首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
Abiotic stresses greatly influence plant growth and productivity. While glycosyltransferases are widely distributed in plant kingdom, their biological roles in response to abiotic stresses are largely unknown. In this study, a novel Arabidopsis glycosyltransferase gene UGT85A5 was identified as significantly induced by salt stress. Ectopic expression of UGT85A5 in tobacco enhanced the salt stress tolerance in the transgenic plants. There were higher seed germination rates, better plant growth and less chlorophyll loss in transgenic lines compared to wild type plants under salt stress. This enhanced tolerance of salt stress was correlated with increased accumulations of proline and soluble sugars, but with decreases in malondialdehyde accumulation and Na+/K+ ratio in UGT85A5-expressing tobacco. Furthermore, during salt stress, expression of several carbohydrate metabolism-related genes including those for sucrose synthase, sucrose-phosphate synthase, hexose transporter and a group2 LEA protein were obviously upregulated in UGT85A5-expressing transgenic plants compared with wild type controls. Thus, these findings suggest a specific protective role of this glycosyltransferase against salt stress and provide a genetic engineering strategy to improve salt tolerance of crops.  相似文献   

2.
Sesquiterpenes are important materials in pharmaceuticals and industry. Metabolic engineering has been successfully used to produce these valuable compounds in microbial hosts. However, the microbial potential of sesquiterpene production is limited by the poor heterologous expression of plant sesquiterpene synthases and the deficient FPP precursor supply. In this study, we engineered E. coli to produce α-farnesene using a codon-optimized α-farnesene synthase and an exogenous MVA pathway. Codon optimization of α-farnesene synthase improved both the synthase expression and α-farnesene production. Augmentation of the metabolic flux for FPP synthesis conferred a 1.6- to 48.0-fold increase in α-farnesene production. An additional increase in α-farnesene production was achieved by the protein fusion of FPP synthase and α-farnesene synthase. The engineered E. coli strain was able to produce 380.0 mg/L of α-farnesene, which is an approximately 317-fold increase over the initial production of 1.2 mg/L.  相似文献   

3.
Gene expression systems based on the RNA polymerase of the bacteriophage T7 are often the ultimate choice for the high level production of recombinant proteins. During the last decade, the Gram-positive bacterium Bacillus megaterium was established as a useful host for the intra- and extracellular production of heterologous proteins. In this paper, we report on the development of a T7 RNA polymerase-dependent expression system for B. megaterium. The system was evaluated for cytosolic and secretory protein production with green fluorescent protein (GFP) from Aequoria victoria as intracellular and Lactobacillus reuteri levansucrase as extracellular model protein. GFP accumulated rapidly at high levels up to 50 mg/l shake flask culture intracellularly after induction of T7 RNA polymerase gene expression. The addition of rifampicin for the inhibition of B. megaterium RNA polymerase led to an increased stability of GFP. L. reuteri levansucrase was also successfully produced and secreted (up to 20 U/l) into the culture supernatant. However, parallel intracellular accumulation of the protein indicated limitations affiliated with the Sec-dependent protein translocation process.  相似文献   

4.
5.
6.
Tian L  Blount JW  Dixon RA 《FEBS letters》2006,580(30):6915-6920
Flavonoids and isoflavonoids are well known for their beneficial effects on human health and their anti-insect and anti-microbial activities in plants. Osage orange fruit is rich in prenylated isoflavones and dihydrokaempferol and its glucoside. Four glycosyltransferases were identified from a collection of osage orange fruit expressed sequence tags. Biochemical characterization suggested that the glycosyltransferase UGT75L4 might be responsible for glucosylation of dihydrokaempferol in vivo, although this enzyme exhibited broad substrate recognition toward isoflavonoids and flavonoids in vitro. UGT88A4 was active on coumarin substrates. Identification of highly active phenylpropanoid glycosyltransferases will facilitate the metabolic engineering of glycosylated natural products in plants.  相似文献   

