首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the past mass spectrometry has been limited to the study of small, stable molecules, however, with the emergence of electrospray ionization mass spectrometry (ESI-MS) large biomolecules as well as non-covalent biomolecular complexes can be studied. ESI-MS has been used to study non-covalent interactions involving proteins with metals, ligands, peptides, oligonucleotides, as well as other proteins. Although complementary to other well-established techniques such as circular dichroism and fluorescence spectroscopy, ESI-MS offers some advantages in speed, sensitivity, and directness particularly in the determination of the stoichiometry of the complex. One major advantage is the ability of ESI-MS to provide multiple signals each arising from a distinct population within the sample. In this review I will discuss some of the different types of non-covalent biomolecular interactions that have been studied using ESI-MS, highlighting examples which show the efficacy of using ESI-MS to probe the structure of biomolecular complexes.  相似文献   

2.
The aim of this study was to develop a method for comprehensive profiling of metabolites involved in mammalian steroid metabolism. The study was performed using the partial filling micellar electrokinetic chromatography (PF-MEKC) technique for determination of endogenous low-hydrophilic steroids. The detection techniques in capillary electrophoresis were UV absorption and electrospray mass spectrometry (ESI-MS). Thirteen steroids were included in the method development, and the selected were metabolites involved in major pathways of steroid biosynthesis. Although only eight of them could be separated and detected with UV, they could be identified by ESI-MS using selected ion monitoring (SIM) technique. Tandem MS spectra were also collected. UV detection was more sensitive than MS due to better separation of compounds and the selective signal sensitivity. The lowest limits of detection were 10-100ng/mL for cortisone, corticosterone, hydrocortisone and testosterone. The other steroids could be detected at 500-1000ng/mL. The identification of cortisone, corticosterone, hydrocortisone, estrogen and testosterone were made in patient urine samples and their concentrations were 1-40mug/L.  相似文献   

3.
A simple, derivatization free method for the direct determination of dimethylsulfoniopropionate (DMSP) using hydrophilic interaction liquid chromatography (HILIC)/mass spectrometry is introduced. DMSP is a zwitterionic osmolyte which is produced from marine plankton, macro algae and higher plants. Due to its central role in climate relevant geochemical processes as well as in plant physiology and chemical ecology there is a great interest in methods for its quantification. Since DMSP is labile and difficult to extract currently most protocols for quantification are based on indirect methods. Here we show that ultra performance liquid chromatography/mass spectrometry using a HILIC stationary phase is suitable for the direct quantification of DMSP from aqueous samples and microalgal extracts. The protocol requires minimal sample preparation and phytoplankton samples can be investigated after filtration of small volumes. The limit of detection is 20nM and the calibration curve is linear in the range of 60nM to 50μM. The use of [(2)H(6)]-DMSP as internal standard allows prolonged sample storage since it is transformed with the same kinetics as natural DMSP. This makes the method suitable for both laboratory and field studies.  相似文献   

4.
Previously, we have presented a system hyphenating continuous micellar electrokinetic chromatography (MEKC) with electrospray ionization mass spectrometry (ESI-MS). Here we evaluate this technique for its applicability in impurity profiling of drugs using galantamine and ipratropium as test samples. A background electrolyte (BGE) of 10mM sodium phosphate (pH 7.5), 12.5-15% acetonitrile and 20mM sodium dodecylsulfate (SDS) was used for the MEKC-MS analysis of a galantamine sample containing a number of related impurities, and a heat-treated solution of ipratropium containing a number of unknown degradation products. MEKC provided efficient separation of all sample constituents. Despite the presence of non-volatile BGEs, all impurities in the galantamine sample could be detected by ESI-MS in their respective extracted ion traces (XICs) with a detection sensitivity in the sub-microg/ml range (full-scan mode). MS/MS detection provided useful product spectra allowing the structural characterization of the respective galantamine impurities. With the MEKC-MS/MS system, two degradation products could be revealed and identified in the heat-stressed ipratropium sample. The presented method shows good potential for the detection and structure elucidation of minor impurities in drug substances.  相似文献   

5.
Matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry (MS) is a highly versatile and sensitive analytical technique, which is known for its soft ionisation of biomolecules such as peptides and proteins. Generally, MALDI MS analysis requires little sample preparation, and in some cases like MS profiling it can be automated through the use of robotic liquid-handling systems. For more than a decade now, MALDI MS has been extensively utilised in the search for biomarkers that could aid clinicians in diagnosis, prognosis, and treatment decision making. This review examines the various MALDI-based MS techniques like MS imaging, MS profiling and proteomics in-depth analysis where MALDI MS follows fractionation and separation methods such as gel electrophoresis, and how these have contributed to prostate cancer biomarker research. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   

