首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The terminal sugar sialic acid (Sia) plays a pivotal role in cell-cell interaction and recognition. A prerequisite for the biosynthesis of sialoglycoconjugates is the activation of Sia to cytidine monophosphate-Sia (CMP-Sia), by CMP-Sia synthetases (CMP-Sia-syn). CMP-Sia-syn are conserved from bacteria to man, and have been found to reside in the nucleus of all vertebrate species analysed to date. We previously cloned the CMP-Sia-syn from rainbow trout (rt) and identified three clusters of basic amino acids (BC) that might act as nuclear localization signals (NLS). Here, we utilised chimeric proteins and rt CMP-Sia-syn mutants in which putative NLS sequences were deleted, to identify the nuclear transport signal. Divergent from the mouse enzyme, where the crucial NLS is part of the enzyme's active site, in the rt CMP-Sia-syn the NLS and active site are disparate. The crucial NLS in the fish enzyme is bipartite and the functionality depends on a free N-terminus. Comparative analysis of all putative rt NLS in mouse and fish cells identified a second inferior motif (rtBC5-6), which was functional only in fish cells suggesting some differences in transport mechanism or folding variabilities in fish. Moreover, based on computational analyses of putative CMP-Sia-syn from distant deuterostomian organisms it was concluded that CMP-Sia-syn nuclear localization is a relatively recent invention, originating in echinoderms. In summary, our data describing structural differences in the NLS of vertebrate CMP-Sia-syn, and the independence of Sia activation from the subcellular localization of the enzyme, provide supporting evidence that nuclear localization is linked to a second yet unknown function.  相似文献   

2.
    
An important challenge facing therapeutic protein production in mammalian cell culture is the cleavage of terminal sialic acids on recombinant protein glycans by the glycosidase enzymes released by lysed cells into the supernatant. This undesired phenomenon results in a protein product which is rapidly cleared from the plasma by asialoglycoprotein receptors in the liver. In this study, RNA interference was utilized as a genetic approach to silence the activity of sialidase, a glycosidase responsible for cleaving terminal sialic acids on IFN-gamma produced by Chinese Hamster Ovary (CHO) cells. We first identified a 21-nt double stranded siRNA that reduced endogenous sialidase mRNA and protein activity levels. Potency of each siRNA sequences was compared using real time RT-PCR and a sialidase activity assay. We next integrated the siRNA sequence into CHO cells, allowing production and selection of stable cell lines. We isolated stable clones with sialidase activity reduced by over 60% as compared to the control cell line. Micellar electrokinetic chromatography (MEKC), thiobarbituric acid assay (TAA), and high performance anion exchange chromatography (HPAEC) coupled to amperometric detection were performed to analyze glycan site occupancy, sialic acid content, and distribution of asialo-/sialylated-glycan structures, respectively. Two of the stable clones successfully retained the full sialic acid content of the recombinant IFN-gamma, even upon cells' death. This was comparable to the case where a chemically synthesized sialidase inhibitor was used. These results demonstrated that RNA interference of sialidase can prevent the desialylation problem in glycoprotein production, resulting improved protein quality during the entire cell culture process.  相似文献   

3.
    
  相似文献   

4.
    
The sialic acids are major components of the cell surfaces of animals of the deuterostome lineage. Earlier studies suggested that humans may not express N-glycolyl-neuraminic acid (Neu5Gc), a hydroxylated form of the common sialic acid N-acetyl-neuraminic acid (Neu5Ac). We find that while Neu5Gc is essentially undetectable on human plasma proteins and erythrocytes, it is a major component in all the four extant great apes (chimpanzee, bonobo, gorilla and orangutan) as well as in many other mammals. This marked difference is also seen amongst cultured lymphoblastoid cells from humans and great apes, as well as in a variety of other tissues compared between humans and chimpanzees, including the cerebral cortex and the cerebrospinal fluid. Biosynthetically, Neu5Gc arises from the action of a hydroxylase that converts the nucleotide donor CMP-Neu5Ac to CMP-Neu5Gc. This enzymatic activity is present in chimpanzee cells, but not in human cells. However, traces of Neu5Gc occur in some human tissues, and others have reported expression of Neu5Gc in human cancers and fetal tissues. Thus, the enzymatic capacity to express Neu5Gc appears to have been suppressed sometime after the great ape-hominid divergence. As terminal structures on cell surfaces, sialic acids are involved in intercellular cross-talk involving specific vertebrate lectins, as well as in microbe-host recognition involving a wide variety of pathogens. The level of sialic acid hydroxylation (level of Neu5Ac versus Neu5Gc) is known to positively or negatively affect several of these endogenous and exogenous interactions. Thus, there are potential functional consequences of this widespread structural change in humans affecting the surfaces of cells throughout the body. Am J Phys Anthropol 107:187-198, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
    
