactivation. As the elution profile of the upstream continuously operated protein A chromatography results in fluctuating pH values, the pH level distribution inside the CFI is highly relevant. This study presents a detailed investigation of pH level distribution inside the CFI at varying inlet conditions with the help of computational fluid dynamics simulation. The simulation model was validated first with the help of experimental data. Afterwards, the model was used for further investigations. It was determined that with a pH sine curve as input, the duration until steady state at the outlet requires two times the minimum residence time of the apparatus. Moreover, it could be observed that the CFI itself offers a progressive dampening effect on the pH level distribution. Afterwards, different forms of the sine curve representing different operation modes of the continuous protein A chromatograph were tested to evaluate this dampening capability. It became clear that the switch time has the highest influence on the resulting pH of the outlet stream and should be considered for process development. Finally, the radial pH profiles at different positions inside the CFI were determined. This once again revealed the high radial mixing capability of the CFI and its influence on the resulting product stream.  相似文献   

6.
Continuous virus inactivation (VI) has received little attention in the efforts to realize fully continuous biomanufacturing in the future. Implementation of continuous VI must assure a specific minimum incubation time, typically 60 min. To guarantee the minimum incubation time, we implemented a packed bed continuous viral inactivation reactor (CVIR) with narrow residence time distribution (RTD) for low pH incubation. We show that the RTD does not broaden significantly over a wide range of linear flow velocities—which highlights the flexibility and robustness of the design. Prolonged exposure to acidic pH has no impact on bed stability, assuring constant RTD throughout long term operation. The suitability of the packed bed CVIR for low pH inactivation is shown with two industry-standard model viruses, that is xenotropic murine leukemia virus and pseudorabies virus. Controls at neutral pH showed no system-induced VI. At low pH, significant VI is observed, even after only 15 min. Based on the low pH inactivation kinetics, the continuous process is equivalent to traditional batch operation. This study establishes a concept for continuous low pH inactivation and, together with previous reports, highlights the versatility of the packed bed reactor for continuous VI, regardless of the inactivation method.  相似文献   

7.
Ongoing efforts in the biopharmaceutical industry to enhance productivity and reduce manufacturing costs include development of intensified, linked, and/or continuous processes. One approach to improve productivity and process economics of the polishing step (i.e., anion exchange chromatography) is to preconcentrate the product intermediate using a single-pass tangential flow filtration step before loading on the resin. This intensification of the polishing step consequently leads to changes in product intermediate concentration for subsequent virus filtration operations, potentially impacting filter performance and methods for evaluating viral clearance. The filtrate flux performance of a virus filtration operation was evaluated with monoclonal antibody (mAb) solutions of varying concentrations. These data were used to evaluate the effect on filter sizing for a hypothetical mAb perfusion process. The optimum mAb concentration to minimize the area of the virus filter was a function of the filtration step duration and reflected the competing effects of increasing concentration and decreasing volumetric flux on the membrane productivity. mAb solutions at high and low concentrations were used to evaluate viral clearance with extended filtration times (e.g., 24–72 h) simulating continuous processing conditions. Modifications to more traditional filtration viral clearance study methods were required to avoid experimental artifacts associated with the extended filtration time. No virus passage through the filter was observed under these conditions, similar to previous results for batch processes. These data demonstrate the feasibility of obtaining effective virus removal even when mAb concentration and filtrations times are increased by up to an order of magnitude from current common practices.  相似文献   

8.
The production of recombinant therapeutic proteins from animal or human cell lines entails the risk of endogenous viral contamination from cell substrates and adventitious agents from raw materials and environment. One of the approaches to control such potential viral contamination is to ensure the manufacturing process can adequately clear the potential viral contaminants. Viral clearance for production of human monoclonal antibodies is achieved by dedicated unit operations, such as low pH inactivation, viral filtration, and chromatographic separation. The process development of each viral clearance step for a new antibody production requires significant effort and resources invested in wet laboratory experiments for process characterization studies. Machine learning methods have the potential to help streamline the development and optimization of viral clearance unit operations for new therapeutic antibodies. The current work focuses on evaluating the usefulness of machine learning methods for process understanding and predictive modeling for viral clearance via a case study on low pH viral inactivation.  相似文献   