6.
Here we report a new method for oxosteroid identification utilizing “tandem mass tag hydrazine” (TMTH) carbonyl-reactive derivatisation reagent. TMTH is a reagent with a chargeable tertiary amino group attached through a linker to a carbonyl-reactive hydrazine group. Thirty oxosteroids were analysed after derivatisation with TMTH by electrospray ionization mass spectrometry (ESI-MS) and were found to give high ion-currents compared to underivatised molecules. ESI-tandem mass spectrometry (MS/MS) analysis of the derivatives yielded characteristic fragmentation patterns with specific mass reporter ions derived from the TMT group. A shotgun ESI-MS method incorporating TMTH derivatisation was applied to a urine sample.  相似文献   

7.
Detection of Staphylococcus enterotoxin B (SEB) by biomolecular interaction analysis mass spectrometry (BIA/MS) is presented in this work. The BIA/MS experiments were based on a surface plasmon resonance (SPR) MS immunoassay that detects affinity-captured SEB both via SPR and by means of exact and direct mass measurement by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Experiments were performed with standard samples and food samples to assess the BIA/MS limit of detection for SEB and to set the experimental parameters for proper quantitation. Single and double SPR referencing was performed to accurately estimate the amount of the bound toxin. Reproducible detection of 1 ng of SEB per ml, corresponding to affinity capture and MS analysis of approximately 500 amol of SEB, was readily achieved from both the standard and mushroom samples. A certain amount of SEB degradation was indicated by the signals in the mass spectra. The combination of MS with SPR-based methods of detection creates a unique approach capable of quantifying and qualitatively analyzing protein toxins from pathogenic organisms.  相似文献   

8.
With the increased attention to quality by design (QbD) for biopharmaceutical products, there is a demand for accurate and precise quantification methods to monitor critical quality attributes (CQAs). To address this need we have developed a mass spectrometry (MS) based method to quantify a wide range of posttranslational modifications (PTMs) in recombinant proteins using stable isotope-labeled internal standard (SILIS). The SILIS was produced through metabolic labeling where 15N was uniformly introduced at every nitrogen atom in the studied proteins. To enhance the accuracy of the method, the levels of PTMs in SILIS were quantified using orthogonal analytical techniques. Digestion of an unknown sample mixed with SILIS generates a labeled and a nonlabeled version of each peptide. The nonlabeled and labeled counterparts coelute during RP-HPLC separation but exhibit a sufficient mass difference to be distinguished by MS detection. With the application of SILIS, numerous PTMs can be quantified in a single analysis based on the measured MS signal ratios of 15N-labeled versus the nonlabeled pairs. Several examples using microbial and mammalian-expressed recombinant proteins demonstrated the principle and utility of this method. The results indicate that SILIS is a valuable methodology in addressing CQAs for the QbD paradigm.  相似文献   

9.
包括基质辅助激光解吸电离(MALDI)和电喷雾(ESI)在内的软电离质谱是最近发展起来的质谱技术,由于这些电离方式对样品的破坏性小,质量测定范围大,分子量测定准确,样品纯度要求不高很适合分析成分复杂的微生物样品,MALIDI-TOF-MS结合高分辨率的二维SDS-PAGE可以分析10^-12摩尔水平的蛋白,是细菌蛋白质研究过程中必不可少的工具。最近的研究工作表明,通过MAIDI-TOF-MS或HP  相似文献   

10.
Differential or genetic sequencing requires searching sample DNA for variations with respect to a reference sequence. Conventional detection techniques are too labor and cost expensive for use in diagnostic applications, therefore new technologies will be required. Measurement techniques based on mass spectrometry (MS) possess the potential for high-throughput, high fidelity measurement of sequence variation. Unambiguous detection of polymorphic sequences has been demonstrated, even in heterozygous samples. Automated reproducible measurements of microscopic arrays of samples will enable the high-throughput detection required for large-scale applications. Computational simulation and analysis of experimental parameters prior to experimentation will provide the optimization necessary for development of robust, reproducible measurements.  相似文献   

