首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An aqueous two-phase system composed by a thermoseparating random copolymer of ethylene oxide/propylene oxide 50/50 (%w/w), Breox, and hydroxypropyl starch – Reppal PES 100 was evaluated for the partitioning of Fusarium solani pisi recombinant cutinase. The effect of several additives on the partitioning of pure cutinase was evaluated. Micelles of sodium dodecanoate provided a ten-fold increase of the partitioning coefficient (K=9) and recovery yields of 60-75%. The phase diagrams of the systems composed of Breox, Reppal and sodium dodecanoate were determined and it was found that in systems with high surfactant concentrations, the binodal was moved to lower polymer concentrations, enabling a two-phase system with 6% (w/w) of each polymer.  相似文献   

2.
The adsorption performance of CS beads impregnated with triton X-100 (TX-100) as a nonionic surfactant and sodium dodecyl sulfate (SDS) as an anionic surfactant was investigated for the removal of anionic dye (congo red) from aqueous solution. While the adsorption capacity of CS/TX-100 beads was enhanced at all concentrations of TX-100 (0.005–0.1%), the increase in the concentration of SDS above 0.01% in the CS/SDS beads gradually reduced the adsorption capacity of the beads. Equilibrium adsorption isotherm data indicated a good fit to the Sips isotherm model and a heterogeneous adsorption process. The Sips maximum adsorption capacity in dry weight of the CS/TX-100 beads was 378.79 mg/g and 318.47 mg/g for the CS/SDS beads, higher than the 223.25 mg/g of the CS beads. Modification of CS beads by impregnation with nonionic surfactant, or even anionic surfactant, at low concentrations is a possible way to enhance adsorption of anionic dye.  相似文献   

3.
The condition of chymotrypsin (ChTRP)–Eudragit® (Eu) insoluble complex formation was studied with the aim of applying this information to the separation of chymotrypsin from a crude filtrate of bovine pancreas homogenate. The optimal pH of the complex precipitation was 4.60 for ChTRP–Eudragit® L100 and 5.40 for ChTRP–Eudragit® S100. The polyelectrolyte concentration necessary for the commercial enzyme precipitation was lower than 0.1% (w/v). The complex formation was inhibited by NaCl for both polyelectrolytes. The method was applied to recover the enzyme from bovine homogenate; ChTRP was precipitated by Eudragit® addition. The non-soluble complexes were separated by simple centrifugation and re-dissolved by a pH change to 8.20. The best conditions to recover ChTRP brought about a purification factor of around 4 and 90% yield.  相似文献   

4.
Triton X-100 (TX-100), a useful non-ionic surfactant, reduced the methicillin resistance in Staphylococcus aureus significantly. Many S. aureus proteins were expressed in the presence of TX-100. SarA, one of the TX-100-induced proteins, acts as a global virulence regulator in S. aureus. To understand the effects of TX-100 on the structure, and function of SarA, a recombinant S. aureus SarA (rSarA) and its derivative (C9W) have been investigated in the presence of varying concentrations of this surfactant using various probes. Our data have revealed that both rSarA and C9W bind to the cognate DNA with nearly similar affinity in the absence of TX-100. Interestingly, their DNA binding activities have been significantly increased in the presence of pre-micellar concentration of TX-100. The increase of TX-100 concentrations to micellar or post-micellar concentration did not greatly enhance their activities further. TX-100 molecules have altered the secondary and tertiary structures of both proteins to some extents. Size of the rSarA-TX-100 complex appears to be intermediate to those of rSarA and TX-100. Additional analyses show a relatively moderate interaction between C9W and TX-100. Binding of TX-100 to C9W has, however, occurred by a cooperative pathway particularly at micellar and higher concentrations of this surfactant. Taken together, TX-100-induced structural alteration of rSarA and C9W might be responsible for their increased DNA binding activity. As TX-100 has stabilized the somewhat weaker SarA-DNA complex effectively, it could be used to study its structure in the future.  相似文献   

