首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Sialylation of glycans is ubiquitous in vertebrates, but was believed to be absent in plants, arthropods, and fungi. However, recently evidence has been provided for the presence of sialic acid in these evolutionary clades. In addition, homologs of mammalian genes involved in sialylation can be found in the genomes of these taxa and for some Drosophila enzymes, involvement in sialic acid metabolism has been documented. In plant genomes, homologs of sialyltransferase genes have been identified, but there activity could not be confirmed. Several mammalian cell lines exist with defects in the sialylation pathway. One of these is the Chinese hamster ovary cell line Lec2, deficient in CMP-sialic acid transport to the Golgi lumen. These mutants provide the possibility to clone genes by functional complementation. Using expression cloning, we have identified an Arabidopsis thaliana nucleotide sugar transporter that is able to complement the CMP-sialic acid transport deficiency of Lec2 cells. The isolated gene (At5g41760) is a member of the triose-phosphate/nucleotide sugar transporter gene family. Recombinant expression of the gene in yeast and testing in vitro confirmed its ability to transport CMP-sialic acid.  相似文献   

3.
Chinese hamster ovary cells show endogenous high-affinity Na^+ -dependent glutamate transport activity. This transport activity is kinetically similar to a glutamate transporter family strategically expressed in the central nervous system and is pharmacologically unlike glutamate transporter- 1 or excitatory amino acid carrier 1. The cDNA of a glutamate/aspartate transporter (GLAST)-like transporter was obtained and analyzed. The deduced amino acid sequence showed high similarity to human, mouse, and rat GLAST. We concluded that a GLAST-like glutamate transporter exists in Chinese hamster ovary cells that might confer the endogenous high-affinity Na^+ -dependent glutamate transport activity evident in these cells.  相似文献   

4.
Plant cells have no beta1,4-galactosylated and sialylated glycan, which plays important roles in biological functions in animal cells. Previously, we generated transgenic tobacco BY2 suspension-cultured cells that produced human beta1,4-galactosyltransferase [N.Q. Palacpac, S. Yoshida, H. Sakai, Y. Kimura, K. Fujiyama, T. Yoshida, T. Seki, Stable expression of human beta1,4-galactosyltransferase in plant cells modifies N-linked glycosylation pattern, Proc. Natl. Acad. Sci. USA 96 (1999) 4692-4697]. In this study, we introduced two critical genes encoding human CMP-N-acetylneuraminic acid synthetase and CMP-sialic acid transporter into tobacco suspension-cultured cell to pave a route for sialic biosynthetic pathway. The recombinant human proteins showed their biological activities. These results show that the plant cell can be a useful bioreactor for the production of mammalian glycoproteins.  相似文献   

5.
Glycoproteins could be highly sialylated, and controlling the sialic acid levels for some therapeutic proteins is critical to ensure product consistency and efficacy. N-acetylneuraminic acid (Neu5Ac, or NANA) and N-glycolylneuraminic acid (Neu5Gc, or NGNA) are the two most common forms of sialic acids produced in mammalian cells. As Neu5Gc is not produced in humans and can elicit immune responses, minimizing Neu5Gc formation is important in controlling this quality attribute for complex glycoproteins. In this study, a sialylated glycoprotein was used as the model molecule to study the effect of culture osmolality on Neu5Gc. A 14-day fed-batch process with osmolality maintained at physiological levels produced high levels of Neu5Gc. Increase of culture osmolality reduced the Neu5Gc level up to 70–80%, and the effect was proportional to the osmolality level. Through evaluating different osmolality conditions (300–450 mOsm/kg) under low or high pCO2, we demonstrated that osmolality could be an effective process lever to modulate the Neu5Gc level. Potential mechanism of osmolality impact on Neu5Gc is discussed and is hypothesized to be cytosol NADH availability related. Compared with cell line engineering efforts, this simple process lever provides the opportunity to readily modulate the Neu5Gc level in a cell culture environment.  相似文献   

6.
HPLC analysis of sialic acids released from recombinant variants of human tissue plasminogen activator, human chimeric plasminogen activator, human erythropoietin, and human follitropin, expressed in Chinese hamster ovary cells, demonstrates for each glycoprotein the presence of N-acetylneuraminic acid and N-glycolylneuraminic acid in a ratio of 97:3. Structural analysis by 500 MHz1H-NMR spectroscopy, of the enzymatically released N-linked carbohydrate chains of chimeric plasminogen activator and of erythropoietin, showed that alpha 2-3 linked N-glycolylneuraminic acid can occur in different N-acetyllactosamine type antennary structures.  相似文献   