11.
We present an optimized high-throughput method for the characterization of 2-aminobenzamide (2-AB)-labeled N-glycans from recombinant immunoglobulin G (rIgG). This method includes an optimized sample preparation protocol involving microwave-assisted deglycosylation in conjunction with an automated sample cleanup strategy and a rapid resolution reverse-phase high-performance liquid chromatography (RRRP-HPLC) separation of labeled N-glycans. The RRRP-HPLC method permits generation of a comprehensive glycan profile using fluorescence detection in 45 min. In addition, the profiling method is directly compatible with electrospray ionization mass spectrometry (ESI-MS), allowing immediate and sensitive characterization of the glycan moiety by intact MS and tandem MS (MS/MS) fragmentation. We conservatively estimate an efficiency gain of fourfold with respect to the throughput capabilities of this optimized method as compared with traditional protocols (overnight deglycosylation, sample cleanup by graphitized carbon or cellulose cartridge, high-pH anion exchange chromatography, fraction collection, and processing for matrix-assisted laser desorption/ionization time-of-flight [MALDI-TOF] MS analysis) for a single sample. Even greater gains are achieved when processing of multiple samples is considered.  相似文献   

12.
A method using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was developed for the simultaneous analysis of nine chlorogenic acids (CGAs), three isomers each of caffeoylquinic acids (CQAs), feruloylquinic acids (FQAs) and dicaffeoylquinic acids (dCQAs), and their two metabolites, caffeic acid (CA) and ferulic acid (FA), in human plasma. In simultaneous multiple reaction monitoring (MRM) measurements using ESI-MS/MS with a negative ion mode, a deprotonated molecular ion derived from each of the 11 molecules was used as a precursor ion while three diagnostic product ions characteristic for each were selected for the qualitative analysis. To obtain maximal intensities for all diagnostic product ions, the collision energy was optimized for each one. LC separation was achieved under conditions of a reversed-phase Inertsil ODS-2 column combined with a gradient elution system using 50mM acetic acid with 3% acetonitrile aqueous solution and 50 mM acetic acid with 100% acetonitrile. In the quantitative analysis, one of the three diagnostic product ions for each of the 11 molecules was selected. Application of simultaneous LC-ESI-MS/MS MRM measurements to analyze the 11 standards spiked into blank human plasma indicated that all diagnostic product ions were detected without any interference, and that the sensitivity, linearity and recovery of this method were acceptable. When using this method to analyze those 11 molecules in the plasma after oral ingestion of 250 ml of a drink containing a green coffee bean extract (300 mg CGAs), all 11 molecules were identified and CQAs, FQAs and FA were quantified. CQAs, FQAs and dCQAs in human plasma were detected for the first time. This method should be useful to understand the biological and pharmacological effects of CGAs, such as improvement of human hypertension.  相似文献   

13.
Ceramide (CER) is an important signaling molecule involved in a variety of cellular processes, including differentiation, cell growth, and apoptosis. Currently, different techniques are applied for CER quantitation, some of which are relatively insensitive and/or time consuming. Tandem mass spectrometry with its high selectivity and sensitivity is a very useful technique for detection of low abundant metabolites without prior purification or derivatization. In contrast to existing mass spectrometry methods, the developed electrospray tandem mass spectrometry (ESI-MS/MS) technique is capable of quantifying different CER species from crude cellular lipid extracts. The ESI-MS/MS is performed with a continuous flow injection and the use of an autosampler, resulting in a high throughput capability. The collision-induced fragmentation of CER produced, in addition to others, a characteristic fragment of m/z 264, making a precursor ion scan of 264 well suited for CER quantitation. Quantitation is achieved by use of a constant concentration of a non-naturally occurring internal standard C8-CER, together with a calibration curve established by spiking different concentrations of naturally occurring CER. The calibration curves showed linearity over a wide concentration range and sample volumes equivalent to 10 microg of cell protein corresponding to about 20, 000 fibroblasts were sufficient for CER analysis. Moreover this assay showed a detection limit at the subpicomole level. In summary, this methodology enables accurate and rapid analysis of CER from small samples without prior separation steps, thus providing a useful tool for signal transduction research.  相似文献   

14.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a powerful tool that enables the simultaneous detection and identification of biomolecules in analytes. MALDI-imaging mass spectrometry (MALDI-IMS) is a two-dimensional MALDI-MS technique used to visualize the spatial distribution of biomolecules without extraction, purification, separation, or labeling of biological samples. This technique can reveal the distribution of hundreds of ion signals in a single measurement and also helps in understanding the cellular profile of the biological system. MALDI-IMS has already revealed the characteristic distribution of several kinds of lipids in various tissues. The versatility of MALDI-IMS has opened a new frontier in several fields, especially in lipidomics. In this review, we describe the methodology and applications of MALDI-IMS to biological samples.  相似文献   