5.
Aqueous two-phase systems (ATPS) formed by polymer and salt have been utilized to enrich the desired biomolecule into one of the phase with higher yield and purity. The eco-friendly, biodegradable poly ethylene glycol (PEG) and different citrate salts were chosen as ATPS phase components to investigate the partitioning behavior of α-lactalbumin (α-La). System factors and process parameters such as type and concentration of salt, molecular weight and concentration of PEG, pH, temperature and the effect of additives were studied and the results are discussed in detail. PEG 1000–tri-potassium citrate system yields high partition coefficient of 20 with a better yield of 98 % in the top phase. The addition of NaCl as an additive and acidic pH lowers the yield of α-La in the top phase. Influence of phase volume ratio (V r) on partitioning was studied and found that the partition coefficient remains almost constant along the tie line. High yield was achieved at a V r of 3.5 at the tie line length of 50.63 (%, w/w).  相似文献   

6.
Bacteriophage Φ × 174 was produced in 20 and 200 liter fermentors. The phage was concentrated without any loss of infectivity by precipitation with 10% (w/v) Poly(ethylene glycol) 6000 in 0.5M NaCl. The total yield of a 100 liter culture is around 1016 infectious particles. The final purification step in a CsCl gradient results in a 60 to 80% inactivation.  相似文献   

7.
Both the protein components Kp1 and Kp2 of nitrogenase from Klebsiella pneumoniae were found to be stable in aq. 50% (v/v) ethylene glycol at +30 degrees C or below. At -20 degrees C in this medium their sensitivities to O2 were diminished somewhat. Though purification could be carried out at -20 degrees C, the product had the same specific activity and was obtained in the same yield as when the purification was carried out by standard procedures. This suggests that such procedures yield enzyme undamaged in the course of the purification by O2, thermal denaturation or proteolytic digestion.  相似文献   

8.
This study presents the partitioning and purification of recombinant Bacillus badius phenylalanine dehydrogenase (PheDH) in aqueous two-phase systems (ATPS) composed of polyethylene glycol 6000 (PEG-6000) and ammonium sulfate. A single-step operation of ATPS was developed for extraction and purification of recombinant PheDH from E. coli BL21 (DE3). The influence of system parameters including; PEG molecular weight and concentration, pH, (NH(4))(2)SO(4) concentration and NaCl salt addition on enzyme partitioning were investigated. The best optimal system for the partitioning and purification of PheDH was 8.5% (w/w) PEG-6000, 17.5% (w/w) (NH(4))(2)SO(4) and 13% (w/w) NaCl at pH 8.0. The partition coefficient, recovery, yield, purification factor and specific activity values were of 92.57, 141%, 95.85%, 474.3 and 10424.97 U/mg, respectively. Also the K(m) values for L-phenylalanine and NAD(+) in oxidative deamination were 0.020 and 0.13 mM, respectively. Our data suggested that this ATPS could be an economical and attractive technology for large-scale purification of recombinant PheDH.  相似文献   

9.
This study focused on the deleterious effect of anthracene (ANT) and role of a surfactant, Triton (TX-100), in recovery from inhibitory effect of ANT. Fast chlorophyll (Chl) fluorescence measurements were performed in wheat plants. Results revealed that maximum quantum yield of PSII, area over the fluorescence curve, performance index (PI), and reaction centre density was negatively affected by ANT treatment. The effects on PSII quantum efficiency, reaction centre density, absorption, and trapping were partially recovered by TX-100. PSII heterogeneity in terms of PSII antenna heterogeneity, corresponding to PSII α, β, and γ centres, and reducing side, corresponding to QB-reducing and QB-nonreducing centres, were also investigated. The damage caused by ANT to PSII antenna heterogeneity was recovered almost by 100% owing to TX-100.  相似文献   

10.
This work describes the partition of a Schistosoma mansoni tegumental antigen produced by a recombinant Escherichia coli strain using an aqueous two-phase system (ATPS) composed of polyethylene glycol (PEG) and purified hydroxypropyl-starch (Reppal PES 100). The effects of the polymer molecular weight, tie line length and pH on antigen partitioning were investigated. The detection of the antigen in both phases was determined by ELISA. The system composed of PEG 8000 (5.1% w/w) and Reppal PES 100 (13.0% w/w) led to a yield of 92% and a purification factor of 12 concerning the antigen in the PEG-rich phase. It was observed that antigen partition in ATPSs was strongly affected by the pH and tie line length. In addition, it was possible in a single step, to remove the cell debris, which precipitated at the interface of the system.  相似文献   

