首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pervaporation using oleyl alcohol supported liquid membrane was successfully applied to diacetyl fermentation by immobilized lactic acid bacteria. Diacetyl productivity was about 10 g·m−3·h−1, while productivity during batch fermentation was about 6 g·m−3·h−1. Diacetyl yield from consumed glucose was about 0.04 g·g−1 which was 4 times as large as that of batch fermentation. The pervaporation functioned favorably on actual fermentation broth. The flux of the permeate and the diacetyl separation factor for the pervaporation were about 9 g·m−2·h−1 and 36, respectively, and these values were maintained at almost constant levels during fermentation. Diacetyl concentration in the permeate was about 2 kg·m−3, which is sufficiently high for commercial use.  相似文献   

2.
Ethanol production in a continuous fermentation/membrane pervaporation system   总被引:12,自引:0,他引:12  
The productivity of ethanol fermentation processes, predominantly based on batch operation in the U.S. fuel ethanol industry, could be improved by adoption of continuous processing technology. In this study, a conventional yeast fermentation was coupled to a flat-plate membrane pervaporation unit to recover continuously an enriched ethanol stream from the fermentation broth. The process employed a concentrated dextrose feed stream controlled by the flow rate of permeate from the pervaporation unit via liquid-level control in the fermentor. The pervaporation module contained 0.1 m2 commercially available polydimethylsiloxane membrane and consistently produced a permeate of 20%–23% (w/w) ethanol while maintaining a level of 4%–6% ethanol in a stirred-tank fermentor. The system exhibited excellent operational stability. During continuous operation with cell densities of 15–23 g/l, ethanol productivities of 4.9–7.8 gl–1 h–1 were achieved utilizing feed streams of 269–619 g/l glucose. Pervaporation flux and ethanol selectivities were 0.31–0.79 lm–2 h–1 and 1.8–6.5 respectively.  相似文献   

3.
A perfluoropolymer (PFP) membrane has been prepared for use in vapor permeation to separate aqueous ethanol mixtures produced from rice straw with xylose-assimilating recombinant Saccharomyces cerevisiae. PFP membranes commonly have been used for dehydration process and possess good selectivity and high permeances. The effects of by-products during dilute acid pretreatment, addition of yeast extract, and ethanol fermentation on PFP membrane performance were investigated. While feeding mixtures of ethanol (90 wt%) in water, to which individual by-products (0.1–2 g/L) were added, the PFP membrane demonstrated no clear change in permeation rate (439–507 g m−2 h−1) or separation factor (14.9–23.5) from 2 to 4 h of the process. The PFP membrane also showed no clear change in permeation rate (751–859 g m−2 h−1) or separation factor (12.5–13.8) while feeding the mixture (final ethanol conc.: 61 wt%) of ethanol and distillation of the fermentation broth using a suspended fraction of dilute acid-pretreated rice straw for 20 h. These results suggest that the PFP membrane can tolerate actual distillation liquids from ethanol fermentation broth obtained from lignocellulosic biomass pretreated with dilute acid.  相似文献   

4.
《Biomass》1990,21(3):189-206
Vertical and near-horizontal (15° angle) packed-bed columns were compared for continuous ethanol fermentation using an alcohol- and glucose-tolerant Saccharomyces cerevisiae strain immobilized on to channeled alumina beads (5·0 × 109 cells g−1 beads). Spaces between beads (1·0–6·5 mm) and angle (15°) of near-horizontal reactor columns (with six ports in each) efficiently removed CO2 and increased ethanol productivity. Malt-glucose-yeast-extract broth containing 16·7% glucose at 35°C fed at a dilution rate of 3· h−1 to thw two horizontal columns (in series) yielded maximum ethanol productivity of 40·0 g liter−1 h−1. Feedstock flow rate and other factors (temperature, pH, nutrients, and glucose levels) affected productivities. The immobilized-cell system showed operational stability for >3 months without plugging, and could be stored for at least one year with no loss of bioreactor performance. Scanning electron micrographs of the beads revealed large numbers of yeast-cells attached on to internal and external surfaces of beads.  相似文献   