Glycoproteins could be highly sialylated, and controlling the sialic acid levels for some therapeutic proteins is critical to ensure product consistency and efficacy. N-acetylneuraminic acid (Neu5Ac, or NANA) and N-glycolylneuraminic acid (Neu5Gc, or NGNA) are the two most common forms of sialic acids produced in mammalian cells. As Neu5Gc is not produced in humans and can elicit immune responses, minimizing Neu5Gc formation is important in controlling this quality attribute for complex glycoproteins. In this study, a sialylated glycoprotein was used as the model molecule to study the effect of culture osmolality on Neu5Gc. A 14-day fed-batch process with osmolality maintained at physiological levels produced high levels of Neu5Gc. Increase of culture osmolality reduced the Neu5Gc level up to 70–80%, and the effect was proportional to the osmolality level. Through evaluating different osmolality conditions (300–450 mOsm/kg) under low or high pCO2, we demonstrated that osmolality could be an effective process lever to modulate the Neu5Gc level. Potential mechanism of osmolality impact on Neu5Gc is discussed and is hypothesized to be cytosol NADH availability related. Compared with cell line engineering efforts, this simple process lever provides the opportunity to readily modulate the Neu5Gc level in a cell culture environment.  相似文献   

6.
Sialylation of glycans is ubiquitous in vertebrates, but was believed to be absent in plants, arthropods, and fungi. However, recently evidence has been provided for the presence of sialic acid in these evolutionary clades. In addition, homologs of mammalian genes involved in sialylation can be found in the genomes of these taxa and for some Drosophila enzymes, involvement in sialic acid metabolism has been documented. In plant genomes, homologs of sialyltransferase genes have been identified, but there activity could not be confirmed. Several mammalian cell lines exist with defects in the sialylation pathway. One of these is the Chinese hamster ovary cell line Lec2, deficient in CMP-sialic acid transport to the Golgi lumen. These mutants provide the possibility to clone genes by functional complementation. Using expression cloning, we have identified an Arabidopsis thaliana nucleotide sugar transporter that is able to complement the CMP-sialic acid transport deficiency of Lec2 cells. The isolated gene (At5g41760) is a member of the triose-phosphate/nucleotide sugar transporter gene family. Recombinant expression of the gene in yeast and testing in vitro confirmed its ability to transport CMP-sialic acid.  相似文献   

7.
    
