首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This article describes hepatocyte metabolism mathematical model (HEMETβ), which is an improved version of HEMET, an effective and versatile virtual cell model based on hepatic cell metabolism. HEMET is based on a set of non-linear differential equations, implemented in Simulink?, which describes the biochemical reactions and energetic cell state, and completely mimics the principal metabolic pathways in hepatic cells. The cell energy function and modular structure are the core of this model. HEMETβ as HEMET model describes hepatic cellular metabolism in standard conditions (cell culture in a plastic multi-well placed in an incubator at 37° C with 5% of CO2) and with excess substrates concentration. The main improvements in HEMETβ are the introductions of Michaelis-Menten models for reversible reactions and enzymatic inhibition. In addition, we eliminated hard non-linearities and modelled cell proliferation and every single aminoacid degradation pathway. All these innovations, combined with a user-friendly aspect, allow researchers to create new cell types and validate new experimental protocols just varying 'peripheral' pathways or model inputs.  相似文献   

2.
3.
This article describes hepatocyte metabolism mathematical model (HEMETβ), which is an improved version of HEMET, an effective and versatile virtual cell model based on hepatic cell metabolism. HEMET is based on a set of non-linear differential equations, implemented in Simulink®, which describes the biochemical reactions and energetic cell state, and completely mimics the principal metabolic pathways in hepatic cells. The cell energy function and modular structure are the core of this model. HEMETβ as HEMET model describes hepatic cellular metabolism in standard conditions (cell culture in a plastic multi-well placed in an incubator at 37°C with 5% of CO2) and with excess substrates concentration. The main improvements in HEMETβ are the introductions of Michaelis–Menten models for reversible reactions and enzymatic inhibition. In addition, we eliminated hard non-linearities and modelled cell proliferation and every single aminoacid degradation pathway. All these innovations, combined with a user-friendly aspect, allow researchers to create new cell types and validate new experimental protocols just varying ‘peripheral’ pathways or model inputs.  相似文献   

4.
Although primary human hepatocytes (PHHs) are the gold standard in drug efficacy and metabolism studies, long-term survival of PHHs and maintenance of their hepatic function are still challenging. In this study, we focused on the effect of the initial microenvironment on upregulation and long-term preservation of hepatic function of PHHs encapsulated within biodegradable hydrogel systems. PHHs were encapsulated in RGD-functionalized hybrid hydrogels with various degrees of degradability, and their hepatic functionality was analyzed. Regardless of the hydrogel elastic modulus, the combination with nondegradable hydrogels had a predominantly negative effect on the prompt engraftment of PHHs, whereas a degradable hydrogel with intermediate initial degradability was most effective in maintaining hepatic function. Efficient network formation by PHHs and cocultured cells, along with the control of hydrogel degradation, governed the hepatic functionality at an early stage and upon long-term cultivation. Under optimized conditions, expression of genes involved in biological processes such as focal adhesions, cell survival, cytoskeleton formation, and extracellular matrix interactions was significantly higher than that in a control with relatively delayed initial degradation. Thus, we suggest that the orchestrated control of initial cellular remodeling may play an important role in the maintenance of hepatic function in a three-dimensional PHH culture.  相似文献   

5.
Quantum dot materials are increasingly used in cellular assays, and offer a powerful and enabling complement to existing methods of labeling proteins, such as green fluorescent protein. These materials give researchers the ability to study specificity and functional responses in cellular systems, in a highly multiplexed manner, at either a molecular or cellular level. The recent literature bears witness to the increasing use of quantum dots for the investigation of chemicals on biological systems, and paves the way to the use of these assays for high-throughput analysis of functional responses in relevant models at scales including molecular, cellular and whole animal.  相似文献   

6.

Introduction

Diagnosis of the mucopolysaccharidoses (MPSs) generally relies on an initial analysis of total glycosaminoglycan (GAG) excretion in urine. Often the dimethylmethylene blue dye-binding (DMB) assay is used, although false-negative results have been reported. We report a multiplexed diagnostic test with a high sensitivity for all MPSs and with the potential to identify patients with I-cell disease (ML II) and mucolipidosis III (ML III).