15.
In this study immunosuppressants, i.e. cyclosporin A (CyA), tacrolimus (TRL), sirolimus (SRL) and everolimus (RAD) were quantified in whole blood samples from immunosuppressant treated transplant recipients by an integrated on-line solid phase extraction-high performance liquid chromatography-tandem mass spectrometry (SPE-HPLC-MS/MS) system. This method has been developed to improve the following characteristics: speed, robust analysis, simultaneous determination and low cost. This can be achieved by the use of a perfusion column as an extraction cartridge in combination with a short HPLC column and highly selective and sensitive atmospheric pressure ionisation tandem mass spectrometry (API-MS/MS) in the multiple reaction monitoring (MRM) detection mode. This high throughput technique is perfectly appropriate for routine therapeutic drug monitoring (TDM) of organ transplanted patients.  相似文献   

16.
MALDI mass spectrometry can generate profiles that contain hundreds of biomolecular ions directly from tissue. Spatially-correlated analysis, MALDI imaging MS, can simultaneously reveal how each of these biomolecular ions varies in clinical tissue samples. The use of statistical data analysis tools to identify regions containing correlated mass spectrometry profiles is referred to as imaging MS-based molecular histology because of its ability to annotate tissues solely on the basis of the imaging MS data. Several reports have indicated that imaging MS-based molecular histology may be able to complement established histological and histochemical techniques by distinguishing between pathologies with overlapping/identical morphologies and revealing biomolecular intratumor heterogeneity. A data analysis pipeline that identifies regions of imaging MS datasets with correlated mass spectrometry profiles could lead to the development of novel methods for improved diagnosis (differentiating subgroups within distinct histological groups) and annotating the spatio-chemical makeup of tumors. Here it is demonstrated that highlighting the regions within imaging MS datasets whose mass spectrometry profiles were found to be correlated by five independent multivariate methods provides a consistently accurate summary of the spatio-chemical heterogeneity. The corroboration provided by using multiple multivariate methods, efficiently applied in an automated routine, provides assurance that the identified regions are indeed characterized by distinct mass spectrometry profiles, a crucial requirement for its development as a complementary histological tool. When simultaneously applied to imaging MS datasets from multiple patient samples of intermediate-grade myxofibrosarcoma, a heterogeneous soft tissue sarcoma, nodules with mass spectrometry profiles found to be distinct by five different multivariate methods were detected within morphologically identical regions of all patient tissue samples. To aid the further development of imaging MS based molecular histology as a complementary histological tool the Matlab code of the agreement analysis, instructions and a reduced dataset are included as supporting information.  相似文献   

17.
Producing a comprehensive overview of the chemical content of biologically-derived material is a major challenge. Apart from ensuring adequate metabolome coverage and issues of instrument dynamic range, mass resolution and sensitivity, there are major technical difficulties associated with data pre-processing and signal identification when attempting large scale, high-throughput experimentation. To address these factors direct infusion or flow infusion electrospray mass spectrometry has been finding utility as a high throughput metabolite fingerprinting tool. With little sample pre-treatment, no chromatography and instrument cycle times of less than 5 min it is feasible to analyse more than 1,000 samples per week. Data pre-processing is limited to aligning extracted mass spectra and mass-intensity matrices are generally ready in a working day for a month’s worth of data mining and hypothesis generation. ESI-MS fingerprinting has remained rather qualitative by nature and as such ion suppression does not generally compromise data information content as originally suggested when the methodology was first introduced. This review will describe how the quality of data has improved through use of nano-flow infusion and mass-windowing approaches, particularly when using high resolution instruments. The increasingly wider availability of robust high accurate mass instruments actually promotes ESI-MS from a merely fingerprinting tool to the ranks of metabolite profiling and combined with MS/MS capabilities of hybrid instruments improved structural information is available concurrently. We summarise current applications in a wide range of fields where ESI-MS fingerprinting has proved to be an excellent tool for “first pass” metabolome analysis of complex biological samples. The final part of the review describes a typical workflow with reference to recently published data to emphasise key aspects of overall experimental design.  相似文献   

18.

