首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous upstream processing in mammalian cell culture for recombinant protein production holds promise to increase product yield and quality. To facilitate the design and optimization of large-scale perfusion cultures, suitable scale-down mimics are needed which allow high-throughput experiments to be performed with minimal raw material requirements. Automated microbioreactors are available that mimic batch and fed-batch processes effectively but these have not yet been adapted for perfusion cell culture. This article describes how an automated microbioreactor system (ambr15) can be used to scale-down perfusion cell cultures using cell sedimentation as the method for cell retention. The approach accurately predicts the viable cell concentration, in the range of about 1 × 107 cells/mL for a human cell line, and cell viability of larger scale cultures using a hollow fiber based cell retention system. While it was found to underpredict cell line productivity, the method accurately predicts product quality attributes, including glycosylation profiles, from cultures performed in bioreactors with working volumes between 1 L and 1,000 L. The spent media exchange method using the ambr15 was found to predict the influence of different media formulations on large-scale perfusion cultures in contrast to batch and chemostat experiments performed in the microbioreactor system. The described experimental setup in the microbioreactor allowed an 80-fold reduction in cell culture media requirements, half the daily operator time, which can translate into a cost reduction of approximately 2.5-fold compared to a similar experimental setup at bench scale.  相似文献   

2.
《MABS-AUSTIN》2013,5(8):1502-1514
ABSTRACT

Although process intensification by continuous operation has been successfully applied in the chemical industry, the biopharmaceutical industry primarily uses fed-batch, rather than continuous or perfusion methods, to produce stable monoclonal antibodies (mAbs) from Chinese hamster ovary (CHO) cells. Conventional fed-batch bioreactors may start with an inoculation viable cell density (VCD) of ~0.5 × 106 cells/mL. Increasing the inoculation VCD in the fed-batch production bioreactor (referred to as N stage bioreactor) to 2–10 × 106 cells/mL by introducing perfusion operation or process intensification at the seed step (N-1 step) prior to the production bioreactor has recently been used because it increases manufacturing output by shortening cell culture production duration. In this study, we report that increasing the inoculation VCD significantly improved the final titer in fed-batch production within the same 14-day duration for 3 mAbs produced by 3 CHO GS cell lines. We also report that other non-perfusion methods at the N-1 step using either fed batch or batch mode with enriched culture medium can similarly achieve high N-1 final VCD of 22–34 × 106 cells/mL. These non-perfusion N-1 seeds supported inoculation of subsequent production fed-batch production bioreactors at increased inoculation VCD of 3–6 × 106 cells/mL, where these achieved titer and product quality attributes comparable to those inoculated using the perfusion N-1 seeds demonstrated in both 5-L bioreactors, as well as scaled up to 500-L and 1000-L N-stage bioreactors. To operate the N-1 step using batch mode, enrichment of the basal medium was critical at both the N-1 and subsequent intensified fed-batch production steps. The non-perfusion N-1 methodologies reported here are much simpler alternatives in operation for process development, process characterization, and large-scale commercial manufacturing compared to perfusion N-1 seeds that require perfusion equipment, as well as preparation and storage vessels to accommodate large volumes of perfusion media. Although only 3 stable mAbs produced by CHO cell cultures are used in this study, the basic principles of the non-perfusion N-1 seed strategies for shortening seed train and production culture duration or improving titer should be applicable to other protein production by different mammalian cells and other hosts at any scale biologics facilities.  相似文献   

3.
Increasing capacity utilization and lowering manufacturing costs are critical for pharmaceutical companies to improve their competitiveness in a challenging environment. Development of next generation cell lines, improved media formulations, application of mature technologies and innovative operational strategies have been deployed to improve yields and capacity utilization. This article describes a large‐scale perfusion strategy for the N‐1 seed train bioreactor that was successfully applied to achieve higher inoculation cell densities in the production culture. The N‐1 perfusion at 3,000‐L scale, utilizing a inclined settler, achieved cell densities of up to 158 × 105 cell mL?1 at perfusion rates of 2950 L day?1 and a retention efficiency of >85%. This approach increased inoculation cell densities and decreased cultivation times by ~20% in a CHO‐based, fed‐batch antibody manufacturing process while providing comparable culture performance, productivity, and product quality. The strategy therefore yielded significant increase in capacity utilization and concomitant cost improvement in a large scale cGMP facility. Details of the strategy, the cell retention device, and the cell culture performance are described in this article. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