Methods

Urine samples of 100 treatment naive MPS patients were collected and analyzed by the conventional DMB assay and a multiplex assay based on enzymatic digestion of heparan sulfate (HS), dermatan sulfate (DS) and keratan sulfate (KS) followed by quantification by LC-MS/MS. Specificity was calculated by analyzing urine samples from a cohort of 39 patients suspected for an inborn error of metabolism, including MPSs.

Results

The MPS cohort consisted of 18 MPS I, 16 MPS II, 34 MPS III, 10 MPS IVA, 3 MPS IVB, 17 MPS VI and 2 MPS VII patients. All 100 patients were identified by the LC-MS/MS assay with typical patterns of elevation of HS, DS and KS, respectively (sensitivity 100%). DMB analysis of the urine was found to be in the normal range in 10 of the 100 patients (sensitivity 90%). Three out of the 39 patients were identified as false-positive, resulting in a specificity of the LS-MS/MS assay of 92%. For the DMB this was 97%. All three patients with MLII/MLIII had elevated GAGs in the LC-MS/MS assay while the DMB test was normal in 2 of them.

Conclusion

The multiplex LC-MS/MS assay provides a robust and very sensitive assay for the diagnosis of the complete spectrum of MPSs and has the potential to identify MPS related disorders such as MLII/MLIII. Its performance is superior to that of the conventional DMB assay.  相似文献   

7.
Microfluidics-based systems biology   总被引:1,自引:0,他引:1  
Systems biology seeks to develop a complete understanding of cellular mechanisms by studying the functions of intra- and inter-cellular molecular interactions that trigger and coordinate cellular events. However, the complexity of biological systems causes accurate and precise systems biology experimentation to be a difficult task. Most biological experimentation focuses on highly detailed investigation of a single signaling mechanism, which lacks the throughput necessary to reconstruct the entirety of the biological system, while high-throughput testing often lacks the fidelity and detail necessary to fully comprehend the mechanisms of signal propagation. Systems biology experimentation, however, can benefit greatly from the progress in the development of microfluidic devices. Microfluidics provides the opportunity to study cells effectively on both a single- and multi-cellular level with high-resolution and localized application of experimental conditions with biomimetic physiological conditions. Additionally, the ability to massively array devices on a chip opens the door for high-throughput, high fidelity experimentation to aid in accurate and precise unraveling of the intertwined signaling systems that compose the inner workings of the cell.  相似文献   

8.
This mini-review discusses the evolution of fluorescence as a tool to study living cells and tissues in vitro and the present role of fluorescent protein biosensors (FPBs) in microphysiological systems (MPSs). FPBs allow the measurement of temporal and spatial dynamics of targeted cellular events involved in normal and perturbed cellular assay systems and MPSs in real time. FPBs evolved from fluorescent analog cytochemistry (FAC) that permitted the measurement of the dynamics of purified proteins covalently labeled with environmentally insensitive fluorescent dyes and then incorporated into living cells, as well as a large list of diffusible fluorescent probes engineered to measure environmental changes in living cells. In parallel, a wide range of fluorescence microscopy methods were developed to measure the chemical and molecular activities of the labeled cells, including ratio imaging, fluorescence lifetime, total internal reflection, 3D imaging, including super-resolution, as well as high-content screening. FPBs evolved from FAC by combining environmentally sensitive fluorescent dyes with proteins in order to monitor specific physiological events such as post-translational modifications, production of metabolites, changes in various ion concentrations, and the dynamic interaction of proteins with defined macromolecules in time and space within cells. Original FPBs involved the engineering of fluorescent dyes to sense specific activities when covalently attached to particular domains of the targeted protein. The subsequent development of fluorescent proteins (FPs), such as the green fluorescent protein, dramatically accelerated the adoption of studying living cells, since the genetic “labeling” of proteins became a relatively simple method that permitted the analysis of temporal–spatial dynamics of a wide range of proteins. Investigators subsequently engineered the fluorescence properties of the FPs for environmental sensitivity that, when combined with targeted proteins/peptides, created a new generation of FPBs. Examples of FPBs that are useful in MPS are presented, including the design, testing, and application in a liver MPS.  相似文献   