9.
Multicolumn capture chromatography is gaining increased attention lately due to the significant economic and process advantages it offers compared with traditional batch mode chromatography. However, for wide adoption of this technology in clinical and commercial space, it requires scalable models for executing viral validation studies. In this study, viral validation studies were conducted under cGLP guidelines to assess retro- (X-MuLV) and parvo-virus (MVM) clearance across twin-column continuous capture chromatography (CaptureSMB). A surrogate model was also developed using standard batch mode chromatography based on flow path modifications to mimic the loading strategy used in CaptureSMB. The results show that a steady state was achieved by the second cycle for both antibody binding and virus clearance and that the surrogate model using batch mode chromatography equipment provided impurity clearance that was comparable to that obtained during cyclical operation of CaptureSMB. Further, the log reduction values (LRVs) achieved during CaptureSMB were also comparable to the LRVs obtained using standard batch capture chromatography. This was expected since the mode of virus separation during protein A chromatography is primarily based on removal during the flow through and wash steps. Finally, this study also presents assessments on the resin cleaning strategy during continuous chromatography and how the duration of clean-in-place solution exposure impacts virus carryover.  相似文献   

10.
Viral safety is a predominant concern for monoclonal antibodies (mAbs) and other recombinant proteins (RPs) with pharmaceutical applications. Certain commercial purification modules, such as nanofiltration and low-pH inactivation, have been observed to reliably clear greater than 4 log(10) of large enveloped viruses, including endogenous retrovirus. The concept of "bracketed generic clearance" has been proposed for these steps if it could be prospectively demonstrated that viral log(10) reduction value (LRV) is not impacted by operating parameters that can vary, within a reasonable range, between commercial processes. In the case of low-pH inactivation, a common step in mAb purification processes employed after protein A affinity chromatography, these parameters would include pH, time and temperature of incubation, the content of salts, protein concentration, aggregates, impurities, model protein pI, and buffer composition. In this report, we define bracketed generic clearance conditions, using a prospectively defined bracket/matrix approach, where low-pH inactivation consistently achieves >or=4.6 log(10) clearance of xenotropic murine leukemia virus (X-MLV), a model for rodent endogenous retrovirus. The mechanism of retrovirus inactivation by low-pH treatment was also investigated.  相似文献   

11.
Antivenoms are manufactured by the fractionation of animal plasma which may possibly be contaminated by infectious agents pathogenic to humans. This study was carried out to determine whether pre-existing antivenom production steps, as carried out by EgyVac in Egypt, may reduce viral risks. Two typical manufacturing steps were studied by performing down-scaled viral inactivation experiments: (a) a pH 3.3 pepsin digestion of diluted plasma at 30 degrees C for 1h, and (b) a caprylic acid treatment of a purified F(ab')2 fragment fraction at 18 degrees C for 1h. Three lipid-enveloped (LE) viruses [bovine viral diarrhoea virus (BVDV), pseudorabies virus (PRV), and vesicular stomatitis virus (VSV)] and one non-lipid-enveloped (NLE) virus [encephalomyocarditis virus (EMC)] were used as models. Kinetics of inactivation was determined by taking samples at 3 time-points during the treatments. The pH 3.3 pepsin digestion resulted in complete clearance of PRV (>7.0 log(10)) and in almost complete reduction of VSV (>4.5 but < or =6.4 log(10)), and in a limited inactivation of BVDV (1.7 log(10)). EMC inactivation was > or =2.5 but < or =5.7 log(10). The caprylic acid treatment resulted in complete inactivation of the 3 LE viruses tested: BVDV (>6.6 log(10)), PRV (>6.6 log(10)), and VSV (>7.0 log(10)). For EMC no significant reduction was obtained (0.7 log(10)). Cumulative reduction was >13.6, >11.5, >8.3 and > or =2.5 for PRV, VSV, BVDV and EMC, respectively. Therefore the current manufacturing processes of at least some animal antisera already include production steps that can ensure robust viral inactivation of LE viruses and moderate inactivation of a NLE virus.  相似文献   