4.
The development of mammalian cell perfusion cultures is still laborious and complex to perform due to the limited availability of scale-down models and limited knowledge of time- and cost-effective procedures. The maximum achievable viable cell density (VCDmax), minimum cell-specific perfusion rate (CSPRmin), cellular growth characteristics, and resulting bleed rate at steady-state operation are key variables for the effective development of perfusion cultures. In this study, we developed a stepwise procedure to use shake tubes (ST) in combination with benchtop (BR) bioreactors for the design of a mammalian cell perfusion culture at high productivity (23 pg·cell−1·day−1) and low product loss in the bleed (around 10%) for a given expression system. In a first experiment, we investigated peak VCDs in STs by the daily discontinuous medium exchange of 1 reactor volume (RV) without additional bleeding. Based on this knowledge, we performed steady-state cultures in the ST system using a working volume of 10 ml. The evaluation of the steady-state cultures allowed performing a perfusion bioreactor run at 20 × 106 cells/ml at a perfusion rate of 1 RV/day. Constant cellular environment and metabolism resulted in stable product quality patterns. This study presents a promising strategy for the effective design and development of perfusion cultures for a given expression system and underlines the potential of the ST system as a valuable scale-down tool for perfusion cultures.  相似文献   

5.
Without a scale-down model for perfusion, high resource demand makes cell line screening or process development challenging, therefore, potentially successful cell lines or perfusion processes are unrealized and their ability untapped. We present here the refunctioning of a high-capacity microscale system that is typically used in fed-batch process development to allow perfusion operation utilizing in situ gravity settling and automated sampling. In this low resource setting, which involved routine perturbations in mixing, pH and dissolved oxygen concentrations, the specific productivity and the maximum cell concentration were higher than 3.0 × 106 mg/cell/day and 7 × 10 7 cells/ml, respectively, across replicate microscale perfusion runs conducted at one vessel volume exchange per day. A comparative analysis was conducted at bench scale with vessels operated in perfusion mode utilizing a cell retention device. Neither specific productivity nor product quality indicated by product aggregation (6%) was significantly different across scales 19 days after inoculation, thus demonstrating this setup to be a suitable and reliable platform for evaluating the performance of cell lines and the effect of process parameters, relevant to perfusion mode of culturing.  相似文献   

6.
A fed-batch process for the production of biosimilar monoclonal antibody was developed. Since the brand product is produced by perfusion process, the impact of process change from perfusion to fed-batch on product quality and cell performance was evaluated. Perfusion culture was performed at 0.47–1.00 (v/v/d) perfusion rate by spin-filter method with 15–17 μm mesh. Culture parameters such as pH (6.8–7.2), dissolved oxygen (40–70% air saturation), temperature (37 °C) and agitation speed (250 rpm) were applied in both culture modes. In terms of cell performance, volumetric productivity increased 3.7 times while process performance increased 7.5 times in fed-batch culture due to 10 times higher scalability. Considering the glycosylation pattern and charge variants, no significant changes in product quality were observed upon process change, although intact IgG level slightly decreased in fed-batch mode. The change of production media showed more effect on glycosylation patterns than the operation in different culture modes. Furthermore, there were no differences in biological activity, including TNFα, FcγRIIIa, and C1q-binding affinity. Through a scale-up study from 3 L to 12,500 L, it was confirmed that cell performance and product quality could be maintained. In conclusion, product quality of the fed-batch process was comparable to that of the reference product.  相似文献   