11.
Currently, there are many reports in the literature regarding technological methods for paclitaxel purification. However, there have been few reports on the purification of paclitaxel using a micellar system. This method is based on the transfer of paclitaxel within the crude extract to an aqueous surfactant solution as a micelle, allowing the use of organic solvents to be used for the removal of lipids and non-polar impurities. In this study, we optimized the important process parameters of micellar extraction to obtain a high purity and yield of paclitaxel in a pre-purification step. The optimal surfactant (N-cetylpyridinium chloride, CPC) concentration, initial crude paclitaxel concentration, organic solvents (methylt-butyl ether/hexane) ratio, extraction temperature, and extraction time were 7.5% (w/v), 16.4 mg/mL, 1.5/1 (v/v), 25°C, and 30 min, respectively. The crude extracts from the liquid-liquid extracts were efficiently pre-purified by micellar extraction, increasing in purity from 6% to over 21%, with a yield of 92%. Overall, the use of micellar extraction in the pre-purification process allowed for rapid and efficient separation of paclitaxel from interfering compounds, and dramatically increased the yield and purity of the crucle paclitael for subsequent purification steps.  相似文献   

12.
It is shown that eudragit S-100, a copolymer of methylacrylic acid and methylmethacrylate, undergoes three-phase partitioning. It was found that 95% eudragit S-100 could be recovered as the interfacial precipitate by using 30% (w/v) ammonium sulfate, 1:1 ratio of t-butanol to polymer solution at 40 degrees C. Three-phase partitioning of proteins uses simultaneous addition of ammonium sulfate and t-butanol to precipitate proteins in an interfacial layer separating the aqueous phase and organic solvent. Exploiting the affinity of xylanases towards eudragit S-100, it was possible to purify xylanase from Aspergillus niger; 60% recovery of activity with 95-fold purification could be obtained by this process. The purified enzyme showed A single band on SDS-PAGE. The technique shows promise to develop into a general method that could be termed "macroaffinity ligand-facilitated three-phase partitioning (MLFTPP).  相似文献   

13.
《Process Biochemistry》2014,49(12):2305-2312
The partitioning of proteases expressed by Penicillium restrictum from Brazilian Savanna in an inexpensive aqueous two-phase system composed of poly (ethylene glycol) (PEG) and sodium polyacrylate (NaPA) was studied. The effects of PEG molecular weight and concentration, as well as NaPA concentration and the concentration of fermented broth on protease partitioning were studied. Partitioning into the top PEG-rich phase was increased in systems with smaller PEG-molecular weight, higher NaPA concentration and lower PEG concentration. For most systems studied, purification has been achieved by directing the biomolecule partition to the opposite phase of the other proteins, providing the enzyme purification. The highest partition coefficient was obtained using 20 wt% NaPA, 4 wt% PEG 2000 g mol−1 and 45 wt% fermented broth, leading to a purification factor of 1.98 and partition coefficient of 37.73. The system showed high mass balances and yield, indicating enzyme stability and applicability for industrial processes. The partitioning results using the PEG/NaPA/NaCl system show that this method could be used to purify or concentrate protease from fermented broth.  相似文献   

14.
A novel fungal strain, Aspergillus ficuum Gim 3.6, was evaluated for its tannase-producing capability in a wheat bran-based solid-state fermentation. Thin-layer chromatography (TLC) analysis revealed that the strain was able to degrade tannic acid to gallic acid and pyrogallol during the fermentation process. Quantitation of enzyme activity demonstrated that this strain was capable of producing a relatively high yield of extracellular tannase. Single-factor optimization of process parameters resulted in high yield of tannase after 60 hr of incubation at a pH of 5.0 at 30°C, 1 mL of inoculum size, and 1:1 solid–liquid ratio in the presence of 2.0% (w/v) tannic acid as inducer. The potential of aqueous two-phase extraction (ATPE) for the purification of tannase was investigated. Influence of various parameters such as phase-forming salt, molecular weight of polyethylene glycol (PEG), pH, and stability ratio on tannase partition and purification was studied. In all the systems, the target enzyme was observed to preferentially partition to the PEG-rich top phase, and the best result of purification (2.74-fold) with an enzyme activity recovery of 77.17% was obtained in the system containing 17% (w/w) sodium citrate and 18.18% (w/w) PEG1000, at pH 7.0.  相似文献   