5.
《Process Biochemistry》1999,34(4):329-333
This paper deals with the studies on Cephalosporin-C production in a lab-scale airlift reactor using Cephalosporium acremonium. Various growth modes, viz. pellets and Siran supported bioparticles were used to improve the process over conventional free mycelial fermentation. Cephalosporin-C production was significantly improved by using bioparticles over the free mycelial culture, probably due to the enhanced mass transfer in the fermentation broth. However, the biofilm of the bioparticles became unstable as the fermentation proceeded, and increase in the free cells in the broth occurs. The maximum specific growth rate of free cells, pellets and Siran carrier were observed to be 0·037, 0·033 and 0·045 h−1, respectively. The oxygen transfer coefficient also improved for the immobilised modes (100 h−1, 70 h−1 for Siran carrier and pellets) and thereby enhanced specific antibiotic productivity, 18–28% were observed.  相似文献   

6.
In these studies, butanol (acetone butanol ethanol or ABE) was produced from concentrated lactose/whey permeate containing 211 g L?1 lactose. Fermentation of such a highly concentrated lactose solution was possible due to simultaneous product removal using a pervaporation membrane. In this system, a productivity of 0.43 g L?1 h?1 was obtained which is 307 % of that achieved in a non-product removal batch reactor (0.14 g L?1 h?1) where approximately 60 g L?1 whey permeate lactose was fermented. The productivity obtained in this system is much higher than that achieved in other product removal systems (perstraction 0.21 g L?1 h?1 and gas stripping 0.32 g L?1 h?1). This membrane was also used to concentrate butanol from approximately 2.50 g L?1 in the reactor to 755 g L?1. Using this membrane, ABE selectivities and fluxes of 24.4–44.3 and 0.57–4.05 g m?2 h?1 were obtained, respectively. Pervaporation restricts removal of water from the reaction mixture thus requiring significantly less energy for product recovery when compared to gas stripping.  相似文献   

7.
Repeated-batch fermentation by a flocculating fusant, Saccharomyces cerevisiae HA 2, was done in a molasses medium that contained 20% (w/v) total sugar, at 30°C in an automatically controlled fermentor, and the effects of ethanol concentration on the specific growth rate and the specific production rate of ethanol were studied. Both the specific growth rate and the specific production rate of ethanol fell with increase of ethanol concentration, and there was a linear correlation between each rate and the concentration of thanol. The maximum specific growth rate (μmax) and the maximum specific production rate of ethanol (qmax) were 0.12 h−1 and 0.1 g ethanol/109 cells·h, respectively. The specific growth rate and the specific production rate of ethanol fell to zero at ethanol concentration of 89 g/l and 95 g/l, respectively. The number of viable cells, calculated from the linear inhibition equation, was 1.3 × 109 cells/ml for production of 85 g/l ethanol at a dilution rate (D1) of 0.2 h−1. Based on this estimation, a laboratory-scale continuous fermentation, using two fermentors in series, was done. In the second fermentor, 85 g/l ethanol was produced at a dilution rate (D1) of 0.2 h−1 by the active feedig of the fermented mash from the first fermentor into the second fermentor by pumping (hereafter called active feeding). To maintain the number of viable cells above 109 cells/ml in the second fermentor, a active feeding ratio of more than 23% was required. Under these conditions, 81 g/l ethanol was produced in the second fermentor at a dilution rate (Dt) of 0.25 h−1, and the high ethanol productivity of 20.3 g/l·h could be achieved. A bench-scale continuous fermentation, using two fermentors in series, with a active feeding ratio of 25% was done. An ethanol concentration of 84 g/l in the second fermentor at a dilution rate (Dt) of 0.25 h−1 was achieved, just as it was in the laboratory-scale fermentation test.  相似文献   

8.
The study was conducted to evaluate the microbial dynamics during silage of maize stover and banana pseudostem in the environmental conditions of southern Ethiopia. To meet this objective, microsilos containing either maize stover or banana pseudostem, both with and without molasses, were prepared. Subsequently, samples were analysed on day 0, 7, 14, 30, 60 and 90 of the fermentation process. As a result, on day 7, all treatments except banana pseudostem without molasses showed a significant reduction in pH. It was also this silage type that supported the growth of Enterobacteriaceae longer than three other silage types, i.e. until 30 days. The yeasts and moulds and the Clostridum endospore counts also showed a reducing trend in early fermentation and afterwards remained constant until day 90. Illumina MiSeq sequencing revealed that Leuconostoc, Buttiauxella species and Enterobacteriaceae were the most abundant bacteria in the initial phases of the fermentation. Later on, Buttiauxella, Lactobacillus, Weissella and Bifidobacterium species were found to be dominant. In conclusion, silage of the two crop by-products is possible under South Ethiopian conditions. For banana pseudostem, the addition of molasses is crucial for a fast fermentation, in contrast to maize. Upscaling needs to be investigated for the two by-products.  相似文献   