7.
A novel approach of design of experiment (DoE) is developed for the optimization of key substrates of the culture medium, amino acids, and sugars, by utilizing perfusion microbioreactors with 2 mL working volume, operated in high cell density continuous mode, to explore the design space. A mixture DoE based on a simplex-centroid is proposed to test multiple medium blends in parallel perfusion runs, where the amino acids concentrations are selected based on the culture behavior in presence of different amino acid mixtures, and using targeted specific consumption rates. An optimized medium is identified with models predicting the culture parameters and product quality attributes (G0 and G1 level N-glycans) as a function of the medium composition. It is then validated in runs performed in perfusion microbioreactor in comparison with stirred-tank bioreactors equipped with alternating tangential flow filtration (ATF) or with tangential flow filtration (TFF) for cell separation, showing overall a similar process performance and N-glycosylation profile of the produced antibody. These results demonstrate that the present development strategy generates a perfusion medium with optimized performance for stable Chinese hamster ovary (CHO) cell cultures operated with very high cell densities of 60 × 106 and 120 × 106 cells/mL and a low cell-specific perfusion rate of 17 pL/cell/day, which is among the lowest reported and is in line with the framework recently published by the industry.  相似文献   

8.
《Process Biochemistry》2010,45(8):1334-1341
A high cell density cultivation protocol was developed for the secretory production of potato carboxypeptidase inhibitor (PCI) in Escherichia coli. The strain BW25113 (pIMAM3) was cultured in fed-batch mode employing minimal media and an exponential feed profile where the specific growth rate was fixed by limitation of the fed carbon source (glycerol). Plasmid loss rates were found to be proportional to the specific growth rate. Distribution of PCI along the cell compartments and the culture media was also dependent on the fixed growth rate. When specific growth rate was kept at μ = 0.10 h−1, 1.4 g PCI L−1 were obtained when adding the product present in periplasmic extracts and supernatant fractions, with a 50% of the total expressed protein recovered from the extracellular medium. This constituted a 1.2-fold increase compared to growth at μ = 0.15 h−1, and 2.0-fold compared to μ = 0.25 h−1. Last, a cell permeabilization treatment with Triton X-100 and glycine was employed to direct most of the product to the culture media, achieving over 81% of extracellular PCI. Overall, our results point out that production yields of secretory proteins in fed-batch cultures of E. coli can be improved by means of process variables, with applications to the production of small disulfide-bridged proteins. Overall, our results point out that control of the specific growth rate is a successful strategy to improve the production yields of secretory expression in fed-batch cultures of E. coli, with applications to the production of small disulfide-bridged proteins.  相似文献   

9.
Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof‐of‐concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high‐seed fed‐batch production cultures. First, we optimized the perfusion N‐1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N‐1 duration, reaching >40 × 106 vc/mL at the end of the perfusion N‐1 stage. The cultures were subsequently split into high‐seed (10 × 106 vc/mL) fed‐batch production cultures. This strategy significantly shortened the culture duration. The high‐seed fed‐batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low‐seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N‐1 and high‐seed fed‐batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low‐seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:616–625, 2014  相似文献   

10.
In this study, a hydrocyclone (HC) especially designed for mammalian cell separation was applied for the separation of Chinese hamster ovary cells. The effect of key features on the separation efficiency, such as type of pumphead in the peristaltic feed pump, use of an auxiliary pump to control the perfusate flow rate, and tubing size in the recirculation loop were evaluated in batch separation tests. Based on these preliminary batch tests, the HC was then integrated to 50-L disposable bioreactor bags. Three perfusion runs were performed, including one where perfusion was started from a low-viability late fed-batch culture, and viability was restored. The successive runs allowed optimization of the HC-bag configuration, and cultivations with 20–25 days duration at cell concentrations up to 50 × 106 cells/ml were performed. Separation efficiencies up to 96% were achieved at pressure drops up to 2.5 bar, with no issues of product retention. To our knowledge, this is the first report in literature of high cell densities obtained with a HC integrated to a disposable perfusion bioreactor.  相似文献   

11.
Microbial lipids have the potential to displace terrestrial oils for fuel, value chemical, and food production, curbing the growth in tropical oil plantations and helping to reduce deforestation. However, commercialization remains elusive partly due to the lack of suitably robust organisms and their low lipid productivity. Extremely high cell densities in oleaginous cultures are needed to increase reaction rates, reduce reactor volume, and facilitate downstream processing. In this investigation, the oleaginous yeast Metschnikowia pulcherrima, a known antimicrobial producer, was cultured using four different processing strategies to achieve high cell densities and gain suitable lipid productivity. In batch mode, the yeast demonstrated lipid contents more than 40% (w/w) under high osmotic pressure. In fed-batch mode, however, high-lipid titers were prevented through inhibition above 70.0 g L−1 yeast biomass. Highly promising were a semi-continuous and continuous mode with cell recycle where cell densities of up to 122.6 g L−1 and maximum lipid production rates of 0.37 g L−1 h−1 (daily average), a nearly two-fold increase from the batch, were achieved. The findings demonstrate the importance of considering multiple fermentation modes to achieve high-density oleaginous yeast cultures generally and indicate the limitations of processing these organisms under the extreme conditions necessary for economic lipid production.  相似文献   

