首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究建立使用微流控芯片技术分离精子与阴道上皮细胞的方法,选用制作工艺简单的玻璃-PDMS芯片,对混合样本进行分离。加样前分别在进、出口池中加入7此和lO此缓冲液,然后在进样口加入2此混合样本。至少静置8nlin后,从出口池中取出3此形成重力驱动的微流体后开始分离,每隔5min在进样口补加1此缓冲液。达到理想分离效果时,用移液器从出口池取出分离出的精子,核酸酶去除游离DNA,经过提取、扩增和电泳分离脸测等步骤得到精子的分型结果。结果显示,使用基于重力驱动微流体原理的微流控芯片可在30min内分离出精子,不会有上皮细胞进入分离通道;通过核酸酶对分离出的精子液的去游DNA处理,可得到单一、完整的精子分型。与传统的差异裂解法相比,这种方法在很大程度上节省了检验时间,在性侵案件中具有一定的法医物证分析价值。  相似文献   

2.
Studying cell functions for cellomics studies often requires the use of purified individual cells from mixtures of various kinds of cells. We have developed a new non-destructive on-chip cell sorting system for single cell based cultivation, by exploiting the advantage of microfluidics and electrostatic force. The system consists of the following two parts: a cell sorting chip made of poly-dimethylsiloxane (PDMS) on a 0.2-mm-thick glass slide, and an image analysis system with a phase-contrast/fluorescence microscope. The unique features of our system include (i) identification of a target from sample cells is achieved by comparison of the 0.2-μm-resolution phase-contrast and fluorescence images of cells in the microchannel every 1/30 s; (ii) non-destructive sorting of target cells in a laminar flow by application of electrostatic repulsion force for removing unrequited cells from the one laminar flow to the other; (iii) the use of agar gel for electrodes in order to minimize the effect on cells by electrochemical reactions of electrodes, and (iv) pre-filter, which was fabricated within the channel for removal of dust contained in a sample solution from tissue extracts. The sorting chip is capable of continuous operation and we have purified more than ten thousand cells for cultivation without damaging them. Our design has proved to be very efficient and suitable for the routine use in cell purification experiments.  相似文献   

3.
BACKGROUND: Cytomics aims at understanding the function of cellular systems by analysis of single cells. Recently, there has been a growing interest in single cell measurements being performed in microfluidic systems. These systems promise to integrate staining, measurement, and analysis in a single system. One important aspect is the limitation of allowable cell sizes due to microfluidic channel dimensions. Here we want to demonstrate the broad applicability of microfluidic chip technology for the analysis of many different cell types. METHODS: We have developed a microfluidic chip and measurement system that allows flow cytometric analysis of fluorescently stained cells from different organisms. In this setup, the cells are moved by pressure-driven flow inside a network of microfluidic channels and are analyzed individually by fluorescence detection. RESULTS: We have successfully applied the system to develop a methodology to detect viable and dead cells in yeast cell populations. Also, we have measured short interfering RNA (siRNA) mediated silencing of protein expression in mammalian cells. In addition, we have characterized the infection state of Magnaportae grisea fungal spores. CONCLUSIONS: Results obtained with the microfluidic system demonstrate a broad applicability of microfluidic flow cytometry to measurement of various cell types.  相似文献   

4.
Summary Several methods for isolation and cultivation of human corneal endothelial cells have been described during the last few decades. In contrast to the situation in vivo, the cultured cells show mitogenic activity but often lose their typical morphological appearance. In this paper, we describe a technique to isolate and cultivate morphologically unchanged endothelium from the human cornea. This method revealed different characteristics of endothelial cells according to their position within the human cornea. Endothelial cells isolated from the central part have a morphology similar to that of cells in vivo (i.e., they are densely packed and show no mitogenic activity). In contrast, endothelial cells derived from the peripheral part of the cornea are characterized by mitogenic activity but their cell-to-cell attachment seems to be less tight than in vivo. The significance of these two different endothelial cell types for wound healing in the human cornea is discussed.  相似文献   

5.
X Yao  H Y Kwan  F L Chan  N W Chan  Y Huang 《FASEB journal》2000,14(7):932-938
The hemodynamic force generated by blood flow is considered to be the physiologically most important stimulus for the release of nitric oxide (NO) and prostacyclin (PGI(2)) from vascular endothelial cells (1). NO and PGI(2) then act on the underlying smooth muscle cells, causing vasodilation and thus lowering blood pressure (2, 3). One critical early event occurring in this flow-induced regulation of vascular tone is that blood flow induces Ca(2+) entry into vascular endothelial cells, which in turn leads to the formation of NO (4, 5). Here we report a mechanosensitive Ca(2+)-permeable channel in vascular endothelial cells. The activity of the channel was inhibited by 8-Br-cGMP, a membrane-permeant activator of protein kinase G (PKG), in cell-attached membrane patches. The inhibition could be reversed by PKG inhibitor KT5823 or H-8. A direct application of active PKG in inside-out patches blocked the channel activity. Gd(3+), Ni(2+), or SK&F-96365 also inhibited the channel activity. A study of fluorescent Ca(2+) entry revealed a striking pharmacological similarity between the Ca(2+) entry elicited by flow and the mechanosensitive Ca(2+)-permeable channel we identified, suggesting that this channel is the primary pathway mediating flow-induced Ca(2+) entry into vascular endothelial cells.  相似文献   