12.
Viral safety is a critical concern with regard to monoclonal antibody (mAb) products produced in mammalian cells such as Chinese hamster ovary cells. Manufacturers are required to ensure the safety of such products by validating the clearance of viruses in downstream purification steps. Cation exchange (CEX) chromatography is widely used in bind/elute mode as a polishing step in mAb purification. However, bind/elute modes require a large volume of expensive resin. To reduce the production cost, the use of CEX chromatography in overloaded mode has recently been investigated. The viral clearance ability in overloaded mode was evaluated using murine leukemia virus (MLV). Even under high-load conditions such as 2,000 g mAb/L resin, MLV was removed from mAb solutions. This viral clearance ability was not significantly affected by resin type or mAb type. The overloaded mode can also remove other types of viruses such as pseudorabies virus and reovirus Type 3 from mAb solutions. Based on these results, this cost-effective overloaded mode is comparable to the bind-elute mode in terms of viral removal.  相似文献   

13.
To ensure the viral safety of protein therapeutics made in mammalian cells, purification processes include dedicated viral clearance steps to remove or inactivate adventitious and endogenous viruses. One such dedicated step is low pH treatment, a robust and effective method commonly used in monoclonal antibody production to inactivate enveloped viruses. To characterize the operating space for low pH viral inactivation, we performed a statistically designed experiment evaluating the effect of pH, temperature, hold duration, acid type, and buffer concentration on inactivation of the retrovirus model, XMuLV. An additional single factor experiment was performed to study the effect of protein concentration. These data were used to generate predictive models of inactivation at each time point studied, which can be used to identify conditions for robust and effective XMuLV inactivation. At pH 3.6, XMuLV inactivation was rapid, robust, and relatively unaffected by the other factors studied, providing support for this as a generic viral inactivation condition for products that can tolerate this low pH. At pH 3.7 and 3.8, other factors besides pH affected XMuLV inactivation. By understanding the impact of each factor on inactivation, the factors can be manipulated within the operating space to ensure effective inactivation while achieving desired product quality goals. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:89–97, 2016  相似文献   

14.
Continuous bioprocessing holds the potential to improve product consistency, accelerate productivity, and lower cost of production. However, switching a bioprocess from traditional batch to continuous mode requires surmounting business and regulatory challenges. A key regulatory requirement for all biopharmaceuticals is virus safety, which is assured through a combination of testing and virus clearance through purification unit operations. For continuous processing, unit operations such as capture chromatography have aspects that could be impacted by a change to continuous multicolumn operation, for example, do they clear viruses as well as a traditional batch single column. In this study we evaluate how modifying chromatographic parameters including the linear velocity and resin capacity utilization could impact virus clearance in the context of moving from a single column to multicolumn operation. A Design of Experiment (DoE) approach was taken with two model monoclonal antibodies (mAbs) and two bacteriophages used as mammalian virus surrogates. The DoE enabled the identification of best and worst-case scenario for virus clearance overall. Using these best and worst-case conditions, virus clearance was tested in single column and multicolumn modes and found to be similar as measured by Log Reduction Values (LRV). The parameters identified as impactful for viral clearance in single column mode were predictive of multicolumn modes. Thus, these results support the hypothesis that the viral clearance capabilities of a multicolumn continuous Protein A system may be evaluated using an appropriately scaled-down single mode column and equipment.  相似文献   