12.
Media preparation for perfusion cell culture processes contributes significantly to operational costs and the footprint of continuous operations for therapeutic protein manufacturing. In this study, definitions are given for the use of a perfusion equivalent nutrient feed stream which, when used in combination with basal perfusion medium, supplements the culture with targeted compounds and increases the medium depth. Definitions to compare medium and feed depth are given in this article. Using a concentrated nutrient feed, a 1.8-fold medium consumption (MC) decrease and a 1.67-fold increase in volumetric productivity (PR) were achieved compared to the initial condition. Later, this strategy was used to push cell densities above 100 × 106 cells/ml while using a perfusion rate below 2 RV/day. In this example, MC was also decreased 1.8-fold compared to the initial condition, but due to the higher cell density, PR was increased 3.1-fold and to an average PR value of 1.36 g L−1 day−1 during a short stable phase, and versus 0.46 g L−1 day−1 in the initial condition. Overall, the performance improvements were aligned with the given definitions. This multiple feeding strategy can be applied to gain some flexibility during process development and also in a manufacturing set-up to enable better control on nutrient addition.  相似文献   

13.
A major variable to consider in the production of biologicals from mammalian cell cultures is the mode of operation, be it a batch, continuous, perfusion, fed-batch or other production method. The final choice must consider a number of fundamental and economic issues. Here we present some antibody production data from different cell lines using different modes of production and discuss the important factors for consideration in choosing a production strategy. It was found that the productivity of batch cultures was lower than that obtained in continuous and perfused cultures, but that productivity could be improved by implementing suitable feeding strategies. The antibody productivity of one cell line, MCL1, during exponential phase was not affected by media type or glucose level. The maximum productivity of two cell lines in continuous culture was found to occur at dilution rates below the maximum, from 0.019 to 0.030 hr–1.  相似文献   

14.
Jäger V 《Cytotechnology》1996,20(1-3):191-198
Conclusion High density perfusion culture of insect cells for the production of recombinant proteins has proved to be an attractive alternative to batch and fed-batch processes. A comparison of the different production processes is summarized in Table 3. Internal membrane perfusion has a limited scale-up potential but appears to the method of choice in smaller lab-scale production systems. External membrane perfusion results in increased shear stress generated by pumping of cells and passing through microfiltration modules at high velocity. However, using optimized perfusion strategies this shear stress can be minimized such that it is tolerated by the cells. In these cases, perfusion culture has proven to be superior to batch production with respect to product yields and cell specific productivity. Although insect cells could be successfully cultivated by immobilization and perfusion in stationary bed bioreactors, this method has not yet been used in continuous processes. In fluidized bed bioreactors with continuous medium exchange cells showed reduced growth and protein production rates.For the cultivation of insect cells in batch and fedbatch processes numerous efforts have been made to optimize the culture medium in order to allow growth and production at higher cell densities. These improved media could be used in combination with a perfusion process, thus allowing substantially increased cell densities without raising the medium exchange rate. However, sufficient oxygen supply has to be guaranteed during fermentation in order to ensure optimal productivity.  相似文献   

15.
A perfusion system is described for the production of a human monoclonal antibody in non-secreting murine myeloma (NS0) cells that was previously shown to be difficult to produce at high levels using fed-batch culture. The perfusion system was based on the use of a commercially available cell settler as the separation device to separate the cells from the culture. Separation efficiency of the cell settler was above 98%. Based on the growth and glucose consumption rates, fresh media was added to the culture and the turnover rate for the bioreactor was set at a maximum of 1.5 times the bioreactor volume per day. The perfusion process resulted in twice the maximum viable cell densities and up to three times the total protein production in a 53-day run period when compared to the fed-batch process. In addition, charge heterogeneity of the antibody as measured by ion exchange chromatography was lower for material purified from the perfusion runs compared to fed-batch. Perfusion mode of culture using a commercially available gravity settler is therefore a viable alternative to fed-batch mode for high-level production of this monoclonal antibody in NS0 cells.  相似文献   