9.
A coupled fermentation-pervaporation process was operated continuously with on-line mass spectrometric gas analysis monitoring of product accumulation on both the upstream and the downstream sides of the membrane. Efficient coupling of the fermentation with pervaporation was attained when a steady state of ethanol production and removal was achieved with whey permeate containing high concentrations of lactose (>8%) or by controlled lactose additions that also compensated for loss of liquid due to pervaporation. The combined system consists of a tubular membrane pervaporation module, directly connected to a stirred fermentor to form one circulation loop, kept at 38°C, with both units operating under computer control. Mass spectrometric gas analysis of the CO2 gas evolved in the fermentor and the ethanol and water in the pervaporate on the downstream side of the membrane enabled us to follow the production of ethanol and its simultaneous removal. Membrane selectivity was calculated on-line and served to monitor the functioning of the membrane. Batch-wise-operated fermentation-pervaporation with Candida pseudotropicalis IP-513 yielded over 120 gl–1 of concentrated ethanol solution using supplemented whey permeate containing 16% lactose. A steady state lasting for about 20 h was achieved with ethanol productivity of 20 g h–1 (approx. 4 g l–1 h–1). Membrane selectivity was over 8. Controlled feeding of concentrated lactose suspension in the whey permeate (350 g l–1) resulted in the continuous collection of 120–140 g l–1 of ethanol pervaporate for 5 days, by which time salt accumulation hampered the fermentation. Medium refreshment restored the fermentative activity of the yeast cells and further extended the coupled process to over 9 days (200 h), when reversible membrane fouling occurred. The membrane module was exchanged and the combined process restarted. Correspondence to: Y. Shabtai  相似文献   

10.
In ethanol fermentations inhibition of the microorganism by ethanol limits the amount of substrate in the feed that can be converted. In a process high feed concentrations are desirable to minimize the flows. Such high feed concentrations can be realized in integrated processes in which ethanol is recovered from the fermentation broth as it is formed. In this study ethanol recovery by pervaporation was coupled to glucose fermentations by baker's yeast. Pervaporation was carried out with commercial silicone based hollow-fibre membrane modules with relatively high fluxes. Three different types of process configurations with pervaporation were investigated. Two of these configurations also included cell retention by microfiltration, in order to optimize the productivity. In the systems with pervaporation a feed containing 360 kg/m3 glucose could be converted almost completely. This feed concentration is a factor three higher than in a process without ethanol recovery. The productivity was 14 kg/m3 h in a system with pervaporation only, and could be increased to 43 kg/m3 h in the system with all recycle by microfiltration. The kinetic data suggest that accumulation of inhibitory compounds occurs in the integrated system. The integrated process was relatively easy in operation.  相似文献   

11.
Starch from wheat flour was enzymatically hydrolyzed and used for ethanol production by Zymmonas mobilis. The addition of a nitrogen source like ammonium sulfate was sufficient to obtain a complete fermentation of the hdyrolyzed strach. In batch culture a glucose concentration as high as 223 g/l could be fermented (conversion 99.5%) to 105 g/l of ethanol in 70 h with an ethanol yield of 0.47 g/g (92% of theoretical). In continuous culture the use of a flocculent strain and a fermentor with an internal settler resulted (D=1,4 h−1) in a high ethanol productivity of 70.7 g/l·h with: ethanol concentration 49.5 g/l, ethanol yield 0.50 g/g (98% of theoretical and substrate conversion 99%.  相似文献   

12.
To quantify bioturbation activity in Tikehau lagoon, a tracer made of black basaltic sand was poured over the natural white calcareous sediment surface. Three stations respectively located on the inner flat (-3m), the inner slope (-9m), and the lagoon floor (-19m), were studied for short periods of time (48 hours). Bioturbation by macrofauna was quantified by volume of sediment ejected onto the experimental surface and by volume of tracer incorporated into sediment. The results showed a rapid incorporation of sedimented particles at the interface by way of the funnels and burrows of surface deposit feeders and carnivores. Expelled quantities varied with respect to site location: 213 cm3 · m−2 · 24 h−1 in the inner flat; 98.9 cm3 · m−2 · 24 h−1 in the inner slope; 7.9 m3 · m−2 · 24 h−1 in the lagoon floor. Bioturbation by decapod megafauna appeared to be important in the dynamics of the sediments in the deepest areas of the lagoon. In these areas, with almost no hydrodynamical impacts on sediments, bioturbating events were responsible for sediment mixing (despite lower absolute rates than in shallow area). Hydrodynamics controlled the spatial distribution of macroinvertebrate trophic groups by its effects on sedimentation.  相似文献   