Producing a comprehensive overview of the chemical content of biologically-derived material is a major challenge. Apart from ensuring adequate metabolome coverage and issues of instrument dynamic range, mass resolution and sensitivity, there are major technical difficulties associated with data pre-processing and signal identification when attempting large scale, high-throughput experimentation. To address these factors direct infusion or flow infusion electrospray mass spectrometry has been finding utility as a high throughput metabolite fingerprinting tool. With little sample pre-treatment, no chromatography and instrument cycle times of less than 5 min it is feasible to analyse more than 1,000 samples per week. Data pre-processing is limited to aligning extracted mass spectra and mass-intensity matrices are generally ready in a working day for a month’s worth of data mining and hypothesis generation. ESI-MS fingerprinting has remained rather qualitative by nature and as such ion suppression does not generally compromise data information content as originally suggested when the methodology was first introduced. This review will describe how the quality of data has improved through use of nano-flow infusion and mass-windowing approaches, particularly when using high resolution instruments. The increasingly wider availability of robust high accurate mass instruments actually promotes ESI-MS from a merely fingerprinting tool to the ranks of metabolite profiling and combined with MS/MS capabilities of hybrid instruments improved structural information is available concurrently. We summarise current applications in a wide range of fields where ESI-MS fingerprinting has proved to be an excellent tool for “first pass” metabolome analysis of complex biological samples. The final part of the review describes a typical workflow with reference to recently published data to emphasise key aspects of overall experimental design.

  相似文献   

19.
Liquid chromatography/mass spectrometry (LC/MS) is applied to the analysis of complex mixtures of oligosaccharides obtained through the controlled, heparinase-catalyzed depolymerization of heparin. Reversed-phase ion-pairing chromatography, utilizing a volatile mobile phase, results in the high resolution separation of highly sulfated, heparin-derived oligosaccharides. Simultaneous detection by UV absorbance and electrospray ionization-mass spectrometry (ESI-MS) provides important structural information on the oligosaccharide components of this mixture. Highly sensitive and easily interpretable spectra were obtained through post-column addition of tributylamine in acetonitrile. High resolution mass spectrometry afforded elemental composition of many known and previously unknown heparin-derived oligosaccharides. UV in combination with MS detection led to the identification of oligosaccharides arising from the original non-reducing end (NRE) of the heparin chain. The structural identification of these oligosaccharides provided sequence from a reading frame that begins at the non-reducing terminus of the heparin chain. Interestingly, 16 NRE oligosaccharides are observed, having both an even and an odd number of saccharide residues, most of which are not predicted based on biosynthesis or known pathways of heparin catabolism. Quantification of these NRE oligosaccharides afforded a number-averaged molecular weight consistent with that expected for the pharmaceutical heparin used in this analysis. Molecular ions could be assigned for oligosaccharides as large as a tetradecasaccharide, having a mass of 4625 Da and a net charge of -32. Furthermore, MS detection was demonstrated for oligosaccharides with up to 30 saccharide units having a mass of >10000 Da and a net charge of -60.  相似文献   

20.
A liquid chromatography (LC)/electrospray ionization (ESI)-mass spectrometry (MS) method for the direct determination of eighteen tetrahydrocorticosteroid sulfates in human urine has been developed. The analytes were 3- and 21-monosulfates and 3,21-disulfates of tetrahydrocortisol (THF), tetrahydrocortisone (THE), tetrahydro-11-deoxycortisol (THS), and their corresponding 5α-H stereoisomers. The mass spectrometric behavior of these sulfates in negative-ion ESI-MS/MS revealed the production of intense structure specific product ions within the same group of sulfates and permitted distinction between regioisomeric sulfates by collision-induced fragmentation with the MS/MS technique using a linear ion-trap instrument. For the quantitative analysis, selected reaction monitoring analysis in the negative-ion detection mode using triple-stage quadrupole mass spectrometer was performed by monitoring transitions from [M−H] to the most abundant product ion of each tetrahydrocorticosteroid sulfate. After addition of 3- and 21-monosulfates of [2,2,3β,4,4-d5]-THF, -THE, and -THS as internal standards, urine sample was applied to a solid phase extraction using a lipophilic-weak anion exchange cartridge column, and then analyzed by LC/ESI-MS/MS. The method had satisfactory performance in terms of intra- and inter-assay precision (less than 9.7% and 9.6%, respectively), and accuracy (91.2–108.2%). The limit of quantification was lower than 2.5 ng/mL for all sulfates examined. We applied this method to determine the concentration of eighteen tetrahydrocorticosteroid sulfates in the urine of healthy subjects. Thus, we have developed a sensitive, precise and accurate assay for urinary tetrahydrocorticosteroid sulfates that should be useful for clinical and biological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号