首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Computer simulations can potentially be used to design, predict, and inform properties for tissue engineering perfusion bioreactors. In this work, we investigate the flow properties that result from a particular poly‐L ‐lactide porous scaffold and a particular choice of perfusion bioreactor vessel design used in bone tissue engineering. We also propose a model to investigate the dynamic seeding properties such as the homogeneity (or lack of) of the cellular distribution within the scaffold of the perfusion bioreactor: a pre‐requisite for the subsequent successful uniform growth of a viable bone tissue engineered construct. Flows inside geometrically complex scaffolds have been investigated previously and results shown at these pore scales. Here, it is our aim to show accurately that through the use of modern high performance computers that the bioreactor device scale that encloses a scaffold can affect the flows and stresses within the pores throughout the scaffold which has implications for bioreactor design, control, and use. Central to this work is that the boundary conditions are derived from micro computed tomography scans of both a device chamber and scaffold in order to avoid generalizations and uncertainties. Dynamic seeding methods have also been shown to provide certain advantages over static seeding methods. We propose here a novel coupled model for dynamic seeding accounting for flow, species mass transport and cell advection‐diffusion‐attachment tuned for bone tissue engineering. The model highlights the timescale differences between different species suggesting that traditional homogeneous porous flow models of transport must be applied with caution to perfusion bioreactors. Our in silico data illustrate the extent to which these experiments have the potential to contribute to future design and development of large‐scale bioreactors. Biotechnol. Bioeng. 2013; 110: 1221–1230. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
In tissue engineering, flow perfusion bioreactors can be used to enhance nutrient diffusion while mechanically stimulating cells to increase matrix production. The goal of this study was to design and validate a dynamic flow perfusion bioreactor for use with compliant scaffolds. Using a non-permanent staining technique, scaffold perfusion was verified for flow rates of 0.1-2.0 mL/min. Flow analysis revealed that steady, pulsatile and oscillatory flow profiles were effectively transferred from the pump to the scaffold. Compared to static culture, bioreactor culture of osteoblast-seeded collagen-GAG scaffolds led to a 27-34% decrease in cell number but stimulated an 800-1200% increase in the production of prostaglandin E(2), an early-stage bone formation marker. This validated flow perfusion bioreactor provides the basis for optimisation of bioreactor culture in tissue engineering applications.  相似文献   

3.
Osteochondral tissue engineering aims to regenerate functional tissue-mimicking physiological properties of injured cartilage and its subchondral bone. Given the distinct structural and biochemical difference between bone and cartilage, bilayered scaffolds, and bioreactors are commonly employed. We present an osteochondral culture system which cocultured ATDC5 and MC3T3-E1 cells on an additive manufactured bilayered scaffold in a dual-chamber perfusion bioreactor. Also, finite element models (FEM) based on the microcomputed tomography image of the manufactured scaffold as well as on the computer-aided design (CAD) were constructed; the microenvironment inside the two FEM was studied and compared. In vitro results showed that the coculture system supported osteochondral tissue growth in terms of cell viability, proliferation, distribution, and attachment. In silico results showed that the CAD and the actual manufactured scaffold had significant differences in the flow velocity, differentiation media mixing in the bioreactor and fluid-induced shear stress experienced by the cells. This system was shown to have the desired microenvironment for osteochondral tissue engineering and it can potentially be used as an inexpensive tool for testing newly developed pharmaceutical products for osteochondral defects.  相似文献   