The effect of different cell culture conditions on N‐glycosylation site‐occupancy has been elucidated for two different recombinant glycoproteins expressed in Chinese hamster ovary (CHO) cells, recombinant human tissue plasminogen activator (t‐PA) and a recombinant enzyme (glycoprotein 2—GP2). Both molecules contain a N‐glycosylation site that is variably occupied. Different environmental factors that affect the site‐occupancy (the degree of occupied sites) of these molecules were identified. Supplementing the culture medium with additional manganese or iron increased the fraction of fully occupied t‐PA (type I t‐PA) by approximately 2.5–4%. Decreasing the cultivation temperature from 37 to 33°C or 31°C gradually increased site‐occupancy of t‐PA up to 4%. The addition of a specific productivity enhancer, butyrate, further increased site‐occupancy by an additional 1% under each cultivation temperature tested. In addition, the thyroid hormones triiodothyronine and thyroxine increased site‐occupancy of t‐PA compared to control conditions by about 2%. In contrast, the addition of relevant nucleoside precursor molecules involved in N‐glycan biosynthesis (e.g., uridine, guanosine, mannose) either had no effect or slightly reduced site‐occupancy. For the recombinant enzyme (GP2), it was discovered that culture pH and the timing of butyrate addition can be used to control N‐glycan site‐occupancy within a specific range. An increase in culture pH correlated with a decrease in site‐occupancy. Similarly, delaying the timing for butyrate addition also decreased site‐occupancy of this molecule. These results highlight the importance of understanding how cell culture conditions and media components can affect the product quality of recombinant glycoproteins expressed in mammalian cell cultures. Furthermore, the identification of relevant factors will enable one to control product quality attributes, specifically N‐glycan site‐occupancy, within a specific range when applied appropriately. Biotechnol. Bioeng. 2009;103: 1164–1175. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
Plant cells have no beta1,4-galactosylated and sialylated glycan, which plays important roles in biological functions in animal cells. Previously, we generated transgenic tobacco BY2 suspension-cultured cells that produced human beta1,4-galactosyltransferase [N.Q. Palacpac, S. Yoshida, H. Sakai, Y. Kimura, K. Fujiyama, T. Yoshida, T. Seki, Stable expression of human beta1,4-galactosyltransferase in plant cells modifies N-linked glycosylation pattern, Proc. Natl. Acad. Sci. USA 96 (1999) 4692-4697]. In this study, we introduced two critical genes encoding human CMP-N-acetylneuraminic acid synthetase and CMP-sialic acid transporter into tobacco suspension-cultured cell to pave a route for sialic biosynthetic pathway. The recombinant human proteins showed their biological activities. These results show that the plant cell can be a useful bioreactor for the production of mammalian glycoproteins.  相似文献   

9.
    
Background information. Free sialic acid storage diseases are caused by mutations of a lysosomal sialic acid transporter called sialin. We showed recently that the milder clinical form, Salla disease, and a related non‐Finish case, are characterized by residual transport, whereas sialin mutants found in lethal infantile cases are inactive. In the present study, we have characterized the molecular effects of a putative polymorphism (M316I) and of four pathogenic mutations associated with either infantile (G127E and R57C) or Salla‐like (G409E) phenotypes, or both (G328E). The transport activity of human sialin was analysed using a novel assay that was based on a construct without the functional lysosomal sorting motif, which is expressed at the plasma membrane. Results. The lysosomal localization of human sialin was not (M316I and G328E) or only partially (R57C, G127E and G409E) affected by the missense mutations. In contrast, all pathogenic mutations abolished transport, whereas the putative M316I polymorphism induced an approx. 5‐fold decrease of sialic acid transport. Conclusions. The molecular effects of the R57C and G127E mutations strengthen the conclusion that the infantile phenotype is caused by loss‐of‐function mutations. On the other hand, the milder severity of the heterozygous G409E patient may reflect an incomplete expression of the splicing mutation present on the second allele. In the case of the G328E mutation, found in the homozygous state in a clinically heterogeneous family, the apparent severity of the transport phenotype suggests that the genetic or environmental factors underlying this clinical heterogeneity might be protective.  相似文献   

10.
    