9.
10.
The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL–8 release is detectable within the first 2h and peaks at 4–6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms.  相似文献   

11.
Recent research has shown that the maintenance of relevant liver functions ex vivo requires models in which the cells exhibit an in vivo‐like phenotype, often achieved by reconstitution of appropriate cellular interactions. Multiple different models have been presented that differ in the cells utilized, media, and culture conditions. Furthermore, several technologically different approaches have been presented including bioreactors, chips, and plate‐based systems in fluidic or static media constituting of chemically diverse materials. Using such models, the ability to predict drug metabolism, drug toxicity, and liver functionality have increased tremendously as compared to conventional in vitro models in which cells are cultured as 2D monolayers. Here, the authors highlight important considerations for microphysiological systems for primary hepatocyte culture, review current culture paradigms, and discuss their opportunities for studies of drug metabolism, hepatotoxicity, liver biology, and disease.  相似文献   

12.
Fatty liver is commonly detected in obesity and has been identified as a risk factor for the progression of hepatic fibrosis in a wide range of liver diseases. Transforming growth factor beta (TGFβ) and activin A, both members of the TGFβ superfamiliy, are central regulators in liver fibrosis and regeneration, and the effect of hepatocyte lipid accumulation on the release of these proteins was studied. Primary human hepatocytes (PHH) were incubated with palmitic acid or oleic acid to increase lipid storage. Whereas activin A and its natural inhibitor follistatin were not affected, TGFβ was 2-fold increased. The hepatoprotective adipokine adiponectin dose-dependently induced activin A while lowering follistatin but did not alter TGFβ. Activin A was markedly reduced in hepatocyte cell lines compared to PHH and was not induced upon adiponectin incubation demonstrating significant differences of primary and transformed cells. In free fatty acid (FFA)-incubated PHH adiponectin-mediated induction of activin A was impaired. Inhibition of TGFβ receptors ALK4/5 and blockage of SMAD3 phosphorylation rescued activin A synthesis in FFA and in TGFβ incubated cells suggesting that FFA inhibit adiponectin activity by inducing TGFβ. To evaluate whether serum levels of activin A and its antagonist are altered in patients with hepatic steatosis, both proteins were measured in the serum of patients with sonographically diagnosed fatty liver and age- and BMI-matched controls. Systemic adiponectin was significantly reduced in patients with fatty liver but activin A and follistatin were not altered. In summary the current data demonstrate that lipid accumulation in hepatocytes induces TGFβ which impairs adiponectin bioactivity, and thereby may contribute to liver injury.  相似文献   

13.
We describe a micromixing approach that is compatible with commercial autosamplers, flow cytometry, and other detection schemes that require the mixing of components that have been introduced into laminarflow. The scheme is based on high-throughput flow cytometry (HyperCyt) where samples from multi-well plates that have been picked up by an autosampler can be separated during delivery by the small air bubbles introduced during the transit of the autosampler probe from well to well. Here, either cell or particle samplesflowing continuously and driven by a syringe are brought together in a Y with reagent samples from wells driven by a peristaltic pump. The mixing is driven by a magnetic microstirrer contained within the sample line. The mixing is assessed using fluorescence of both cell calcium responses and bead-based fluorescence unquenching. In the analysis stream, the particles and reagents are mixed with eithera "wire" or "bar". The bar is more efficient than the wire, and the efficiency of either depends on the spinning action. The high-throughput approach and mixing in HyperCyt integrate autosamplers with submicroliter detection volumes for analysis in flow cytometry or in microfluidic channels.  相似文献   