7.
The architectural conservation of nucleotide sugar transport proteins (NSTs) enabled the theoretical prediction of putative NSTs in diverse gene databases. In the human genome, 17 NST sequences have been identified but only six have been unequivocally characterized with respect to their transport specificities. Defining transport characteristics of recombinant NSTs has become a major challenge because true zero background systems are widely absent. Production of recombinant NSTs in heterologous systems has developed multifunctionality for some NSTs leading to a novel level of complexity in the field. Assuming that (1) the specificity of NSTs is determined at the primary sequence level and (2) the proteins are autonomously functional units, final definition of the substrate specificity will depend on the use of isolated transport proteins. Herein, we describe the first report of the functional expression of mouse CMP-sialic acid transporter (CST) in Escherichia coli and thus provide significant progress towards the production of transporter proteins in quantities suitable for functional and structural analyses. Recovery of the active NST from inclusion bodies was achieved after solubilization with 8 M urea and stepwise renaturation. After reconstitution into phospholipid vesicles, the recombinant protein demonstrated specific transport for CMP-N-acetylneuraminic acid (CMP-Neu5Ac) with no transport of UDP-sugars. Kinetic studies carried out with CMP-Neu5Ac and established CMP-Neu5Ac antagonist's evaluated natural conformation of the reconstituted protein and clearly demonstrate that the transporter acts as a simple mobile carrier.  相似文献   

8.
RNA interference (RNAi) has been recently applied to improve the yield and quality of recombinant proteins produced in Chinese hamster ovary (CHO) cells, the most commonly used mammalian cell line for production of complex biopharmaceuticals. Proteomic profiling of CHO cells undergoing gene amplification identified cofilin, a key regulatory protein of actin cytoskeletal dynamics, as a cellular target for genetic engineering studies. Transient reduction of cofilin by small interfering RNA (siRNA) enhanced specific productivity in recombinant CHO cells by up to 80%. CHO cell lines expressing cofilin-specific short hairpin RNA (shRNA) vectors showed up to a 65% increase in specific productivity. These results suggest that modulation of cofilin, and its regulatory pathways, may be a new approach to enhance recombinant protein productivity in CHO cells.  相似文献   

9.
The effects of different culture conditions, suspension and microcarrier culture and temperature reduction on the structures of N-linked glycans attached to secreted human placental alkaline phosphatase (SEAP) were investigated for CHO cells grown in a controlled bioreactor. Both mass spectrometry and anion-exchange chromatography were used to probe the N-linked glycan structures and distribution. Complex-type glycans were the dominant structures with small amounts of high mannose glycans observed in suspension and reduced temperature cultures. Biantennary glycans were the most common structures detected by mass spectrometry, but triantennary and tetraantennary forms were also detected. The amount of sialic acid present was relatively low, approximately 0.4 mol sialic acid/mol SEAP for suspension cultures. Microcarrier cultures exhibited a decrease in productivity compared with suspension culture due to a decrease in both maximum viable cell density (15-20%) and specific productivity (30-50%). In contrast, a biphasic suspension culture in which the temperature was reduced at the beginning of the stationary phase from 37 to 33 degrees C, showed a 7% increase in maximum viable cell density, a 62% increase in integrated viable cell density, and a 133% increase in specific productivity, leading to greater than threefold increase in total productivity. Both microcarrier and reduced temperature cultures showed increased sialylation and decreased fucosylation when compared to suspension culture. Our results highlight the importance of glycoform analysis after process modification as even subtle changes (e.g., changing from one microcarrier to another) may affect glycan distributions.  相似文献   

10.
The biosynthesis of the sialic acid N-glycolylneuraminic acid (Neu5Gc) occurs by the action of cytidine monophosphate-N-acetylneuraminate (CMP-Neu5Ac) hydroxylase. Previous investigations on a limited number of tissues suggest that the activity of this enzyme governs the extent of glycoconjugate sialylation with Neu5Gc. Using improved analytical procedures and a panel of nine porcine tissues, each expressing different amounts of Neu5Gc, we have readdressed the issue of the regulation of Neu5Gc incorporation into glycoconjugates. The following parameters were measured for each tissue: the molar ratio Neu5Gc/Neu5Ac, the activity of the hydroxylase, and the relative amount of hydroxylase protein, as determined by enzyme-linked immunosorbent assay (ELISA). A positive correlation between the activity of the hydroxylase and the molar ratio Neu5Gc/Neu5Ac was observed for each tissue. In addition, the hydroxylase activity correlated with the amount of enzyme protein, though in heart and lung disproportionately large amounts of immunoreactive protein were detected. Taken together, the results suggest that the incorporation of Neu5Gc into glycoconjugates is generally controlled by the amount of hydroxylase protein expressed in a tissue.  相似文献   