4.
A mathematical model was developed to study O2 transport in a convection enhanced hepatic hollow fiber (HF) bioreactor, with hemoglobin‐based O2 carriers (HBOCs) present in the flowing cell culture media stream of the HF lumen. In this study, four HBOCs were evaluated: PEG‐conjugated human hemoglobin (MP4), human hemoglobin (hHb), bovine hemoglobin (BvHb) and polymerized bovine hemoglobin (PolyBvHb). In addition, two types of convective flow in the HF extra capillary space (ECS) were considered in this study. Starling flow naturally occurs when both of the ECS ports are closed. If one of the ECS ports is open, forced convective flow through the ECS will occur due to the imposed pressure difference between the lumen and ECS. This type of flow is referred to as cross‐flow in this work, since some of the fluid entering the HF lumen will pass across the HF membrane and exit via the open ECS port. In this work, we can predict the dissolved O2 concentration profile as well as the O2 transport flux in an individual HF of the bioreactor by solving the coupled momentum and mass transport equations. Our results show that supplementation of the cell culture media with HBOCs can dramatically enhance O2 transport to the ECS (containing hepatocytes) and lead to the formation of an in vivo‐like O2 spectrum for the optimal culture of hepatocytes. However, both Starling flow and cross‐flow have a very limited effect on O2 transport in the ECS. Taken together, this work represents a novel predictive tool that can be used to design or analyze HF bioreactors that expose cultured cells to defined overall concentrations and gradients of O2. Biotechnol. Bioeng. 2009;102: 1603–1612. © 2008 Wiley Periodicals, Inc.  相似文献   

5.
We have developed a miniaturized hollow-fiber bioreactor system for mammalian cell culture with a volume of 1 mL. Cell and medium compartments of the bioreactor are separated by a semipermeable membrane, and oxygenation of the cell compartment is accomplished using an oxygenation membrane. As a result of the geometry of the transparent housing, cells can be observed by microscopy during culture. The leukemic cell lines CCRF-CEM, HL-60, and REH were cultivated up to densities of 3.5 x 10(7)/mL without medium change or manipulation of the cells. As shown using CCRF-CEM cells, growth in the bioreactor was strongly influenced and could be controlled by the medium flow rate. As a consequence, consumption of glucose and generation of lactate varied with flow rate. Depending on the molecular size cutoff of the membranes used, added growth factors such as GM-CSF, as well as factors secreted from the cells, are retained in the cell compartment for up to 1 week. This new miniaturized hollow-fiber bioreactor offers advantages in tissue engineering by continuous nutrient supply for cells in high density, retention of added or autocrine produced factors, and undisturbed long-term culture in a closed system.  相似文献   

6.
In tissue engineering, bioreactors can be used to aid in the in vitro development of new tissue by providing biochemical and physical regulatory signals to cells and encouraging them to undergo differentiation and/or to produce extracellular matrix prior to in vivo implantation. This study examined the effect of short term flow perfusion bioreactor culture, prior to long‐term static culture, on human osteoblast cell distribution and osteogenesis within a collagen glycosaminoglycan (CG) scaffold for bone tissue engineering. Human fetal osteoblasts (hFOB 1.19) were seeded onto CG scaffolds and pre‐cultured for 6 days. Constructs were then placed into the bioreactor and exposed to 3 × 1 h bouts of steady flow (1 mL/min) separated by 7 h of no flow over a 24‐h period. The constructs were then cultured under static osteogenic conditions for up to 28 days. Results show that the bioreactor and static culture control groups displayed similar cell numbers and metabolic activity. Histologically, however, peripheral cell‐encapsulation was observed in the static controls, whereas, improved migration and homogenous cell distribution was seen in the bioreactor groups. Gene expression analysis showed that all osteogenic markers investigated displayed greater levels of expression in the bioreactor groups compared to static controls. While static groups showed increased mineral deposition; mechanical testing revealed that there was no difference in the compressive modulus between bioreactor and static groups. In conclusion, a flow perfusion bioreactor improved construct homogeneity by preventing peripheral encapsulation whilst also providing an enhanced osteogenic phenotype over static controls. Bioeng. 2011; 108:1203–1210. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
The experimental study has assessed a novel membrane bioreactor for mammalian cell culture. In the absence of a gas phase, the key features of cell damage associated with laminar and turbulent flow have been identified. The bioreactor employs a dimpled membrane in order to enhance transverse mixing in a narrow channel, but a fall in viable cell density has been observed at Reynolds numbers above Re = 83. In the laminar flow regime wall shear is the critical mechanism and an accurate calculation of shear rate in a complex channel has been achieved using the Reynolds analogy. Flow generating a wall shear rate in excess of 3000 s(-1) has been shown to cause damage. Power dissipation measurements have been used to distinguish between laminar and turbulent flow and also to predict Kolmogorov eddy lengths. An additional turbulent bulk stress damage mechanism at higher Reynolds numbers (Re > 250) results in a very rapid fall in viable cell density.  相似文献   