14.
The frequency of lysosomal storage diseases in The Netherlands   总被引:22,自引:0,他引:22  
We have calculated the relative frequency and the birth prevalence of lysosomal storage diseases (LSDs) in The Netherlands based on all 963 enzymatically confirmed cases diagnosed during the period 1970–1996. The combined birth prevalence for all LSDs is 14 per 100,000 live births. Glycogenosis type II is the most frequent LSD with a birth prevalence of 2.0 per 100,000 live births, representing 17% of all diagnosed cases. Within the group of lipidoses, metachromatic leukodystrophy (MLD) is the most frequent LSD. MLD was diagnosed in 24% of lipidoses and the calculated birth prevalence was 1.42 per 100,000 for all types combined. Krabbe disease, diagnosed in 17% of cases, also belongs to the more frequent lipid storage diseases in The Netherlands with a birth prevalence of 1.35 per 100,000. The birth prevalence of Gaucher disease, commonly regarded as the most frequent lipid storage disease is 1.16 per 100,000 for all types combined. The combined birth prevalence for all lipid storage diseases is 6.2 per 100,000 live births. Within the group of mucopolysaccharidoses (MPSs), MPS I has the highest calculated birth prevalence of 1.19 per 100,000 (25% of all cases of MPS diagnosed), which is slightly more frequent than MPS IIIA with an estimated birth prevalence of 1.16 per 100,000. As a group, MPS III comprises 47% of all MPS cases diagnosed and the combined birth prevalence is 1.89 per 100,000 live births. The birth prevalence of MPS II is 0.67 per 100,000 (1.30 per 100,000 male live births). All other MPSs are rare. The combined birth prevalence for all MPSs is 4.5 per 100,000 live births. Mucolipidoses and oligosaccharidoses are very rare with birth prevalences between 0.04 and 0.20 for individual diseases. Only 49 cases were diagnosed between 1970 and 1996. Their combined birth prevalence is 1.0 per 100,000 live births.  相似文献   

15.
生长发育是一个复杂的动态过程, 了解其发生细节是生命科学研究的重要内容。最新发展起来的微流芯片技术为实现这个目标提供了新的途径。动物及微生物中的应用表明, 该技术兼有实时定量监测和高通量整合处理的优势。在植物研究领域, 用针对根生长特点和要求设计的根微流芯片结合荧光共振能量转移探针已经成功地检测出拟南芥(Arabidopsis thaliana)根细胞内葡萄糖和游离的Ca2+、Zn2+的浓度。随着各种底物特异的荧光共振能量转移探针的开发和应用, 根微流芯片还可以用来检测植物细胞内激素或其它代谢中间产物的浓度及其动态变化过程。不仅如此, 以微流芯片为基础发展起来的Plant Chip和Tip Chip则为研究植物与微生物的相互作用以及植物花粉管极性生长和细胞分裂分化提供了理想的平台。作为了解遗传因素或环境刺激导致细胞生命活动变化细节的有力工具, 微流芯片技术有望为植物研究领域带来更多新的进展和突破。  相似文献   

16.
Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research, the applicability of stem cells for preclinical screening in the drug discovery process is still challenging due to difficulties in controlling the stem cell microenvironment and the limited availability of high-throughput systems. Recently, researchers have been actively developing and evaluating three-dimensional (3D) cell culture-based platforms using microfluidic technologies, such as organ-on-a-chip and organoid-on-a-chip platforms, and they have achieved promising breakthroughs in stem cell engineering. In this review, we start with a comprehensive discussion on the importance of microfluidic 3D cell culture techniques in stem cell research and their technical strategies in the field of drug discovery. In a subsequent section, we discuss microfluidic 3D cell culture techniques for high-throughput analysis for use in stem cell research. In addition, some potential and practical applications of organ-on-a-chip or organoid-on-a-chip platforms using stem cells as drug screening and disease models are highlighted.  相似文献   