7.
Escherichia coli is commonly used for recombinant protein production with many available host strains. Screening experiments are often performed in batch mode using shake flasks and evaluating only the final product concentration. This conventional approach carries the risk of missing the best strain due to limited monitoring capabilities. Thus, this study focuses on investigating the general suitability of online respiration measurement for selecting expression hosts for heterologous protein production. The oxygen transfer rate (OTR) for different T7‐RNA polymerase‐dependent Escherichia coli expression strains was compared under inducing and noninducing conditions. As model enzymes, a lipase A from Bacillus subtilis (BSLA) and a 3‐hydroxybutyryl‐CoA dehydrogenase from Thermus thermophilus (HBD) were chosen. Four strains were compared during expression of both enzymes in autoinduction medium. Additionally, four strains were compared during expression of the BSLA with IPTG induction. It was found that the metabolic burden during recombinant protein production induces a phase of constant OTR, while undisturbed cell growth with no or little product formation is indicated by an exponential increase. This pattern is independent of the host strain, expressed enzyme, and induction method. Furthermore, the OTR gives information about carbon source consumption, biomass formation, and the transition from production to noninduced second growth phase, thereby ensuring a fair comparison of different strains. In conclusion, online monitoring of the respiration activity is suited to qualitatively identify, if a recombinant protein is produced by a strain or not. Furthermore, laborious offline sampling is avoided. Thus, the technique is easier and faster compared to conventional approaches. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:315–327, 2018  相似文献   

8.
The production of recombinant proteins usually reduces cell fitness and the growth rate of producing cells. The growth disadvantage favors faster-growing non-producer mutants. Therefore, continuous bioprocessing is hardly feasible in Escherichia coli due to the high escape rate. The stability of E. coli expression systems under long-term production conditions and how metabolic load triggered by recombinant gene expression influences the characteristics of mutations are investigated. Iterated fed-batch-like microbioreactor cultivations are conducted under production conditions. The easy-to-produce green fluorescent protein (GFP) and a challenging antigen-binding fragment (Fab) are used as model proteins, and BL21(DE3) and BL21Q strains as expression hosts. In comparative whole-genome sequencing analyses, mutations that allowed cells to grow unhindered despite recombinant protein production are identified. A T7 RNA polymerase expression system is only conditionally suitable for long-term cultivation under production conditions. Mutations leading to non-producers occur in either the T7 RNA polymerase gene or the T7 promoter. The host RNA polymerase-based BL21Q expression system remains stable in the production of GFP in long-term cultivations. For the production of Fab, mutations in lacI of the BL21Q derivatives have positive effects on long-term stability. The results indicate that adaptive evolution carried out with genome-integrated E. coli expression systems in microtiter cultivations under industrial-relevant production conditions is an efficient strain development tool for production hosts.  相似文献   

9.
10.
We report the scalable production of recombinant proteins in Escherichia coli, reliant on tightly controlled autoinduction, triggered by phosphate depletion in the stationary phase. The method, reliant on engineered strains and plasmids, enables improved protein expression across scales. Expression levels using this approach have reached as high as 55% of the total cellular protein. The initial use of the method in instrumented fed-batch fermentations enables cell densities of ∼30 gCDW/L and protein titers up to 8.1 ± 0.7 g/L (∼270 mg/gCDW). The process has also been adapted to an optimized autoinduction media, enabling routine batch production at culture volumes of 20 μl (384-well plates), 100 μl (96-well plates), 20 ml, and 100 ml. In batch cultures, cell densities routinely reach ∼5–7 gCDW/L, offering protein titers above 2 g/L. The methodology has been validated with a set of diverse heterologous proteins and is of general use for the facile optimization of routine protein expression from high throughput screens to fed-batch fermentation.  相似文献   

