首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A metabolic shift from lactate production (LP) to net lactate consumption (LC) phenotype was observed in certain Chinese hamster ovary (CHO) cell lines during the implementation of a new chemically defined medium (CDM) formulation for antibody production. In addition, this metabolic shift typically leads to process performance improvements in cell growth, productivity, process robustness, and scalability. In our previous studies, a correlation between a key media component, copper, and this lactate metabolism shift was observed. To further investigate this phenomenon, two complementary studies were conducted. In the first study, a single cell line was cultivated in two media that only differed in their copper concentrations, yet were known to generate an LP or LC phenotype with that cell line. In the second study, two different cell lines, which were known to possess inherently different lactate metabolic characteristics, were cultivated in the same medium with a high level of copper; one cell line produced lactate throughout the duration of the culture, and the other consumed lactate after an initial period of LP. Cell pellet and supernatant samples from both studies were collected at regular time intervals, and their metabolite profiles were investigated. The primary finding from the metabolic analysis was that the cells in LP conditions exhibited a less efficient energy metabolism, with glucose primarily being converted into pyruvate, sorbitol, lactate, and other glycolytic intermediates. This decrease in energy efficiency may be due to an inability of pyruvate and acetyl-CoA to progress into the TCA cycle. The lack of progression into the TCA cycle or overflow metabolism in the LP phenotype resulted in the inadequate supply of ATP for the cells. As a consequence, the glycolysis pathway remained the major source of ATP, which in turn, resulted in continuous LP throughout the culture. In addition, the accumulation of free fatty acids was observed; this was thought to be a result of phospholipid catabolism that was being used to supplement the energy produced through glycolysis in order to meet the needs of LP cells. A thorough review of the metabolic profiles indicated that the lactate metabolic shift could be related to the oxidative metabolic capacity of cells.  相似文献   

2.
3.
4.
Chinese hamster ovary (CHO) cells represent a group of predominantly used mammalian hosts for producing recombinant therapeutic proteins. Known for their rapid proliferation rates, CHO cells undergo aerobic glycolysis that is characterized by fast glucose consumption, that ultimately gives rise to a group of small-molecule organic acids. However, only the function of lactate has been extensively studied in CHO cell culture. In this study, we observed the accumulation of acetate from the late exponential phase to harvest day, potentially contributing to the pH decline in late culture stage regardless of lactate consumption. In addition, we evaluated the acidification of the fresh media and the cell culture suspension, and the data revealed that acetate presented a lower acidification capacity compared to lactate and exhibited limited inhibitory effect on cells with less than 20 mM supplemented in the media. This study also explored the ways to control acetate accumulation in CHO cell culture by manipulating the process parameters such as temperature, glucose, and pH control. The positive correlation between the specific glucose consumption rate and acetate generation rate provides evidence of the endogenous acetate generation from overflow metabolism. Reducing these parameters (temperature, glucose consumption) and HCl-controlled low pH ultimately suppress acetate build-up. In addition, the specific acetate generation rate and relevant glucose consumption rate are found to be a metabolic trait associated with specific cell lines. Taken together, the results presented in these experiments provide a means to advance industrial CHO cell culture process control and development.  相似文献   

5.
A method is described for estimating recombinant Chinese hamster ovary (rCHO) cell density in a packed-bed bioreactor by lactate production rate. The lactate production rate, which depended on both the cell numbers and cell growth rate, was modeled by segregating the cell population into two parts: one growing at a maximum specific growth rate and another non-growing. The individual cell in each part had the same lactate production rate. The established rate equation of lactate production matched the experimental data reasonably well and could be used to estimate the cell growth in the batch culture with microcarriers. Furthermore, in the perfusion culture of rCHO cells in a packed-bed bioreactor, the final cell density, 1.3×1010 cells l–1, estimated by lactate production rate, was comparable to the direct sample counting of 1.2×1010 cells l–1, showing that lactate production rate method would be useful in tracing the cell growth in packed-bed bioreactors.  相似文献   