8.
Tissue function is comprised of a complex interplay between biological and physicochemical rate processes. The design of bioreactors for tissue engineering must account for these processes simultaneously in order to obtain a bioreactor that provides a uniform environment for tissue growth and development. In the present study we consider the effects of fluid flow and mass transfer on the growth of a tissue in a parallel-plate bioreactor configuration. The parenchymal cells grow on a preformed stromal (feeder) layer that secretes a growth factor that stimulates parenchymal stem cell replication and differentiation. The biological dynamics are described by a unilineage model that describes the replication and differentiation of the tissue stem cell. The physicochemical rates are described by the Navier-Stokes and convective-diffusion equations. The model equations are solved by a finite element method. Two dimensionless groups govern the behavior of the solution. One is the Graetz number (Gz) that describes the relative rates of convection and diffusion, and the other a new dimensionless ratio (designated by P) that describes the interplay of the growth factor production, diffusion, and stimulation. Four geometries (slab, gondola, diamond, and radial shapes) for the parallel-plate bioreactor are analyzed. The uniformity of cell growth is measured by a two-dimensional coefficient of variance. The concentration distribution of the stroma-derived growth factor was computed first based on fluid flow and bioreactor geometry. Then the concomitant cell density distribution was obtained by integrating the calculated growth factor concentration with the parenchymal cell growth and unilineage differentiation process. The spatiotemporal cell growth patterns in four different bioreactor configurations were investigated under a variety of combinations of Gz (10(-1), 10(0), and 10(1)) and P(10(-2), 10(-1), 10(0), 10(1), and 10(2)). The results indicate high cell density and uniformity can be achieved for parameter values of P = 0.01, ..., 0.1 and Gz = 0.1, ..., 1.0. Among the four geometries investigated the radial-flow-type bioreactor provides the most uniform environment in which parenchymal cells can grow and differentiate ex vivo due to the absence of walls that are parallel to the flow paths creating slow flowing regions. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.
In this study, transport characteristics in flow-through and parallel-flow bioreactors used in tissue engineering were simulated using computational fluid dynamics. To study nutrient distribution and consumption by smooth muscle cells colonizing the 100 mm diameter and 2-mm thick scaffold, effective diffusivity of glucose was experimentally determined using a two-chambered setup. Three different concentrations of chitosan-gelatin scaffolds were prepared by freezing at -80°C followed by lyophilization. Experiments were performed in both bioreactors to measure pressure drop at different flow rates. At low flow rates, experimental results were in agreement with the simulation results for both bioreactors. However, increase in flow rate beyond 5 mL/min in flow-through bioreactor showed channeling at the circumference resulting in lower pressure drop relative to simulation results. The Peclet number inside the scaffold indicated nutrient distribution within the flow-through bioreactor to be convection-dependent, whereas the parallel-flow bioreactor was diffusion-dependent. Three alternative design modifications to the parallel-flow were made by (i) introducing an additional inlet and an outlet, (ii) changing channel position, and (iii) changing the hold-up volume. Simulation studies were performed to assess the effect of scaffold thickness, cell densities, and permeability. These new designs improved nutrient distribution for 2 mm scaffolds; however, parallel-flow configuration was found to be unsuitable for scaffolds more than 4-mm thick, especially at low porosities as tissues regenerate. Furthermore, operable flow rate in flow-through bioreactors is constrained by the mechanical strength of the scaffold. In summary, this study showed limitations and differences between flow-through and parallel-flow bioreactors used in tissue engineering.  相似文献   