17.
近年来,连续型细胞培养由于其高单位体积产量、稳定的产品质量属性以及潜在的成本节约效应正成为生物大分子制药生产的工艺焦点。相比传统的流加培养模式,灌流培养因培养的连续性、操作的复杂性,致使其反应器规模培养需消耗大量培养基,产生更高人力成本,不能满足当今加速化高效化的工艺开发需求。为获得稳健的灌流培养工艺并控制较低成本,高通量灌流培养模型被用于批量化的小规模灌流培养,进行灌流培养前期的克隆筛选、培养基筛选及工艺参数优化等工作,为后期大规模培养提供实用性数据支持,同时也被用于预测大规模培养的细胞表型和产品质量属性。重点介绍了当前高通量系统包括摇瓶/摇管系统、多平行自动化系统以及微流控体系用作灌流培养的特征、具体应用及比较,同时论述当前高通量灌流培养系统在生物工艺领域发展所面临的机遇及挑战,并展望其应用前景。  相似文献   

18.
Magnetic relaxation switches capable of sensing molecular interactions   总被引:9,自引:0,他引:9  
Highly sensitive, efficient, and high-throughput biosensors are required for genomic and proteomic data acquisition in complex biological samples and potentially for in vivo applications. To facilitate these studies, we have developed biocompatible magnetic nanosensors that act as magnetic relaxation switches (MRS) to detect molecular interactions in the reversible self-assembly of disperse magnetic particles into stable nanoassemblies. Using four different types of molecular interactions (DNA-DNA, protein-protein, protein-small molecule, and enzyme reactions) as model systems, we show that the MRS technology can be used to detect these interactions with high efficiency and sensitivity using magnetic relaxation measurements including magnetic resonance imaging (MRI). Furthermore, the magnetic changes are detectable in turbid media and in whole-cell lysates without protein purification. The developed magnetic nanosensors can be used in a variety of biological applications such as in homogeneous assays, as reagents in miniaturized microfluidic systems, as affinity ligands for rapid and high-throughput magnetic readouts of arrays, as probes for magnetic force microscopy, and potentially for in vivo imaging.  相似文献   

19.
To enable large-scale screening of signaling molecules and drugs that regulate cellular contractility-associated mechanotransduction, we previously modified, particularly in terms of the capability of efficiently collecting big data, conventional methodologies using wrinkled substrates to determine the cellular contractility. Here, we present a new system to perform the wrinkle-based cell force assay in a multi-well plate format conformed to standardized geometric configurations and compatible with available technologies such as automated plate readers. With this highly improved throughput in terms of hardware as well as software using a deep learning-based technology, we evaluated the effect of treating cells with various types of pharmacological inhibitors on the cellular contractility. We found opposite responses of cells to the inhibitors between the contractility and collective migration activities. While similar inverse relationships between the contractility and migration have been reported in separate studies, our results here with the high-throughput screening system more broadly generalized these observations.  相似文献   

20.
The development of an in vitro functional liver zonation model is a major issue to reproduce physiological liver features. Oxygen concentration is one of the potential explanations of a primary regulating factor of zonation. In this frame, we investigated the oxygen gradient inside a microfluidic device containing rat hepatocyte cultures. The device integrated a platinum (Pt) (II) octaethylporphyrin sensor, allowing a 2D mapping of the oxygen concentration. After 3 hr adhesion of the hepatocytes, the sensor indicated an intense oxygen depletion, leading to an oxygen shortage in the center of the device. After a 30 min perfusion of the culture medium, we monitored the formation of the oxygen gradient along the culture due to cellular respiration. The profile of the oxygen gradient was modulated and controlled by increasing either the perfusion flow rate or the device thickness. In addition, the oxygen gradient was time dependent as far as it decreased with the time of culture. Perivenous and periportal liver patterns were characterized by the immunostaining of the hepatic markers. We put in evidence a spatio temporal hepatic organization. We observed the overexpression since 24 hr of perfusion of the APC and PCK1 proteins upstream in the oxygen-rich area of the device. The overexpression of GS, GCK, CYP1A, and HIFα proteins were observed downstream in the oxygen-poor area. Then, CYP3A2 and β-catenin spatial reorganization was achieved after 48 hr of culture. The results presented a partial zonation-like pattern that was superimposed with an oxygen gradient profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号