6.
Monitoring cell growth is crucial to the success of an animal cell culture process that can be accomplished by a variety of direct or indirect methodologies. Glucose is a major carbon and energy source for cultured mammalian cells in most cases, but glycolytic metabolism often results in the accumulation of lactate. Glucose and lactate levels are therefore routinely measured to determine metabolic activities of a culture. Typically, neither glucose consumption rate nor lactate accumulation rate has a direct correlation with cell density due to the changes in culture environment and cell physiology. We discovered that although the metabolic rate of glucose or lactate varies depending on the stages of a culture, the cumulative consumption of glucose and lactate combined (Q(GL)) exhibits a linear relationship relative to the integral of viable cells (IVC), with the slope indicating the specific consumption rate of glucose and lactate combined (q(GL)). Additional studies also showed that the q(GL) remains relatively constant under different culture conditions. The insensitivity of the q(GL) to process variations allows a potentially easy and accurate determination of viable cell density by the measurement of glucose and lactate. In addition, the more predictable nature of a linear relationship will aid the design of better forward control strategies to improve cell culture processes.  相似文献   

7.
In recent years, the development of advanced systems for bioprocess monitoring and control has become an area of intensive research. Along with traditional techniques, there are several new approaches which are increasingly being applied to bioprocess operations. Among these, of special note is expert system technology, which provides possibilities for the design of efficient bioprocess control systems with new functional capabilities. This technology has been successfully applied to variety of microbial processes at laboratory and industrial scale. The present paper analyzes the possibility for application of expert systems to animal cell cultures processes whose high complexity is well suited to expert control. The discussion focuses on the organization and the functionality of the intelligent control systems, and covers some practical aspects of their design.  相似文献   

8.
Hwang SO  Lee GM 《Autophagy》2008,4(1):70-72
Upon nutrient deprivation during Chinese hamster ovary (CHO) cell culture for foreign protein production, cells are subjected to two types of programmed cell death (PCD), apoptosis and autophagy. However, only apoptosis has drawn attention in the field of CHO cell culture. Numerous studies on engineering genes or supplementing essential nutrients or chemical additives to culture media to overcome cell death induced by various stimuli have been limited to apoptosis. Recently, autophagic morphologies were demonstrated by the processing of LC3 into the 16 kDa LC3-II form, and the accumulation of multiple autophagosomes in CHO cell culture. Therefore, it seems worthwhile to revisit the issue of cell death in CHO cell culture with the concept of autophagy in mind, in order to achieve a maximum production of foreign proteins by protecting cells from both types of PCD.  相似文献   

9.
Chinese hamster ovary (CHO) cells, that are widely used for production of therapeutic proteins, are subjected to apoptosis and autophagy under the stresses induced by conditions such as nutrient deprivation, hyperosmolality and addition of sodium butyrate. To achieve a cost-effective level of production, it is important to extend the culture longevity. Until now, there have been numerous studies in which apoptosis of recombinant CHO (rCHO) cells was inhibited, resulting in enhanced production of therapeutic proteins. Recently, autophagy in rCHO cells has drawn attention because it can be genetically and chemically controlled to increase cell survival and productivity. Autophagy is a global catabolic process which involves multiple pathways and genes that regulate the lysosomal degradation of intracellular components. A simultaneous targeting of anti-apoptosis and pro-autophagy could lead to more efficient protection of cells from stressful culture conditions. In this regard, it is worthwhile to have a detailed understanding of the autophagic pathway, in order to select appropriate genes and chemical targets to manage autophagy in rCHO cells, and thus to enhance the production of therapeutic proteins.  相似文献   

10.
Lactate has long been regarded as one of the key metabolites of mammalian cell cultures. High levels of lactate have clear negative impacts on cell culture processes, and therefore, a great amount of efforts have been made to reduce lactate accumulation and/or to induce lactate consumption in the later stage of cultures. However, there is virtually no report on the impact of lactate depletion after initial accumulation. In this work, we observed that glucose uptake rate dropped over 50% at the onset of lactate consumption, and that catabolism of alanine due to lactate depletion led to ammonium accumulation. We explored the impact of feeding lactate as well as pyruvate to the cultures. In particular, a strategy was employed where CO(2) was replaced by lactic acid for culture pH control, which enabled automatic lactate feeding. The results demonstrated that lactate or pyruvate can serve as an alternative or even preferred carbon source during certain stage of the culture in the presence of glucose, and that by feeding lactate or pyruvate, very low levels of ammonia can be achieved throughout the culture. In addition, low levels of pCO(2) were also maintained in these cultures. This was in strong contrast to the control cultures where lactate was depleted during the culture, and ammonia and pCO(2) build-up were significant. Culture growth and productivity were similar between the control and lactate-fed cultures, as well as various product quality attributes. To our knowledge, this work represents the first comprehensive study on lactate depletion and offers a simple yet effective strategy to overcome ammonia and pCO(2) accumulation that could arise in certain cultures due to early depletion of lactate.  相似文献   