10.
A packed bed bioreactor was investigated as means for the cultivation of mammalian cells. The packed bed is comprised of porous ceramic particles with pores sufficiently large for cell immobilization as well as for intraparticle convective flow. In this way, the transport of limiting nutrients such as oxygen can be significantly enhanced, allowing maintenance of cell viability and productivity in an environment protective of adverse shear effects. The extent of intraparticle convective medium flow was experimentally quantified relative to the reactor operating conditions, and was found to be the dominant mechanism of nutrient transport to cells immobilized in the particle interior. An approximate linear relationship was obtained between overall reactor productivity and the extent of intraparticle convection. As the latter can be controlled at the single-particle level through total flow rate control, this relationship is a useful scale-up tool for the design of bioreactors. The high cell densities and the high volumetric productivities achieved by using small lab-scale reactors underline the potential of this simple bioreactor configuration for large-scale cell culture applications. (c) 1993 John Wiley & Sons, Inc.  相似文献   

11.
Mixing in bioreactors is known to be crucial for achieving efficient mass and heat transfer, both of which thereby impact not only growth of cells but also product quality. In a typical bioreactor, the rate of transport of oxygen from air is the limiting factor. While higher impeller speeds can enhance mixing, they can also cause severe cell damage. Hence, it is crucial to understand the hydrodynamics in a bioreactor to achieve optimal performance. This article presents a novel approach involving use of computational fluid dynamics (CFD) to model the hydrodynamics of an aerated stirred bioreactor for production of a monoclonal antibody therapeutic via mammalian cell culture. This is achieved by estimating the volume averaged mass transfer coefficient (kLa) under varying conditions of the process parameters. The process parameters that have been examined include the impeller rotational speed and the flow rate of the incoming gas through the sparger inlet. To undermine the two‐phase flow and turbulence, an Eulerian‐Eulerian multiphase model and k‐ε turbulence model have been used, respectively. These have further been coupled with population balance model to incorporate the various interphase interactions that lead to coalescence and breakage of bubbles. We have successfully demonstrated the utility of CFD as a tool to predict size distribution of bubbles as a function of process parameters and an efficient approach for obtaining optimized mixing conditions in the reactor. The proposed approach is significantly time and resource efficient when compared to the hit and trial, all experimental approach that is presently used. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:613–628, 2016  相似文献   

12.
The availability of large numbers of units of artificial arteries would offer significant benefits to the clinical management of bypass surgery. Tissue engineering offers the potential of providing vessels that can mimic the morphology, function, and physiological environment of native vessels. Ideally this would involve culturing stem cells in vitro within a biodegradable tubular scaffold so as to construct tissue for implantation. Essential to establishing a robust process for the production of tissue‐engineered arteries is the understanding of the impact of changes in the operating conditions and bioreactor design on the construct formation. In this article, models of transport phenomena were developed to predict the critical flow rates and mass transfer requirements of a prototype bioreactor for the formation of tissue‐engineered arteries. The impact of the cell concentration, tube geometry, oxygen effective diffusivity in alginate, substrate and metabolite concentration levels, feed rate, and recycle rate on the design of the bioreactor was visualized using windows of operation and contour plots. The result of this analysis determined the best configuration of the bioreactor that meets the cellular transport requirements as well as being reliable in performance while seeking to reduce the amount of nutrients to be used. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

13.
Recently developed perfusion micro-bioreactors offer the promise of more physiologic in vitro systems for tissue engineering. Successful application of such bioreactors will require a method to characterize the bioreactor environment required to elicit desired cell function. We present a mathematical model to describe nutrient/growth factor transport and cell growth inside a microchannel bioreactor. Using the model, we first show that the nature of spatial gradients in nutrient concentration can be controlled by both design and operating conditions and are a strong function of cell uptake rates. Next, we extend our model to investigate the spatial distributions of cell-secreted soluble autocrine/paracrine growth factors in the bioreactor. We show that the convective transport associated with the continuous cell culture and possible media recirculation can significantly alter the concentration distribution of the soluble signaling molecules as compared to static culture experiments and hence needs special attention when adapting static culture protocols for the bioreactor. Further, using an unsteady state model, we find that spatial gradients in nutrient/growth factor concentrations can bring about spatial variations in the cell density distribution inside the bioreactor, which can result in lowered working volume of the bioreactor. Finally, we show that the nutrient and spatial limitations can dramatically affect the composition of a co-cultured cell population. Our results are significant for the development, design, and optimization of novel micro-channel systems for tissue engineering.  相似文献   