15.
Demonstration of viral clearance is a critical step in assuring the safety of biotechnology products. We generated a viral clearance database that contains product information, unit operation process parameters, and viral clearance data from monoclonal antibody and antibody‐related regulatory submissions to FDA. Here we present a broad overview of the database and resulting analyses. We report that the diversity of model viruses tested expands as products transition to late‐phase. We also present averages and ranges of viral clearance results by Protein A and ion exchange chromatography steps, low pH chemical inactivation, and virus filtration, focusing on retro‐ and parvoviruses. For most unit operations, an average log reduction value (LRV, a measure of clearance power) for retrovirus of >4 log10 were measured. Cases where clearance data fell outside of the anticipated range (i.e., outliers) were rationally explained. Lastly, a historical analysis did not find evidence of any improvement trend in viral clearance over time. The data collectively suggest that many unit operations in general can reliably clear viruses. Biotechnol. Bioeng. 2010;106: 238–246. Published 2010 Wiley Periodicals, Inc.  相似文献   

16.
Inactivation of West-Nile virus during peptic cleavage of horse plasma IgG.   总被引:1,自引:0,他引:1  
Peptic cleavage of horse plasma IgG is a common procedure for the preparation of F(ab)(2) products for human use, such as antivenin and antitoxin. The removal of the Fc fragment from the IgG molecule by enzymatic cleavage at low pH, ensures fewer side-effects of the F(ab)(2) product for passive immunotherapy compared with the whole IgG molecule. Since the starting material may be contaminated by zoonotic horse viruses, it is necessary to demonstrate the removal or inactivation of possible viral contaminants. Guidelines for performing such studies were published by the Commission for Plasma-Derived Medical Products (CPMP), and updated by the Committee for Proprietary Medical Products. It is recommended that viral clearance studies be performed on scaled down production processes that have been identified as possibly contributing to virus clearance and spiking of a model virus to the starting material. The model virus should be non-pathogenic but closely related to the potential infective virus. By quantifying the amount of virus in the product before and after the production process, the amount of virus cleared can be determined. Log(10) reductions of the order of 4 logs or more, and a biphasic inactivation curve (fast initial phase followed by a slower phase), are indicative of a clearance effect with a particular test virus under investigation.  相似文献   

17.
为应对治疗性抗体快速增长的市场需求,抗体上游细胞培养规模和表达量水平已显著提高,而下游纯化工艺的生产效率则相对落后,下游处理能力已成为限制抗体产能的瓶颈。本研究以单克隆抗体mab-X为实验材料,优化了细胞培养液、低pH病毒灭活收集液2种模式的正辛酸(caprylic acid,CA)沉淀工艺条件,并研究了CA处理去除聚体、CA处理灭活病毒等2种应用,在小试的基础上,采用低pH病毒灭活收集液CA沉淀的模式进行了500 L细胞培养规模生产放大研究,对沉淀前后的产品质量和收率进行了检测和对比。结果显示,两种模式的CA沉淀均可显著降低宿主细胞蛋白(host cell protein,HCP)残留和聚体含量,在聚体去除实验中CA沉淀可去除约15%的聚体,病毒灭活研究显示CA对逆转录模型病毒具有完全的病毒灭活能力。在放大生产规模中,下游依次进行了深层过滤收获、亲和层析、低pH病毒灭活、CA沉淀及深层过滤、阳离子交换层析,CA沉淀过程中混合时间和搅拌速度显著影响CA沉淀效果,CA沉淀处理后低pH病毒灭活液中的HCP残留量降低了895倍,沉淀后产品纯度和HCP残留均已控制在单克隆抗体质量要求范围内,CA沉淀可以减少传统纯化工艺中的一个精纯步骤。总之,下游工艺中采用CA沉淀,能够精简传统纯化工艺,并完全满足mab-X的纯化质量要求,而且能提高生产效率、降低生产成本。本研究结果将推动CA沉淀在单克隆抗体下游纯化生产中的应用,为解决目前传统纯化工艺的问题提供参考。  相似文献   