11.
Health related benefits of isoflavones such as genistein are well known. Glycosylation of genistein yields different glycosides like genistein 7-O-glycoside (genistin) and genistein 4′-O-glycoside (sophoricoside). This is the first report on isolation, cloning and functional characterization of a glycosyltransferase specific for genistein 4′-O-glucoside from Bacopa monniera, an important Indian medicinal herb. The glycosyltransferase from B. monniera (UGT74W1) showed 49 % identity at amino acid level with the glycosyltransferases from Lycium barbarum. The UGT74W1 sequence contained all the conserved motifs present in plant glycosyltransferases. UGT74W1 was cloned in pET-30b (+) expression vector and transformed into E. coli. The molecular mass of over expressed protein was found to be around 52 kDa. Functional characterization of the enzyme was performed using different substrates. Product analysis was done using LC–MS and HPLC, which confirmed its specificity for genistein 4′-O-glucoside. Immuno-localization studies of the UGT74W1 showed its localization in the vascular bundle. Spatio-temporal expression studies under normal and stressed conditions were also performed. The control B. monniera plant showed maximum expression of UGT74W1 in leaves followed by roots and stem. Salicylic acid treatment causes almost tenfold increase in UGT74W1 expression in roots, while leaves and stem showed decrease in expression. Since salicylic acid is generated at the time of injury or wound caused by pathogens, this increase in UGT74W1 expression under salicylic acid stress might point towards its role in defense mechanism.  相似文献   

12.
We report further development of a novel recombinant protein expression system based on the Gram-negative bacterium, Ralstonia eutropha. In this study, we were able to express soluble, active, organophosphohydrolase (OPH), a protein that is prone to inclusion body formation in Escherichia coli, at titers greater than 10 g/L in high cell density fermentation. This represents a titer that is approximately 100-fold greater than titers previously reported in E. coli for this enzyme. R. eutropha strains expressing OPH were generated in two cloning steps. First, the T7 RNA polymerase gene was placed under the control of the strong, inducible phaP promoter and integrated into the phaP locus of R. eutropha NCIMB 40124. Second, a single copy of the oph gene under control of the T7 promoter was randomly integrated into the chromosome using a transposon cloning vector.  相似文献   

13.
Wang B  Jin SH  Hu HQ  Sun YG  Wang YW  Han P  Hou BK 《The New phytologist》2012,194(3):666-675
? Family 1 glycosyltransferases comprise the greatest number of glycosyltransferases found in plants. The widespread occurrence and diversity of glycosides throughout the plant kingdom underscore the importance of these glycosyltransferases. ? Here, we describe the identification and characterization of a late-flowering Arabidopsis (Arabidopsis thaliana) mutant, in which a putative family 1 glycosyltransferase gene, UGT87A2, was disrupted. The role and possible mechanism of UGT87A2 in the regulation of flowering were analyzed by molecular, genetic and cellular approaches. ? The ugt87a2 mutant exhibited late flowering in both long and short days, and its flowering was promoted by vernalization and gibberellin. Furthermore, the mutant flowering phenotype was rescued by the wild-type UGT87A2 gene in complementation lines. Interestingly, the expression of the flowering repressor FLOWERING LOCUS C was increased substantially in the mutant, but decreased to the wild-type level in complementation lines, with corresponding changes in the expression levels of the floral integrators and floral meristem identity genes. The expression of UGT87A2 was developmentally regulated and its protein products were distributed in both cytoplasm and nucleus. ? Our findings imply that UGT87A2 regulates flowering time via the flowering repressor FLOWERING LOCUS C. These data highlight an important role for the family 1 glycosyltransferases in the regulation of plant flower development.  相似文献   