11.
High demand in manufactured biologics drives the continued need for increased productivity. In this study elevated lactate metabolization resulted in improved metabolic efficiency and cellular productivity for a readily intensified high titer fed-batch process. Scheduled base or lactate feeds during the stationary growth phase led to increased titers (+9% and +8% respectively) without impacting the overall growth performance. The higher lactate consumption induced by either feed strategy substituted for glutamate catabolism and consequently reduced ammonia build-up. Direct correlation between increased titers and reduced ammonia levels was shown. Product quality attributes were impacted by both feeding strategies but could be matched with the control process by shortening the cell culture duration while maintaining titer constant.  相似文献   

12.
13.
Process intensification of monoclonal antibody production is leading to more concentrated feed media causing issues with precipitation of solids from the media solution. This results in processing problems since components in the precipitate are no longer in solution, changing the media composition and leading to variability in cell culture performance. The goal of this work is to characterize the feed media precipitate, and in particular to identify the precipitated components so that mitigation strategies can be developed. From the conducted analysis, the precipitate was predominately found to be organic and was analyzed with liquid chromatography-mass spectrometry and inductively coupled plasma-optical emission spectroscopy (ICP-OES) to identify the constituent components. Up to ten amino acids were identified with tyrosine (approximately 77 wt.%) and phenylalanine (approximately 4 wt.%) being the most prevalent amino acids. Elemental analysis with ICP-OES revealed that inorganic components were accounted for less than one weight percentage of the solid precipitate with metal sulfates being the predominant inorganic components.  相似文献   

14.
15.
Chinese hamster ovary cells grown in cell culture were broken and fractionated by differential centrifugation. Four principal fractions: nuclear and membrane, microsomal, postribosomal, and supernatant were obtained. The distribution of aminoacyl-tRNA synthetases in these four fractions was determined for all twenty amino acids.It was shown that there is a differential distribution of synthetases. Activities specific for eight amino acids: Ala, Ser, Gly, Cys, His, Arg, Thr and Pro were found mainly in the supernatant fraction. Activities specific for eleven amino acids: Asp, Asn, Glu, Gln, Ile, Leu, Lys, Met, Phe, Tyr and Val were found mainly in the postribosomal fraction. Four activities were found at significant levels in the microsomal fraction: Asp, Phe, Lys and Pro. The nuclear and membrane fraction contained activity for Lys, His, Asp and Thr.Changes in aminoacyl-tRNA synthetase activities in various fractions from preparations made by breaking cells with a membrane-dissociating detergent showed that some of the aminoacyl-tRNA synthetase activities may be membrane bound.  相似文献   

16.
The biopharmaceutical industry continuously seeks to optimize the critical quality attributes to maintain the reliability and cost-effectiveness of its products. Such optimization demands a scalable and optimal control strategy to meet the process constraints and objectives. This work uses a model predictive controller (MPC) to compute an optimal feeding strategy leading to maximized cell growth and metabolite production in fed-batch cell culture processes. The lack of high-fidelity physics-based models and the high complexity of cell culture processes motivated us to use machine learning algorithms in the forecast model to aid our development. We took advantage of linear regression, the Gaussian process and neural network models in the MPC design to maximize the daily protein production for each batch. The control scheme of the cell culture process solves an optimization problem while maintaining all metabolites and cell culture process variables within the specification. The linear and nonlinear models are developed based on real cell culture process data, and the performance of the designed controllers is evaluated by running several real-time experiments.  相似文献   