14.
L Song  Q Zhou  P Duan  P Guo  D Li  Y Xu  S Li  F Luo  Z Zhang 《PloS one》2012,7(8):e42569
Small-diameter (<4 mm) vascular constructs are urgently needed for patients requiring replacement of their peripheral vessels. However, successful development of constructs remains a significant challenge. In this study, we successfully developed small-diameter vascular constructs with high patency using our integrally designed computer-controlled bioreactor system. This computer-controlled bioreactor system can confer physiological mechanical stimuli and fluid flow similar to physiological stimuli to the cultured grafts. The medium circulating system optimizes the culture conditions by maintaining fixed concentration of O(2) and CO(2) in the medium flow and constant delivery of nutrients and waste metabolites, as well as eliminates the complicated replacement of culture medium in traditional vascular tissue engineering. Biochemical and mechanical assay of newly developed grafts confirm the feasibility of the bioreactor system for small-diameter vascular engineering. Furthermore, the computer-controlled bioreactor is superior for cultured cell proliferation compared with the traditional non-computer-controlled bioreactor. Specifically, our novel bioreactor system may be a potential alternative for tissue engineering of large-scale small-diameter vascular vessels for clinical use.  相似文献   

15.
The paper presents a transient, continuum, two-phase model of the tissue engineering in fibrous scaffolds, including transport equations for the flowing culture medium, nutrient and cell concentration with transverse and in-plane diffusion and cell migration, a novel feature of local in-plane transport across a phenomenological pore and innovative layer-by-layer cell filling approach. The model is successfully validated for the smooth muscle cell tissue engineering of a vascular graft using crosslinked, electrospun gelatin fiber scaffolds for both static and dynamic cell culture, the latter in a dynamic bioreactor with a rotating shaft on which the tubular scaffold is attached. Parametric studies evaluate the impact of the scaffold microstructure, cell dynamics, oxygen transport, and static or dynamic conditions on the rate and extent of cell proliferation and depth of oxygen accessibility. An optimized scaffold of 75% dry porosity is proposed that can be tissue engineered into a viable and still fully oxygenated graft of the tunica media of the coronary artery within 2 days in the dynamic bioreactor. Such scaffold also matches the mechanical properties of the tunica media of the human coronary artery and the suture retention strength of a saphenous vein, often used as a coronary artery graft.  相似文献   

16.
A pulsating flow of medium was used to alleviate diffusion and transport limitations in a hollow fiber bioreactor containing a human hepatoblastoma cell line. The strategy is easy to implement but effective. The pulsating flow is introduced by a solenoid pinch valve at the outlet of the bioreactor and regulated by a timing circuit. In a permeability test, the system with pulsating flow had much less membrane fouling as compared to the control, a conventional hollow fiber unit. In hepatocyte culture test runs, the pulsating-flow bioreactor demonstrated the ability to maintain a higher cell viability. Histological sections indicated significantly smaller necrotic regions in the pulsating-flow bioreactor as compared to the conventional unit.  相似文献   