18.
A new human liquid intravenous immunoglobulin product, Flebogamma® DIF, has been developed. This IgG is purified from human plasma by cold ethanol fractionation, PEG precipitation and ion exchange chromatography. The manufacturing process includes three different specific pathogen clearance (inactivation/removal) steps: pasteurization, solvent/detergent treatment and Planova? nanofiltration with a pore size of 20 nm. This study evaluates the pathogen clearance capacity of seven steps in the production process for a wide range of viruses through spiking experiments: the three specific steps mentioned above and also four more production steps. Infectivity of samples was measured using a Tissue Culture Infectious Dose assay (log10 TCID50) or Plaque Forming Units assay (log10 PFU). Validation studies demonstrated that each specific step cleared more than 4 log10 for all viruses assayed. An overall viral clearance between ≥13.33 log10 and ≥25.21 log10, was achieved depending on the virus and the number of steps studied for each virus. It can be concluded that Flebogamma® DIF has a very high viral safety profile.  相似文献   

19.
The realization of an end‐to‐end integrated continuous lab‐scale process for monoclonal antibody manufacturing is described. For this, a continuous cultivation with filter‐based cell‐retention, a continuous two column capture process, a virus inactivation step, a semi‐continuous polishing step (twin‐column MCSGP), and a batch‐wise flow‐through polishing step were integrated and operated together. In each unit, the implementation of internal recycle loops allows to improve the performance: (a) in the bioreactor, to simultaneously increase the cell density and volumetric productivity, (b) in the capture process, to achieve improved capacity utilization at high productivity and yield, and (c) in the MCSGP process, to overcome the purity‐yield trade‐off of classical batch‐wise bind‐elute polishing steps. Furthermore, the design principles, which allow the direct connection of these steps, some at steady state and some at cyclic steady state, as well as straight‐through processing, are discussed. The setup was operated for the continuous production of a commercial monoclonal antibody, resulting in stable operation and uniform product quality over the 17 cycles of the end‐to‐end integration. The steady‐state operation was fully characterized by analyzing at the outlet of each unit at steady state the product titer as well as the process (HCP, DNA, leached Protein A) and product (aggregates, fragments) related impurities. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1303–1313, 2017  相似文献   

20.
Chinese hamster ovary cells used for pharmaceutical protein production express noninfectious retrovirus-like particles. To assure the safety of pharmaceutical proteins, validation of the ability of manufacturing processes to clear retrovirus-like particles is required for product registration. Xenotropic murine leukemia virus (X-MuLV) is often used as a model virus for clearance studies. Traditionally, cell-based infectivity assay has been the standard virus quantification method. In this article, a real time quantitative PCR (Q-PCR) method has been developed for X-MuLV detection/quantification. This method provides accurate and reproducible quantification of X-MuLV particle RNA (pRNA) over a linear dynamic range of at least 100,000-fold with a quantification limit of approximately 1.5 pRNA copies microL(-1). It is about 100-fold more sensitive than the cell-based infectivity assay. High concentrations of protein and cellular DNA present in test samples have been demonstrated to have no impact on X-MuLV quantification. The X-MuLV clearance during chromatography and filtration procedures determined by this method is highly comparable with that determined by the cell-based infectivity assay. X-MuLV clearance measured by both methods showed that anion exchange chromatography (QSFF) and DV50 viral filtration are robust retroviral removal steps. In addition, combination of the two methods was able to distinguish the viral removal from inactivation by the Protein A chromatography, and fully recognize the viral clearance capacity of this step. This new method offers significant advantages over cell-based infectivity assays. It could be used to substitute cell-based infectivity assays for process validation of viral removal procedures, but not inactivation steps. Its availability should greatly facilitate and reduce the cost of viral clearance evaluations for new biologic product development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号