17.
The production of biopharmaceuticals requires highly sophisticated, complex cell based processes. Once a process has been developed, acceptable ranges for various control parameters are typically defined based on process characterization studies often comprising several dozens of small scale bioreactor cultivations. A lot of data is generated during these studies and usually only the information needed to define acceptable ranges is processed in more detail. Making use of the wealth of information contained in such data sets, we present here a methodology that uses performance data (such as metabolite profiles) to forecast the product quality and quantity of mammalian cell culture processes based on a toolbox of advanced statistical methods. With this performance based modeling (PBM) the final product concentration and 12 quality attributes (QAs) for two different biopharmaceutical products were predicted in daily intervals throughout the main stage process. The best forecast was achieved for product concentration in a very early phase of the process. Furthermore, some glycan isoforms were predicted with good accuracy several days before the bioreactor was harvested. Overall, PBM clearly demonstrated its capability of early process endpoint prediction by only using commonly available data, even though it was not possible to predict all QAs with the desired accuracy. Knowing the product quality prior to the harvest allows the manufacturer to take counter measures in case the forecasted quality or quantity deviates from what is expected. This would be a big step towards real‐time release, an important element of the FDA's PAT initiative. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1119–1127, 2015  相似文献   

18.
During recombinant Chinese hamster ovary (rCHO) cell culture, various events, such as feeding with concentrated nutrient solutions or the addition of base to maintain an optimal pH, increase the osmolality of the medium. To determine the effect of hyperosmotic stress on two types of programmed cell death (PCD), apoptosis and autophagy, of rCHO cells, two rCHO cell lines, producing antibody and erythropoietin, were subjected to hyperosmotic stress resulting from NaCl addition (310–610 mOsm/kg). For both rCHO cell lines, hyperosmolality up to 610 mOsm/kg increased cleaved forms of PARP, caspase‐3, caspase‐7, and fragmentation of chromosomal DNA, confirming the previous observation that apoptosis was induced by hyperosmotic stress. Concurrently, hyperosmolality increased the level of accumulation of LC3‐II, a widely used autophagic marker, which was determined by Western blot analysis and confocal microscopy. When glucose and glutamine concentrations were measured during the cultures, glucose and glutamine concentrations in the culture medium at various osmolalities (310–610 mOsm/kg) showed no significant differences. This result suggests that induction of PCD by hyperosmotic stress occurred independently of nutrient depletion. Taken together, autophagy as well as apoptosis was observed in rCHO cells subjected to hyperosmolality. Biotechnol. Bioeng. 2010;105: 1187–1192. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
The application of the unscented Kalman filter to control starvation-induced programmed cell death-apoptosis-in Chinese hamster ovary cells was investigated. Neural network-based sensitivity analysis identified glutamine and asparagine as two major amino acids that play a key role in the suppression of apoptosis. Dynamic equations that accounted for the dependence of apoptotic cells on the concentrations of viable cells, glutamine, and asparagine were derived. These state equations were highly nonlinear and included nine state variables. An oxygen mass balance was written in the liquid phase. It served as the output equation for the unscented Kalman filter. Using the oxygen uptake rate as the observer, it was possible to estimate the states. A model predictive controller was then implemented once the apoptotic cells in the bioreactor approached a concentration of 1.5 x 10(4) cells/mL, taking into account the operating range of the flow cytometer and measurement error. The manipulated variables were the flow rates of glucose, glutamine, and asparagine. Simulation results showed that the controller was able to keep the apoptotic cells at a concentration of 1.5 x 10(4) cells/mL.  相似文献   

20.
A recombinant DNA Chinese hamster ovary (CHO) cell line that produces tissue-type plasminogen activator (tPA) was cultivated continuously in suspension with a constant dilution rate of 0.5 day with three different asparagine concentrations in the feed (0.05, 2.55 and 7.55 mm). The up-shift in asparagine concentration caused an up-shift in asparagine consumption [15.7 and 31.4 nmol (106 cells)–1 h–1] and intracellular concentration (2.19 and 18.7 mm). The up-shift was accompanied by an increased production of ammonium, glycine and alanine, and a metabolic shift whereby the cells began to produce aspartate and glutamate, which were consumed before the shift. The tPA production was reduced in the up-shift culture. This might be explained by ammonium inhibition, but alternatively by a surprising down-shift in the intracellular concentration of many amino acids, a down-shift that was not observed in the extracellular concentrations or consumption rates. For efficient physiological engineering of mammalian cells it is necessary to include both extracellular and intracellular measurements and to consider the transport into and out of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号