16.
This article presents a novel pumpless perfusion cell culture cap, the gravity‐driven flow rate of which is kept constant by the height difference of two parallel channel layers. Previous pumpless perfusion cell culture systems create a gravity‐driven flow by means of the hydraulic head difference (Δh) between the source reservoir and the drain reservoir. As more media passes from the source reservoir to the drain reservoir, the source media level decreases and the drain media level increases. Thus, previous works based on a gravity‐driven flow were unable to supply a constant flow rate for the perfusion cell culture. However, the proposed perfusion cell culture cap can supply a constant flow rate, because the media level remains unchanged as the media moves laterally through each channel having same media level. In experiments, using the different fluidic resistances, the perfusion cap generated constant flow rates of 871 ± 27 μL h?1 and 446 ± 11 μL h?1. The 871 and 446 μL h?1 flow rates replace the whole 20 mL medium in the petridish with a fresh medium for days 1 and 2, respectively. In the perfusion cell (A549 cell line) culture with the 871 μL h?1 flow rate, the proposed cap can maintain a lactate concentration of about 2200 nmol mL?1 and an ammonia concentration of about 3200 nmol mL?1. Moreover, although the static cell culture maintains cell viability for 5 days, the perfusion cell culture with the 871 μL h?1 flow rate can maintain cell viability for 9 days. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

17.
Increasing economic pressure is the main driving force to enhance the efficiency of existing processes. We developed a perfusion strategy for a seed train reactor to generate a higher inoculum density for a subsequent fed batch production culture. A higher inoculum density can reduce culture duration without compromising product titers. Hence, a better capacity utilization can be achieved. The perfusion strategy was planned to be implemented in an existing large scale antibody production process. Therefore, facility and process constraints had to be considered. This article describes the initial development steps. Using a proprietary medium and a Chinese hamster ovary cell line expressing an IgG antibody, four different cell retention devices were compared in regard to retention efficiency and reliability. Two devices were selected for further process refinement, a centrifuge and an inclined gravitational settler. A concentrated feed medium was developed to meet facility constraints regarding maximum accumulated perfundate volume. A 2‐day batch phase followed by 5 days of perfusion resulted in cell densities of 1.6 × 1010 cells L?1, a 3.5 fold increase compared to batch cultivations. Two reactor volumes of concentrated feed medium were needed to achieve this goal. Eleven cultivations were carried out in bench and 50 L reactors showing acceptable reproducibility and ease of scale up. In addition, it was shown that at least three perfusion phases can be combined within a repeated perfusion strategy. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:607–615, 2014  相似文献   

18.
A chemically defined platform basal medium and feed media were developed using a single Chinese hamster ovary (CHO) cell line that produces a monoclonal antibody (mAb). Cell line A, which showed a peak viable cell density of 5.9 × 106 cells/mL and a final mAb titer of 0.5 g/L in batch culture, was selected for the platform media development. Stoichiometrically balanced feed media were developed using glucose as an indicator of cell metabolism to determine the feed rates of all other nutrients. A fed-batch culture of cell line A using the platform fed-batch medium yielded a 6.4 g/L mAb titer, which was 12-fold higher than that of the batch culture. To examine the applicability of the platform basal medium and feed media, three other cell lines (A16, B, and C) that produce mAbs were cultured using the platform fed-batch medium, and they yielded mAb titers of 8.4, 3.3, and 6.2 g/L, respectively. The peak viable cell densities of the three cell lines ranged from 1.3 × 107 to 1.8 × 107 cells/mL. These results show that the nutritionally balanced fed-batch medium and feeds worked well for other cell lines. During the medium development, we found that choline limitation caused a lower cell viability, a lower mAb titer, a higher mAb aggregate content, and a higher mannose-5 content. The optimal choline chloride to glucose ratio for the CHO cell fed-batch culture was determined. Our platform basal medium and feed media will shorten the medium-development time for mAb-producing cell lines.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号