15.
Plasma membrane (PM) proteins are attractive therapeutic targets because of their accessibility to drugs. Although genes encoding PM proteins represent 20-30% of eukaryotic genomes, a detailed characterisation of their encoded proteins is underrepresented, due, to their low copy number and the inherent difficulties in their isolation and purification as a consequence of their high hydrophobicity. We describe here a strategy that combines two orthogonal methods to isolate and purify PM proteins from Madin Darby canine kidney (MDCK) cells. In this two-step method, we first used cationic colloidal silica (CCS) to isolate adherent (Ad) and non-adherent (nAd) PM fractions, and then subjected each fraction to Triton X-114 (TX-114) phase partitioning to further enrich for hydrophobic proteins. While CCS alone identified 255/757 (34%) membrane proteins, CCS/TX-114 in combination yielded 453/745 (61%). Strikingly, of those proteins unique to CCS/TX-114, 277/393 (70%) had membrane annotation. Further characterisation of the CCS/TX-114 data set using Uniprot and transmembrane hidden Markov model revealed that 306/745 (41%) contained one or more transmembrane domains (TMDs), including proteins with 25 and 17 TMDs. Of the remaining proteins in the data set, 69/439 (16%) are known to contain lipid modifications. Of all membrane proteins identified, 93 had PM origin, including proteins that mediate cell adhesion, modulate transmembrane ion transport, and cell-cell communication. These studies reveal that the application of CCS to first isolate Ad and nAd PM fractions, followed by their detergent-phase TX-114 partitioning, to be a powerful method to isolate low-abundance PM proteins, and a useful adjunct for in-depth cell surface proteome analyses.  相似文献   

16.
Etodolac is a non-steroidal anti-inflammatory drug having an elimination half-life of 7 h; oral doses are given every 6–8 h. The aim of current work was the development of controlled-release etodolac lipid matrix tablets. The variables influencing design of these tablets (L1–L28) by the hot fusion method were investigated including; (1) lipid type (stearic acid, cetyl alcohol, cetostearyl alcohol, Imwitor® 900K, Precirol® ATO 5 and Compritol® ATO 888), (2) drug/lipid ratio (1:0.25 and 1:0.50, respectively), (3) filler type (lactose, Avicel® PH101 and their physical mixtures; 2:1, 1:1, and 1:2, respectively), (4) surfactant’s HLB (5 and 11), and (5) drug/surfactant ratio (20:1 and 10:1, respectively). Statistical analysis and kinetic modeling of drug release data were evaluated. The inner matrix of the tablet was visualized via scanning electron microscopy (SEM). An inverse correlation was observed between the drug/lipid ratio and the drug release rate. Precirol®- and Compritol®-containing formulae showed more retarded drug release rates. Lactose/Avicel® physical mixture (1:1) was considered as a filler of choice where it minimized the burst effect observed with Avicel®-free formulae. The higher surfactant’s HLB, the higher drug release rate. The similarity factor (f 2) between the drug release profiles revealed similarity within the investigated drug/surfactant ratios. Sucrose stearate D1805®-based matrix (L21) succeeded in delivering more than 90% of etodolac over 12 h, following anomalous (non-Fickian) controlled-release kinetics. SEM micrographs confirmed pore formation, within the latter matrix, upon contact with dissolution medium.  相似文献   