6.
Staves MP  Wayne R  Leopold AC 《Protoplasma》1992,168(3-4):141-152
Summary Hydrostatic pressure applied to one end of a horizontalChara cell induces a polarity of cytoplasmic streaming, thus mimicking the effect of gravity. A positive hydrostatic pressure induces a more rapid streaming away from the applied pressure and a slower streaming toward the applied pressure. In contrast, a negative pressure induces a more rapid streaming toward and a slower streaming away from the applied pressure. Both the hydrostatic pressure-induced and gravity-induced polarity of cytoplasmic streaming respond identically to cell ligation, UV microbeam irradiation, external Ca2+ concentrations, osmotic pressure, neutral red, TEA Cl, and the Ca2+ channel blockers nifedipine and LaCl3. In addition, hydrostatic pressure applied to the bottom of a vertically-oriented cell can abolish and even reverse the gravity-induced polarity of cytoplasmic streaming. These data indicate that both gravity and hydrostatic pressure act at the same point of the signal transduction chain leading to the induction of a polarity of cytoplasmic streaming and support the hypothesis that characean cells respond to gravity by sensing a gravity-induced pressure differential between the cell ends.  相似文献   

7.
We have shown previously that acute ischemia leads to depolarization of pulmonary microvascular endothelial cells that is prevented with cromakalim, suggesting the presence of ATP-sensitive K+ (KATP) channels in these cells. Thus KATP channel expression and activity were evaluated in rat pulmonary microvascular endothelial cells (RPMVEC) by whole cell current measurements, dot blot (mRNA), and immunoblot (protein) for the inwardly rectifying K+ channel (KIR) 6.2 subunit and fluorescent ligand binding for the sulfonylurea receptor (SUR). Low-level expression of a KATP channel was detected in endothelial cells in routine (static) culture and led us to examine whether its expression is inducible when endothelial cells are adapted to flow. Channel expression (mRNA and both KIR6.2 and SUR proteins) and inwardly rectified membrane current by patch clamp increased significantly when RPMVEC were adapted to flow at 10 dyn/cm2 for 24 h in either a parallel plate flow chamber or an artificial capillary system. Induction of the KATP channel with flow adaptation was also observed in bovine pulmonary artery endothelial cells. Flow-adapted but not static RPMVEC showed cellular plasma membrane depolarization upon stop of flow that was inhibited by a KATP channel opener and prevented by addition of cycloheximide to the medium during the flow adaptation period. These studies indicate the induction of KATP channels by flow adaptation in pulmonary endothelium and that the expression and activity of this channel are essential for the endothelial cell membrane depolarization response with acute decrease in shear stress. flow adaptation; KIR 6.2; sulfonylurea receptor; fluorescent glyburide; pulmonary microvascular endothelial cells  相似文献   

8.
9.
Human aortic endothelial cells (HAEC) respond to flow with Ca2+ entry, activation of a nonselective cation channel, activation of a chloride channel, and activation of a calcium-activated potassium channel. Conversely, human capillary endothelial cells were unaffected by similar flow rates. In HAEC the flow induced cytosolic free calcium increase ([Ca2+] i ) and the ionic currents associated with it were sustained for up to 15 min after perfusion was stopped. In the absence of extracellular Ca2+, fluid flow was unable to evoke the [Ca2+] i increase or the increase in membrane currents but the response could be restored by addition of extracellular Ca2+. Surprisingly, the flow response was inhibited in 50% of the cells by inhibitors of nitric oxide production. The results suggest that the sustained flow response in HAEC may be partially mediated by nitric oxide production and release. Received: 29 January 1999/Revised: 2 June 1999  相似文献   