11.
The effect of different cell culture conditions on N‐glycosylation site‐occupancy has been elucidated for two different recombinant glycoproteins expressed in Chinese hamster ovary (CHO) cells, recombinant human tissue plasminogen activator (t‐PA) and a recombinant enzyme (glycoprotein 2—GP2). Both molecules contain a N‐glycosylation site that is variably occupied. Different environmental factors that affect the site‐occupancy (the degree of occupied sites) of these molecules were identified. Supplementing the culture medium with additional manganese or iron increased the fraction of fully occupied t‐PA (type I t‐PA) by approximately 2.5–4%. Decreasing the cultivation temperature from 37 to 33°C or 31°C gradually increased site‐occupancy of t‐PA up to 4%. The addition of a specific productivity enhancer, butyrate, further increased site‐occupancy by an additional 1% under each cultivation temperature tested. In addition, the thyroid hormones triiodothyronine and thyroxine increased site‐occupancy of t‐PA compared to control conditions by about 2%. In contrast, the addition of relevant nucleoside precursor molecules involved in N‐glycan biosynthesis (e.g., uridine, guanosine, mannose) either had no effect or slightly reduced site‐occupancy. For the recombinant enzyme (GP2), it was discovered that culture pH and the timing of butyrate addition can be used to control N‐glycan site‐occupancy within a specific range. An increase in culture pH correlated with a decrease in site‐occupancy. Similarly, delaying the timing for butyrate addition also decreased site‐occupancy of this molecule. These results highlight the importance of understanding how cell culture conditions and media components can affect the product quality of recombinant glycoproteins expressed in mammalian cell cultures. Furthermore, the identification of relevant factors will enable one to control product quality attributes, specifically N‐glycan site‐occupancy, within a specific range when applied appropriately. Biotechnol. Bioeng. 2009;103: 1164–1175. © 2009 Wiley Periodicals, Inc.  相似文献   

12.
We have engineered two Chinese hamster ovary cell lines secreting different recombinant glycoproteins to express high levels of human beta1,4-galactosyltransferase (GT, E.C. 2.4.1.38) and/or alpha2, 3-sialyltransferase (ST, E.C. 2.4.99.6). N-linked oligosaccharide structures synthesized by cells overexpressing the glycosyltransferases showed greater homogeneity compared with control cell lines. When GT was overexpressed, oligosaccharides terminating with GlcNAc were significantly reduced compared with controls, whereas overexpression of ST resulted in sialylation of >/=90% of available branches. As expected, GT overexpression resulted in reduction of oligosaccharides terminating with GlcNAc, whereas overexpression of ST resulted in sialylation of >/=90% of available branches. The more highly sialylated glycoproteins had a significantly longer mean residence time in a rabbit model of pharmacokinetics. These experiments demonstrate the feasibility of genetically engineering cell lines to produce therapeutics with desired glycosylation patterns.  相似文献   

13.
Kido  Masahide  Idogaki  Hideaki  Nishikawa  Kouji  Omasa  Takeshi 《Cytotechnology》2021,73(3):319-332
Cytotechnology - Chinese hamster ovary (CHO) cells are used as host cells for industrial monoclonal antibody (mAb) production. Cell cycle control is an effective approach to increase mAb production...  相似文献   

14.
对昆虫的N-糖基化途径进行修饰改变是扩展昆虫蛋白表达系统应用范围的重要途径。本研究利用基于piggyBac转座子的家蚕Bombyx mori转基因技术表达昆虫所缺乏的哺乳类糖基化途径中的关键基因, 构建了可以同时表达小鼠Mus musculus唾液酸合酶和小鼠CMP-唾液酸合成酶两个基因的piggyBac表达载体, 选用家蚕肌动蛋白A3启动子控制基因的表达, 并导入3×P3启动子控制下的增强绿色荧光蛋白EGFP作为分子标记。在得到的G1代转基因家蚕中对转入的基因进行了分子水平的鉴定和分析, 为在家蚕这种模式昆虫中模拟哺乳类糖基化途径奠定了基础。  相似文献   