14.
Escherichia coli BL21 (DE3) is an excellent and widely used host for recombinant protein production. Many variant hosts were developed from BL21 (DE3), but improving the expression of specific proteins remains a major challenge in biotechnology. In this study, we found that when BL21 (DE3) overexpressed glucose dehydrogenase (GDH), a significant industrial enzyme, severe cell autolysis was induced. Subsequently, we observed this phenomenon in the expression of 10 other recombinant proteins. This precludes a further increase of the produced enzyme activity by extending the fermentation time, which is not conducive to the reduction of industrial enzyme production costs. Analysis of membrane structure and messenger RNA expression analysis showed that cells could underwent a form of programmed cell death (PCD) during the autolysis period. However, blocking three known PCD pathways in BL21 (DE3) did not completely alleviate autolysis completely. Consequently, we attempted to develop a strong expression host resistant to autolysis by controlling the speed of recombinant protein expression. To find a more suitable protein expression rate, the high‐ and low‐strength promoter lacUV5 and lac were shuffled and recombined to yield the promoter variants lacUV5‐1A and lac‐1G. The results showed that only one base in lac promoter needs to be changed, and the A at the +1 position was changed to a G, resulting in the improved host BL21 (DE3‐lac1G), which resistant to autolysis. As a consequence, the GDH activity at 43 h was greatly increased from 37.5 to 452.0 U/ml. In scale‐up fermentation, the new host was able to produce the model enzyme with a high rate of 89.55 U/ml/h at 43 h, compared to only 3 U/ml/h achieved using BL21 (DE3). Importantly, BL21 (DE3‐lac1G) also successfully improved the production of 10 other enzymes. The engineered E. coli strain constructed in this study conveniently optimizes recombinant protein overexpression by suppressing cell autolysis, and shows great potential for industrial applications.  相似文献   

15.
To investigate the RNA polymerase of rabies virus, we cloned a cDNA of the catalytic subunit (called L protein because of its large molecular size) of the HEP-Flury strain, an avirulent strain obtained by high frequencies of serial embryonated hen egg passages. Nucleotide sequencing showed that the cDNA encodes a long polypeptide of 2,127 amino acids (Mr. 242,938). A comparison of the deduced amino acid sequence with that of other strains (PV and SAD B19) indicated that the sequence was highly conserved, except for several amino acid substitutions which were accumulated in some limited regions. A fragment of the cDNA was used for expression in Escherichia coli (E. coli) to prepare the L antigen for raising the antibodies in rabbits. Immunoprecipitation studies with the rabbit antiserum showed that the polypeptides produced in the L cDNA-transfected COS-7 cells displayed almost the same electrophoretic mobility as that of authentic L protein. Immunofluorescence studies indicated that both L and P (another subunit of RNA polymerase) proteins displayed colocalized distribution with the nucleocapsid antigen (N) in the cytoplasmic inclusion bodies, where envelope proteins (G and M) were absent. On the other hand, expression of the L protein alone did not cause inclusion body-like granular distribution, suggesting that the inclusion body-like accumulation depends on certain interaction(s) with other viral gene products, probably with the ribonucleoproteins comprising the inclusion bodies.  相似文献   

16.
A Y Wang  D W Grogan  J E Cronan 《Biochemistry》1992,31(45):11020-11028
Cyclopropane fatty acid (CFA) synthase of Escherichia coli catalyzes a modification of the acyl chains of phospholipid bilayers. We report (i) identification of the CFA synthase protein, (ii) overproduction (> 600-fold) and purification to essential homogeneity of the enzyme, and (iii) the amino acid sequence of CFA synthase as deduced from the nucleotide sequence of the cfa gene. CFA synthase was overproduced by use of the T7 promoter/RNA polymerase system under closely defined conditions. The enzyme was readily purified by a two-step procedure requiring only ammonium sulfate fractionation and binding to phospholipid vesicles followed by flotation in sucrose density gradients. The deduced amino acid sequence predicts a protein of 43,913 Da (382 residues) that lacks long hydrophobic segments. The CFA synthase sequence has no significant similarity to known proteins except for sequences found in other enzymes that utilize S-adenosyl-L-methionine. We also report inhibitor studies of the enzyme active site.  相似文献   