The effects of different culture conditions, suspension and microcarrier culture and temperature reduction on the structures of N-linked glycans attached to secreted human placental alkaline phosphatase (SEAP) were investigated for CHO cells grown in a controlled bioreactor. Both mass spectrometry and anion-exchange chromatography were used to probe the N-linked glycan structures and distribution. Complex-type glycans were the dominant structures with small amounts of high mannose glycans observed in suspension and reduced temperature cultures. Biantennary glycans were the most common structures detected by mass spectrometry, but triantennary and tetraantennary forms were also detected. The amount of sialic acid present was relatively low, approximately 0.4 mol sialic acid/mol SEAP for suspension cultures. Microcarrier cultures exhibited a decrease in productivity compared with suspension culture due to a decrease in both maximum viable cell density (15-20%) and specific productivity (30-50%). In contrast, a biphasic suspension culture in which the temperature was reduced at the beginning of the stationary phase from 37 to 33 degrees C, showed a 7% increase in maximum viable cell density, a 62% increase in integrated viable cell density, and a 133% increase in specific productivity, leading to greater than threefold increase in total productivity. Both microcarrier and reduced temperature cultures showed increased sialylation and decreased fucosylation when compared to suspension culture. Our results highlight the importance of glycoform analysis after process modification as even subtle changes (e.g., changing from one microcarrier to another) may affect glycan distributions.  相似文献   

11.
The architectural conservation of nucleotide sugar transport proteins (NSTs) enabled the theoretical prediction of putative NSTs in diverse gene databases. In the human genome, 17 NST sequences have been identified but only six have been unequivocally characterized with respect to their transport specificities. Defining transport characteristics of recombinant NSTs has become a major challenge because true zero background systems are widely absent. Production of recombinant NSTs in heterologous systems has developed multifunctionality for some NSTs leading to a novel level of complexity in the field. Assuming that (1) the specificity of NSTs is determined at the primary sequence level and (2) the proteins are autonomously functional units, final definition of the substrate specificity will depend on the use of isolated transport proteins. Herein, we describe the first report of the functional expression of mouse CMP-sialic acid transporter (CST) in Escherichia coli and thus provide significant progress towards the production of transporter proteins in quantities suitable for functional and structural analyses. Recovery of the active NST from inclusion bodies was achieved after solubilization with 8 M urea and stepwise renaturation. After reconstitution into phospholipid vesicles, the recombinant protein demonstrated specific transport for CMP-N-acetylneuraminic acid (CMP-Neu5Ac) with no transport of UDP-sugars. Kinetic studies carried out with CMP-Neu5Ac and established CMP-Neu5Ac antagonist's evaluated natural conformation of the reconstituted protein and clearly demonstrate that the transporter acts as a simple mobile carrier.  相似文献   

12.
    
The biosynthesis of the sialic acid N-glycolylneuraminic acid (Neu5Gc) occurs by the action of cytidine monophosphate-N-acetylneuraminate (CMP-Neu5Ac) hydroxylase. Previous investigations on a limited number of tissues suggest that the activity of this enzyme governs the extent of glycoconjugate sialylation with Neu5Gc. Using improved analytical procedures and a panel of nine porcine tissues, each expressing different amounts of Neu5Gc, we have readdressed the issue of the regulation of Neu5Gc incorporation into glycoconjugates. The following parameters were measured for each tissue: the molar ratio Neu5Gc/Neu5Ac, the activity of the hydroxylase, and the relative amount of hydroxylase protein, as determined by enzyme-linked immunosorbent assay (ELISA). A positive correlation between the activity of the hydroxylase and the molar ratio Neu5Gc/Neu5Ac was observed for each tissue. In addition, the hydroxylase activity correlated with the amount of enzyme protein, though in heart and lung disproportionately large amounts of immunoreactive protein were detected. Taken together, the results suggest that the incorporation of Neu5Gc into glycoconjugates is generally controlled by the amount of hydroxylase protein expressed in a tissue.  相似文献   

13.
对昆虫的N-糖基化途径进行修饰改变是扩展昆虫蛋白表达系统应用范围的重要途径。本研究利用基于piggyBac转座子的家蚕Bombyx mori转基因技术表达昆虫所缺乏的哺乳类糖基化途径中的关键基因, 构建了可以同时表达小鼠Mus musculus唾液酸合酶和小鼠CMP-唾液酸合成酶两个基因的piggyBac表达载体, 选用家蚕肌动蛋白A3启动子控制基因的表达, 并导入3×P3启动子控制下的增强绿色荧光蛋白EGFP作为分子标记。在得到的G1代转基因家蚕中对转入的基因进行了分子水平的鉴定和分析, 为在家蚕这种模式昆虫中模拟哺乳类糖基化途径奠定了基础。  相似文献   