17.
In the present study, a dynamic mathematical model for the growth of granulocyte progenitor cells in the hematopoietic process is developed based on the principles of diffusion and chemical reaction. This model simulates granulocyte progenitor cell growth and oxygen consumption in a three-dimensional (3-D) perfusion bioreactor. Material balances on cells are coupled to the nutrient balances in 3-D matrices to determine the effects of transport limitations on cell growth. The method of volume averaging is used to formulate the material balances for the cells and the nutrients in the porous matrix containing the cells. All model parameters are obtained from the literature. The maximum cell volume fraction reached when oxygen is depleted in the cell layer at 15 days and is nearly 0.63, corresponding to a cell density of 2.25 x 10(8) cells/mL. The substrate inhibition kinetics for cell growth lead to complex effects with respect to the roles of oxygen concentration and supply by convection and diffusion on cell growth. Variation in the height of the liquid layer above the cell matrix where nutrient supply is introduced affected the relative and absolute amounts of oxygen supply by hydrodynamic flow and by diffusion across a gas permeable FEP membrane. Mass transfer restrictions of the FEP membrane are considerable, and the supply of oxygen by convection is essential to achieve higher levels of cell growth. A maximum growth rate occurs at a specific flow rate. For flow rates higher than this optimal, the high oxygen concentration led to growth inhibition and for lower flow rates growth limitations occur due to insufficient oxygen supply. Because of the nonlinear effects of the autocatalytic substrate inhibition growth kinetics coupled to the convective transport, the rate of growth at this optimal flow rate is higher than that in a corresponding well-mixed reactor where oxygen concentration is set at the maximum indicated by the inhibitory kinetics.  相似文献   

18.
The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an upright microscope. The bioreactor can hold a scaffold of desirable thickness for implantation (>2 mm). Coupling 3D culture and perfusion flow leads to the creation of a more biomimetic environment. We examined the ability of the bioreactor to maintain cell viability outside of an incubator environment (temperature and pH stability), investigated the flow features of the system (flow induced shear stress), and determined the image quality in order to perform time-lapsed imaging of two-dimensional (2D) and 3D cell culture. In situ imaging was performed on 2D and 3D, culture samples and cell viability was measured under perfusion flow (2.5 mL/min, 0.016 Pa). The visualization of cell response to their environment, in real time, will help to further elucidate the influences of biomaterial surface features, scaffold architectures, and the influence of flow induced shear on cell response and growth of new tissue.  相似文献   

19.
Cartilage tissue engineering requires the use of bioreactors in order to enhance nutrient transport and to provide sufficient mechanical stimuli to promote extracellular matrix (ECM) synthesis by chondrocytes. The amount and quality of ECM components is a large determinant of the biochemical and mechanical properties of engineered cartilage constructs. Mechanical forces created by the hydrodynamic environment within the bioreactors are known to influence ECM synthesis. The present study characterizes the hydrodynamic environment within a novel wavy-walled bioreactor (WWB) used for the development of tissue-engineered cartilage. The geometry of this bioreactor provides a unique hydrodynamic environment for mammalian cell and tissue culture, and investigation of hydrodynamic effects on tissue growth and function. The flow field within the WWB was characterized using two-dimensional particle-image velocimetry (PIV). The flow in the WWB differed significantly from that in the traditional spinner flask both qualitatively and quantitatively, and was influenced by the positioning of constructs within the bioreactor. Measurements of velocity fields were used to estimate the mean-shear stress, Reynolds stress, and turbulent kinetic energy components in the vicinity of the constructs within the WWB. The mean-shear stress experienced by the tissue-engineered constructs in the WWB calculated using PIV measurements was in the range of 0-0.6 dynes/cm2. Quantification of the shear stress experienced by cartilage constructs, in this case through PIV, is essential for the development of tissue-growth models relating hydrodynamic parameters to tissue properties.  相似文献   

20.
There is a dearth of technology and methods to aid process characterization, control and scale‐up of complex culture platforms that provide niche micro‐environments for some stem cell‐based products. We have demonstrated a novel use of 3d in vivo imaging systems to visualize medium flow and cell distribution within a complex culture platform (hollow fiber bioreactor) to aid characterization of potential spatial heterogeneity and identify potential routes of bioreactor failure or sources of variability. This can then aid process characterization and control of such systems with a view to scale‐up. Two potential sources of variation were observed with multiple bioreactors repeatedly imaged using two different imaging systems: shortcutting of medium between adjacent inlet and outlet ports with the potential to create medium gradients within the bioreactor, and localization of bioluminescent murine 4T1‐luc2 cells upon inoculation with the potential to create variable seeding densities at different points within the cell growth chamber. The ability of the imaging technique to identify these key operational bioreactor characteristics demonstrates an emerging technique in troubleshooting and engineering optimization of bioreactor performance. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:256–260, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号