15.
Dyring C 《Cytotechnology》1997,24(3):183-191
A recombinant Chinese hamster ovary (CHO) cell clone, S1, stably expressing human insulin-like growth factor binding protein-1 (hIGFBP-1), was treated with polyethylene glycol (PEG), resulting in cell fusion, in order to further enhance the protein expression by increasing the gene copy number and/or the amount of organelles important to the protein expression/-secretion. Both the fused cell line, Peg1, and its mother cell line, S1, were adapted to serum-free growth in suspension and were characterised with respect to growth and productivity. Peg1 was easier to adapt to the serum-free suspension conditions and had a higher viability during the adaptation period than S1. Furthermore, Peg1 showed a stable productivity of hIGFBP-1 that was twice as high as that for S1 under both adherent and suspension conditions. A considerable difference in the specific productivity (up to 3–4 times) was noticed during the growth phase. PEG fusion experiments have earlier been studied in our laboratory with CHO cells producing recombinant factor VIII and our results correlates very well with the results obtained with the factor VIII producing cells. Surprisingly, it was possible to obtain high producing recombinant cell lines, which were stable for more than 4 months. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
17.
18.
A recombinant CHO cell line, CHO2DS, was immobilized on porous microcarrier Cytopore 1 and cultivated in 1 l modified Super-spinner and 2 l stirred tank bioreactor with the perfusion of a low-cost chemically defined protein-free medium DF6S. CHO2DS cells could enter into the inner space and grew both in the inner space and on the surface of Cytopore 1 in DF6S and produced prothrombin at 22 mg l–1 after 10 days. From a seeding density of 5.7 × 105 cells ml–1, the highest viable cell density of CHO2DS was 1.12 × 107 cells ml–1.  相似文献   

19.
Methylglyoxal is a ketoaldehyde that reacts readily under physiological conditions with biologically relevant ligands, such as amine and sulfhydryl groups. It is produced in mammalian cells primarily as a by-product of glycolysis. The level of glucose, L-glutamine and fetal bovine serum in culture media was found to significantly affect levels of intracellular methylglyoxal in Chinese hamster ovary cells. Medium with 25 mM glucose and 5 mM L-glutamine caused an increase in free methylglyoxal levels of 90 to 100% relative to medium containing 5 mM glucose and 2 mM L-glutamine. Both of these media compositions are representative of those found in commercially available media. Pseudomonas putida glyoxalase I was expressed in Chinese hamster ovary cells to enhance methylglyoxal detoxification. The Chinese hamster ovary cell clones showed an 80 to 90% decrease in free methylglyoxal levels. The colony-forming ability of these cells was compared to wild-type Chinese hamster ovary cells under conditions found to cause elevated methylglyoxal levels. The wild-type cells showed a 10% decrease in colony-forming ability relative to the clones. This decrease was found to be statistically significant (P>0.99) by analysis of variance. The variation in colony-forming ability amongst the clones was statistically insignificant. More importantly, the clones shoed increased colony-forming ability relative to the wild-type cells under conditions of higher methylglyoxal production with fair to good statistical significance (P>0.75 to P>0.95). This result is the first quantifiable evidence that endogenously produced methylglyoxal can negatively affect cell function under conditions found in animal cell culture.Abbreviations ANOVA analysis of variance - CHO Chinese hamster ovary cells - CFA colony-forming ability - dhfr gene for dihydrofolate reductase - DHAP dihydroxyacetone phosphate - FBS fetal bovine serum - G-3-P glyceraldehyde-3-phosphate - GloI glyoxalase I - GloII glyoxalase II - GSH reduced glutathione - HPLC high-performance liquid chromatography - IMDM Iscove's modified Dulbecco's medium - MTX methotrexate - 2-MQ 2-methylquinoxaline - 5-MQ 5-methylquinoxaline - MEM minimal essential medium - Pi inorganic phosphate - PCA perchloric acid - o-PD o-phenylenediamine  相似文献   

20.
RNA interference (RNAi) technology has become a novel tool for silencing gene expression in cells or organisms, and has also been used to develop new therapeutics for certain diseases. This review describes its other application of using RNAi technology to increase cellular productivity and the quality of recombinant proteins that are produced in Chinese hamster ovary (CHO) cells, the most important mammalian cell line used in producing licensed biopharmaceuticals in these days. The approaches reported include the silencing of apoptosis-associated gene expression, protein glycosylation-associated gene expression, lactate dehydrogenase involved in cellular metabolism, and dihydrofolate reductase used for gene amplification. All of these works belong to the single component approach therefore depends strongly on the identification of the down-regulation of the critical target gene which can markedly influence the cellular functions associated with recombinant protein expression in CHO cells. Future RNAi approaches can be extended to silence multiple targets involved in different cellular pathways for changing the global gene regulation in cells, as well as the targets related to microRNA molecules for cellular self regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号