17.
Aqueous two-phase partition systems (ATPS) have been widely used for the separation of a large variety of biomolecules. In the present report, the application of a polyethylene glycol/phosphate (PEG/phosphate) ATPS for the separation of anti-HIV monoclonal antibodies 2G12 (mAb 2G12) and 4E10 (mAb 4E10) from unclarified transgenic tobacco crude extract was investigated. Optimal conditions that favor opposite phase partitioning of plant debris/mAb as well as high recovery and purification were found to be 13.1% w/w (PEG 1500), 12.5% w/w (phosphate) at pH 5 with a phase ratio of 1.3 and 8.25% w/w unclarified tobacco extract load. Under these conditions, mAb 2G12 and mAb 4E10 were partitioned at the bottom phosphate phase with 85 and 84% yield and 2.4- and 2.1-fold purification, respectively. The proposed ATPS was successfully integrated in an affinity-based purification protocol, using Protein A, yielding antibodies of high purity and yield. In this study, ATPS was shown to be suitable for initial protein recovery and partial purification of mAb from unclarified transgenic tobacco crude extract.  相似文献   

18.
The oxidation of beta-D-glucose by the enzyme glucose oxidase was studied in aqueous medium, in solutions of surfactants AOT (2-ethylhexylsulfosuccinate, sodium salt) TX-100 (polyethylene glycol p-tert octyl phenyl ether) and in w/o microemulsion medium (water/AOT/decane) at different water/AOT mole ratio (omega), pH, temperature and in presence of additives. The time-dependent activities of the enzyme in aqueous and microemulsion media were determined. The catalytic process was retarded in the presence of TX-100 and AOT. In microemulsion medium, kcat values exhibited a deformed W-shaped profile with omega. At pH 7, a maximum value of kcat was observed at omega = 10.6. The kcat values were found to be higher in microemulsion medium than in aqueous medium at both pH's 7 and 8. Activation parameters for the kinetic process were evaluated together with the thermodynamics of the enzyme-substrate Michaelis complex. The deltaG* was lower, whereas deltaH* and deltaS* were higher in microemulsion than in water. The Michaelis constant, KM was also lower in microemulsion. The inhibition effects of the additives, NaNO3 and NaC were studied in both aqueous and microemulsion media by examining their influences on catalytic constant, kcat and Michaelis constant KM. In microemulsion, both the additives NaNO3 and NaC produced non-competitive inhibition.  相似文献   

19.
Artisan fresh Mexican-style cheeses are commonly made from raw milk that provides not only rich flavors, but also a diversity of associated lactic acid bacteria (LAB) strains. Enterococcus faecium UQ31 was isolated from panela cheese and produced bacteriocin-like inhibitory substances (BLIS) with a strong anti-Listeria activity. A modified pH–mediated adsorption-desorption purification process resulted in (after SDS-PAGE) two bands showing antimicrobial activities, where most of the activity corresponded to the band with an estimated molecular weight of 7.5 kDa. The BLIS produced by E. faecium UQ31 were heat resistant, stable at ambient storage conditions, and active in the pH range 5–9. The BLIS antimicrobial activities were detected during logarithmic growth phase and remained constant until the end of incubation time (19 h). These BLIS showed a wide anti-Listeria monocytogenes spectra. The E. faecium UQ31 strain or their BLIS represent a promising potential as antimicrobial food preservatives.  相似文献   

20.
For a drug with low bioavailability, a matrix tablet with liquid permeation enhancer (Labrasol®) was formulated. Factorial design was used to evaluate the effect of three formulation factors: drug percentage, polymer type (Methocel® K100M or Eudragit® L 100-55), and tablet binder percentage (Plasdone® S-630) on tablet characteristics. Tablets were prepared by direct compression and characterized. Compressibility index values ranged between 15.90% and 29.87% and tablet hardness values from 7.8 to 29.78 Kp. Eudragit®-containing formulations had better compressibility index values with higher tablet hardness. Time for 75% of drug release (T 75) was calculated, and formulations containing Eudragit® L 100-55 had faster release rates than tablet formulations with Methocel® K100M. Formulations with Methocel® K100M fit well in the Higuchi model as indicated by their R 2 values (>0.98). Among all the formulation factors studied, polymer type displayed the highest and statistically significant effect on compressibility index, tablet hardness, and dissolution rate. Statistical design helped in better understanding the effect of formulation factors on tablet characteristics important for designing formulations with desired characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号