13.
In the present study, toluene elimination in the polyurethane (PU) biofilter during long-term (145 day) operation was characterized, and assessed the effects of changing the inlet loading and space velocity (SV). A very high elimination capacity of 3.7 kg·m−3·h−1 was obtained at an inlet loading of 4.0 kg·m–3·h−1 (inlet toluene concentration of 900 ppmv at a SV of 1,040 h−1). Backwashing with irrigation and compressed air allowed maintenance of a pressure drop of < 80 mm H2O·m−1-filter at an SV of 830 h−1 and an elimination efficiency of > 90% during the 145 day of operation. In conclusion, the PU biofilter can overcome the problems of clogging caused by excess biomass growth and of low treatment capacities of conventional biofilters.  相似文献   

14.
《Process Biochemistry》2014,49(7):1182-1188
An efficient method for removing microbial cells and macromolecular impurities and purification of surfaction from fermentation broth produced by Bacillus amyloliquefaciens fmb50 was carried out in this study. Among three inorganic flocculants and a macromolecular flocculants, the combination use of CaCl2 and Na2HPO4 was the most effective separation process. Addition of 50% ethanol into fermentation broth could not only disrupt the surfactin micells, but also promote the permeating of surfactin in filtration. The flocculation condition was optimized by an L9 (34) orthogonal design. The light transmittance, surfactin recovery rate, protein removal rate and filtration flux could reach to 96.3%, 95.31%, 56.59% and 3204.41 L m−2 h−1 respectively, the surfactin purity reached to 79.5% and the residual protein was 8.1% in separated product under the optimal flocculation condition (flocculants dosage 0.5%, pH 5.0, and temperature 35 °C). Validation test also demonstrated stable results under the optimal conditions. Due to higher efficiency, lower cost and scale-up more easily of flocculation and filtration processes, it is feasible to separate surfactin from fermentation broth.  相似文献   

15.
To determine the most favorable conditions for the production of ethanol by Pachysolen tannophilus, this yeast was grown in batch cultures with various initial concentrations of two of the constituents of the culture medium: d-xylose (so), ranging from 1 g·l−1 to 200 g·l−1, and yeast extract (lo), ranging from 0 g·l−1 to 8 g·l−1. The most favorable conditions proved to be initial concentrations of So=25 g·l−1 and lo=4 g·l−1, which gave a maximum specific growth rate of 0.26 h−1, biomass productivity of 0.023 g·l−1·h−1, overall biomass yield of 0.094 g·g−1, specific xylose-uptake rate (qs) of 0.3 g·g−1·h−1 (for t=50 h), specific ethanol-production rate (qE) of 0.065 g·g−1·h−1 and overall ethanol yield of 0.34 g·g−1; qs values decreased after the exponential growth phase while qE remained practically constant.  相似文献   

16.
A study was taken up to evaluate the role of some fermentation parameters like inoculum concentration, temperature, incubation period and agitation time on ethanol production from kinnow waste and banana peels by simultaneous saccharification and fermentation using cellulase and co-culture of Saccharomyces cerevisiae G and Pachysolen tannophilus MTCC 1077. Steam pretreated kinnow waste and banana peels were used as substrate for ethanol production in the ratio 4:6 (kinnow waste: banana peels). Temperature of 30°C, inoculum size of S. cerevisiae G 6% and (v/v) Pachysolen tannophilus MTCC 1077 4% (v/v), incubation period of 48 h and agitation for the first 24 h were found to be best for ethanol production using the combination of two wastes. The pretreated steam exploded biomass after enzymatic saccharification containing 63 gL−1 reducing sugars was fermented with both hexose and pentose fermenting yeast strains under optimized conditions resulting in ethanol production, yield and fermentation efficiency of 26.84 gL−1, 0.426 gg −1 and 83.52 % respectively. This study could establish the effective utilization of kinnow waste and banana peels for bioethanol production using optimized fermentation parameters.  相似文献   