17.
The plant family 1 UDP‐glycosyltransferases (UGTs) are the biggest GT family in plants, which are responsible for transferring sugar moieties onto a variety of small molecules, and control many metabolic processes; however, their physiological significance in planta is largely unknown. Here, we revealed that two Arabidopsis glycosyltransferase genes, UGT79B2 and UGT79B3, could be strongly induced by various abiotic stresses, including cold, salt and drought stresses. Overexpression of UGT79B2/B3 significantly enhanced plant tolerance to low temperatures as well as drought and salt stresses, whereas the ugt79b2/b3 double mutants generated by RNAi (RNA interference) and CRISPR‐Cas9 strategies were more susceptible to adverse conditions. Interestingly, the expression of UGT79B2 and UGT79B3 is directly controlled by CBF1 (CRT/DRE‐binding factor 1, also named DREB1B) in response to low temperatures. Furthermore, we identified the enzyme activities of UGT79B2/B3 in adding UDP‐rhamnose to cyanidin and cyanidin 3‐O‐glucoside. Ectopic expression of UGT79B2/B3 significantly increased the anthocyanin accumulation, and enhanced the antioxidant activity in coping with abiotic stresses, whereas the ugt79b2/b3 double mutants showed reduced anthocyanin levels. When overexpressing UGT79B2/B3 in tt18 (transparent testa 18), a mutant that cannot synthesize anthocyanins, both genes fail to improve plant adaptation to stress. Taken together, we demonstrate that UGT79B2 and UGT79B3, identified as anthocyanin rhamnosyltransferases, are regulated by CBF1 and confer abiotic stress tolerance via modulating anthocyanin accumulation.  相似文献   

18.
Gene expression of nonsegmented negative‐strand RNA viruses (nsNSVs) such as parainfluenza viruses requires the RNA synthesis activity of their polymerase L protein; however, the detailed mechanism of this process is poorly understood. In this study, a parainfluenza minireplicon assay expressing secretory Gaussia luciferase (Gluc) was established to analyze large protein (L) activity. Measurement of Gluc expression in the culture medium of cells transfected with the minigenome and viral polymerase components enabled quick and concise calculation of L activity. By comparing the amino acid sequences in conserved region III (CRIII), a putative polymerase‐active domain of the L protein, two strictly conserved aspartates were identified in all families of nsNSV. A series of L mutants from human parainfluenza virus type 2 and parainfluenza virus type 5 showed that these aspartates are necessary for reporter gene expression. It was also confirmed that these aspartates are important for the production of viral mRNA and antigenome cRNA, but not for a polymerase‐complex formation. These findings suggest that these two aspartates are key players in the nucleotidyl transfer reaction using two metal ions.  相似文献   

19.
Isoflavones, a class of flavonoids, play very important roles in plant-microbe interactions in certain legumes such as soybeans (Glycine max L. Merr.). G. max UDP-glucose:isoflavone 7-O-glucosyltransferase (GmIF7GT) is a key enzyme in the synthesis of isoflavone conjugates, which accumulate in large amounts in vacuoles and serve as an isoflavonoid pool that allows for interaction with microorganisms. In this study, the 14,000-fold purification of GmIF7GT from the roots of G. max seedlings was accomplished. The purified enzyme is a monomeric protein of 46 kDa, catalyzing regiospecific glucosyl transfer from UDP-glucose to isoflavones to produce isoflavone 7-O-beta-D-glucosides (k(cat) = 0.74 s(-1), K(m) for genistein = 3.6 microM, and K(m) for UDP-glucose = 190 microM). The GmIF7GT cDNA was isolated based on the amino acid sequence of the purified enzyme. Phylogenetic analysis showed that GmIF7GT is a novel member of glycosyltransferase family 1 and is distantly related to Glycyrrhiza echinata UDP-glucose:isoflavonoid 7-O-glucosyltransferase. The purified enzyme was unexpectedly devoid of the N-terminal 49-residue segment and thus lacks the histidine residue corresponding to the proposed catalytic residue of glycosyltransferases from Medicago truncatula (UGT71G1) and Vitis vinifera (VvGT1). The results of kinetic studies of site-directed mutants of GmIF7GT showed that both His-15 and Asp-125, which correspond to the catalytic residues of UGT71G1 and VvGT1, are not important for GmIF7GT activity. The results also suggest that an acidic residue at position 392 is very important for primary catalysis of GmIF7GT. These results led to the proposal that GmIF7GT utilizes a strategy of catalysis that is distinct from those proposed for UGT71G1 and VvGT1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号