14.
The aim of this project was to identify the best method for the enrichment of plasma membrane (PM) proteins for proteomics experiments. Following tryptic digestion and extended liquid chromatography-tandem mass spectrometry acquisitions, data were processed using MaxQuant and Gene Ontology (GO) terms used to determine protein subcellular localization. The following techniques were examined for the total number and percentage purity of PM proteins identified: (a) whole cell lysate (total number, 84–112; percentage purity, 9–13%); (b) crude membrane preparation (104–111; 17–20%); (c) biotinylation of surface proteins with N-hydroxysulfosuccinimydyl-S,S-biotin and streptavidin pulldown (78–115; 27–31%); (d) biotinylation of surface glycoproteins with biocytin hydrazide and streptavidin pulldown (41–54; 59–85%); or (e) biotinylation of surface glycoproteins with amino-oxy-biotin (which labels the sialylated fraction of PM glycoproteins) and streptavidin pulldown (120; 65%). A two- to threefold increase in the overall number of proteins identified was achieved by using stop and go extraction tip (StageTip)-based anion exchange (SAX) fractionation. Combining technique (e) with SAX fractionation increased the number of proteins identified to 281 (54%). Analysis of GO terms describing these proteins identified a large subset of proteins integral to the membrane with no subcellular assignment. These are likely to be of PM location and bring the total PM protein identifications to 364 (68%). This study suggests that selective biotinylation of the cell surface using amino-oxy-biotin in combination with SAX fractionation is a useful method for identification of sialylated PM proteins.  相似文献   

15.
The CMP-sialic acid synthetase (CSS) catalyzes the activation of sialic acid (Sia) to CMP-Sia which is a donor substrate of sialyltransferases. The vertebrate CSSs are usually localized in nucleus due to the nuclear localization signal (NLS) on the molecule. In this study, we first point out that a small, but significant population of the mouse CMP-sialic acid synthetase (mCSS) is also present in cytoplasm, though mostly in nucleus. As a mechanism for the localization in cytoplasm, we first identified two nuclear export signals (NESs) in mCSS, based on the localization studies of the potential NES-deleted mCSS mutants as well as the potential NES-tagged eGFP proteins. These two NESs are conserved among mammalian and fish CSSs, but not present in the bacterial or insect CSS. These results suggest that the intracellular localization of vertebrate CSSs is regulated by not only the NLS, but also the NES sequences.  相似文献   

16.
Functional characterization of wild-type and mutant human sialin   总被引:4,自引:0,他引:4  
Morin P  Sagné C  Gasnier B 《The EMBO journal》2004,23(23):4560-4570
The modification of cell surface lipids or proteins with sialic acid is essential for many biological processes and several diseases are caused by defective sialic acid metabolism. Sialic acids cleaved off from degraded sialoglycoconjugates are exported from lysosomes by a membrane transporter, named sialin, which is defective in two allelic inherited diseases: infantile sialic acid storage disease (ISSD) and Salla disease. To develop a functional assay of human sialin, we redirected the protein to the plasma membrane by mutating a dileucine-based internalization motif. Cells expressing the plasmalemmal construct accumulated neuraminic acid at acidic pH by a process equivalent to lysosomal efflux. The assay was used to determine how pathogenic mutations affect transport. Interestingly, while two missense mutations and one small, in-frame deletion associated with ISSD abolished transport, the mutation causing Salla disease (R39C) slowed down, but did not stop, the transport cycle, thus explaining why the latter disorder is less severe. Since neurological symptoms predominate in Salla disease, our results suggest that sialin is rate-limiting to specific sialic acid-dependent processes of the nervous system.  相似文献   