17.
The efficacy of visual and non-visual feeding among pelagic striped bass Morone saxatilis larvae adapted to a turbid estuary was determined in the laboratory in clear water. Capture of Artemia salina (density 100 l1) was significantly affected by the interaction between age of larvae (range: 8–25 days post-hatch, dph) and light intensity (range: 0–10·6 μmol s1 m2 at the water surface). Visual feeding by larvae aged 9–11 dph was highest in dim light (0·086–0·79 μmol s1 m2), with fish capturing up to 5 prey larva1 h1. As the larvae grew, prey capture in brighter light improved, associated with an increasing proportion of twin cone photoreceptors and improving ability of the retina to light- and dark-adapt. By age >22 dph, mean prey capture was greatest at highest light intensities (0·79 and 10·6 μmol s1 m2) exceeding 100 prey larva1 h1. Incidence of feeding larvae generally improved as the larvae grew, reaching >80% in all light intensities from 16 dph onwards. The lower threshold for visual feeding, between 0·0084 and 0·03 μmol s1 m2, remained constant as the larvae grew, despite an increasing density of rod photoreceptors. Below this threshold, non-visual feeding was evident at a low rate (<6 prey larva1 h1) that was independent of larval age.  相似文献   

18.
Aims: To investigate the effect of molasses concentration, initial pH of molasses medium, and inoculum’s size to maximize ethanol and minimize methanol, fusel alcohols, acetic acid and aldehydes in the fermentation mash in industrial fermentors. Methods and Results: Initial studies to optimize temperature, nitrogen source, phosphorous source, sulfur supplement and minerals were performed. The essential nutrients were urea (2 kg in 60 m3), 0·5 l each of commercial phosphoric acid and sulfuric acid (for pH control) added at the inoculum preparation stage only. Yields of ethanol, methanol, fusel alcohols, total acids and aldehydes per 100‐l fermentation broth were monitored. Molasses at 29°Brix (degree of dissolved sugars in water), initial pH 4·5, inoculum size 30% (v/v) and anaerobic fermentation supported maximum ethanol (7·8%) with YP/S = 238 l ethanol per tonne molasses (96·5% yield) (8·2% increase in yield), and had significantly lower values of byproducts than those in control experiments. Conclusions: Optimization of process variables resulted in higher ethanol yield (8·2%) and reduced yield of methanol, fusel alcohols, acids and aldehydes. Significance and Impact of the Study: More than 5% substrate is converted into byproducts. Eliminating or reducing their formation can increase ethanol yield by Saccharomyces cerevisiae, decrease the overall cost of fermentation process and improve the quality of ethanol.  相似文献   

19.
Lake Valencia is heavily polluted by waste water of domestic, agricultural and industrial origin. The high organic load may have produced important changes in the limnological properties. Cyanobacteria dominated in numbers and biomass (over 90% throughout the year). Chlorophyll-a content averaged 37.7 + 15 μg · 1−1. Maximum concentrations of 50–80 μg · 1−1 were found near the inflows affected by organically polluted affluents. There has been a 50% reduction in the euphotic zone in only 13 years. The maximum rate of gross photosynthesis per hour at light saturation was determined within the uppermost 1-meter layer. The highest value was 16,290 mg O2 · m−3 · h−1. Lake Valencia is among the most productive lakes in the world, with areal net photosynthesis averaging 7.5 g C · m−2 · d−1.  相似文献   

20.
Aims: Kluyveromyces lactis was cultured in cheese whey permeate on both batch and continuous mode to investigate the effect of time course and growth rate on β‐galactosidase activity, lactose consumption, ethanol production and protein profiles of the cells. Methods and Results: Cheese whey was the substrate to grow K. lactis as a batch or continuous culture. In order to precise the specific growth rate for maximum β‐galactosidase activity a continuous culture was performed at five dilution (growth) rates ranging from 0·06, 0·09, 0·12, 0·18 to 0·24 h?1. The kinetics of lactose consumption and ethanol production were also evaluated. On both batch and continuous culture a respirofermentative metabolism was detected. The growth stage for maximum β‐gal activity was found to be at the transition between late exponential and entrance of stationary growth phase of batch cultures. Fractionating that transition stage in several growth rates at continuous culture a maximum β‐galactosidase activity at 0·24 h?1 was observed. Following that stage β‐gal activity undergoes a decline which does not correlate to the density of its corresponding protein band on the gel prepared from the same samples. Conclusion: The maximum β‐galactosidase activity per unit of cell mass was found to be 341·18 mmol ONP min?1 g?1 at a dilution rate of 0·24 h?1. Significance and Impact of the Study: The physiology of K. lactis growing in cheese whey permeate can proven useful to optimize the conversion of that substrate in biomass rich in β‐gal or in ethanol fuel. In addition to increasing the native enzyme the conditions established here can be set to increase yields of recombinant protein production based on the LAC4 promoter in K. lactis host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号