17.
Achievements and challenges of sialic acid research   总被引:17,自引:0,他引:17  
Sialic acids are one of the most important molecules of life, since they occupy the terminal position on macromolecules and cell membranes and are involved in many biological and pathological phenomena. The structures of sialic acids, comprising a family of over 40 neuraminic acid derivatives, have been elucidated. However, many aspects of the regulation of their metabolism at the enzyme and gene levels, as well as of their functions remain mysterious. Sialic acids play a dual role, not only are they indispensable for the protection to and adaptation of life, but are also utilised by life-threatening infectious microorganisms. In this article the present state of knowledge in sialobiology, with an emphasis on my personal experience in this research area, is outlined including a discussion of necessary future work in this fascinating field of cell biology.  相似文献   

18.
The serum half‐life, biological activity, and solubility of many recombinant glycoproteins depend on their sialylation. Monitoring glycoprotein sialylation during cell culture manufacturing is, therefore, critical to ensure product efficacy and safety. Here a high‐throughput method for semi‐quantitative fingerprinting of glycoprotein sialylation using capillary isoelectric focusing immunoassay on NanoPro (Protein Simple) platform was developed. The method was specific, sensitive, precise, and robust. It could analyze 2 μL of crude cell culture samples without protein purification, and could automatically analyze from 8 samples in 4 h to 96 samples in 14 h without analyst supervision. Furthermore, its capability to detect various changes in sialylation fingerprints during cell culture manufacturing process was indispensable to ensure process robustness and consistency. Moreover, the changes in the sialylation fingerprints analyzed by this method showed strong correlations with intact mass analysis using liquid chromatography and mass spectrometry. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:235–241, 2016  相似文献   

19.
    
CMP-Neu5Gc has been shown to be transported into mouse liver Golgi vesicles by a specific carrier the characteristics of which were investigated in detail. In the system employed, CMP-Neu5Gc enters the Golgi vesicles within 2 min; transport was saturable with high concentrations of the sugar-nucleotide and was dependent on temperature. A kinetic analysis gave an apparent Km of 1.3 μM and a maximal transport velocity of 335 pmol/mg protein per min. Almost identical values were obtained with CMP-Neu5Ac, under the same incubation conditions. Furthermore, the uptake of CMP-Neu5Gc was inhibited by CMP-Neu5Ac, a substrate analogue. Conversely, the uptake of CMP-Neu5Ac was inhibited by CMP-Neu5Gc to the same extent, leading to the conclusion that the transport of CMP-Neu5Ac and CMP-Neu5Gc is mediated by the same carrier molecule. This transport system for CMP-Neu5Gc involves both CMP and CMP-Neu5Gc since intravesicular CMP induced the entry of external CMP-Neu5Gc.  相似文献   

20.
Sialic acids are abundant nine-carbon sugars expressed terminally on glycoconjugates of eukaryotic cells and are crucial for a variety of cell biological functions such as cell–cell adhesion, intracellular signaling, and in regulation of glycoproteins stability. In bacteria, N-acetylneuraminic acid (Neu5Ac) polymers are important virulence factors. Cytidine 5′-monophosphate (CMP)-N-acetylneuraminic acid synthetase (CSS; EC 2.7.7.43), the key enzyme that synthesizes CMP-N-acetylneuraminic acid, the donor molecule for numerous sialyltransferase reactions, is present in both prokaryotes and eukaryotic systems. Herein, we emphasize the source, function, and biotechnological applications of CSS enzymes from bacterial sources. To date, only a few CSS from pathogenic bacterial species such as Neisseria meningitidis, Escherichia coli, group B streptococci, Haemophilus ducreyi, and Pasteurella hemolytica and an enzyme from nonpathogenic bacterium, Clostridium thermocellum, have been described. Overall, the enzymes from both Gram-positive and Gram-negative bacteria share common catalytic properties such as their dependency on divalent cation, temperature and pH profiles, and catalytic mechanisms. The enzymes, however, can be categorized as smaller and larger enzymes depending on their molecular weight. The larger enzymes in some cases are bifunctional; they have exhibited acetylhydrolase activity in addition to their sugar nucleotidyltransferase activity. The CSSs are important enzymes for the chemoenzymatic synthesis of various sialooligosaccharides of significance in biotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号