10.
Microfluidic chips have been widely used to probe the mechanical properties of cells, which are recognized as a promising label-free biomarker for some diseases. In our previous work (Ye et al., 2018), we have studied the relationships between the transit time and the mechanical properties of a cell flowing through a microchannel with a single constriction, which potentially forms a basis for a microfluidic chip to measure cell’s mechanical properties. Here, we investigate this microfluidic chip design and examine its potential in performances. We first develop the simultaneous dependence of the transit time on both the shear and bending moduli of a cell, and then examine the chip sensitivity with respect to the cell mechanical properties while serializing a single constriction along the flow direction. After that, we study the effect of the flow velocity on the transit time, and also test the chip’s ability to identify heterogeneous cells with different mechanical properties. The results show that the microfluidic chip designed is capable of identifying heterogeneous cells, even when only one unhealthy cell is included. The serialization of chip can greatly increase the chip sensitivity with respect to the mechanical properties of cells. The flow with a higher velocity helps in not only promoting the chip throughput, but also in providing more accurate transit time measurements, because the cell prefers a symmetric deformation under a high velocity.  相似文献   

11.
Human microvessel endothelial cells: Isolation,culture and characterization   总被引:2,自引:0,他引:2  
Summary Over recent years, interest in endothelial cell biology has increased dramatically with our ability to grow and study endothelial cellsin vitro. While large veins and arteries remain a quick and convenient source of endothelial cells, the great morphological, biochemical and functional heterogeneity that endothelial cells express has necessitated the development of techniques to isolate microvessel endothelial cells from different tissues to create more realisticin vitro models. The majority of isolation procedures employ selective methods to enrich microvessel endothelial cells from tissue homogenates directly, or after a period in culture. These include sieving/filtration, manual weeding, isopycnic centrifugation, selective growth media, and the use of flow cytometry or magnetic beads coupled with specific endothelial cell markers. The establishment of pure endothelial cell populations is important for studying their biochemistry and physiology and there are many morphological, immunological and biochemical criteria which can be used to characterize human endothelial cells. These range from classical markers such as von Willebrand Factor and angiotensin-converting enzyme to novel markers like platelet endothelial cell adhesion molecule-1 (CD31) and the expression of E-selectin on cytokine-activated endothelial cells.  相似文献   

12.
The response of the vascular endothelium to wall shear stress plays a central role in the development and progression of atherosclerosis. Current studies have investigated endothelial response using idealized in vitro flow chambers. Such cell culture models are unable to accurately replicate the complex in vivo wall shear stress patterns arising from anatomical geometries. To better understand this implication, we have created both simplified/tubular and anatomically realistic in vitro endothelial flow models of the human right coronary artery. A post-mortem vascular cast of the human left ventricular outflow tract was used to create geometrically accurate silicone elastomer models. Straight, tubular models were created using a custom made mold. Following the culture of human abdominal aortic endothelial cells within the inner lumen, cells were exposed to steady flow (Re = 233) for varying time periods. The resulting cell morphology was analyzed in terms of shape index and angle of orientation relative to the flow direction. In both models a progressive elongation and alignment of the endothelium in the flow direction was observed following 8, 12, and 24 hours. This change, however, was significantly less pronounced in the anatomical model (as observed from morphological variations indicative of localized flow features). Differences were also observed between the inner and outer walls at the disease-prone proximal region. Since morphological adaptation is a visual indication of endothelial shear stress activation, the use of anatomical models in endothelial genetic and biochemical studies may offer better insight into the disease process.  相似文献   

13.
Human umbilical vein endothelial cells are the most widely used in vitro model for endothelial cells. Their secreted proteins, however, have not been comprehensively analysed so far. In this study, we accomplished to map the secretome of human umbilical vein endothelial cells by combining free‐flow electrophoresis with nanoflow LC‐MS/MS. This comprehensive analysis provides a basis for future comparative studies of protein secretion by endothelial cells in response to cardiovascular risk factors and is available on our website http://www.vascular‐proteomics.com .  相似文献   

14.
Vascular endothelial cells are continuously exposed to hemodynamic shear stress. Intensity and type of shear stress are highly relevant to vascular physiology and pathology. Here, we modeled shear stress distribution in a tissue culture well (R = 17.5 mm, fill volume 2 ml) under orbital translation using computational fluid dynamics with the finite element method. Free surface distribution, wall shear stress, inclination angle, drag force, and oscillatory index on the bottom surface were modeled. Obtained results predict nonuniform shear stress distribution during cycle, with higher oscillatory shear index, higher drag force values, higher circular component, and larger inclination angle of the shear stress at the periphery of the well compared with the center of the well. The oscillatory index, inclination angle, and drag force are new quantitative parameters modeled in this system, which provide a better understanding of the hydrodynamic conditions experienced and reflect the pulsatile character of blood flow in vivo. Validation experiments revealed that endothelial cells at the well periphery aligned under flow and increased Kruppel-like Factor 4 (KLF-4), cyclooxygenase-2 (COX-2) expression and endothelial nitric oxide synthase (eNOS) phosphorylation. In contrast, endothelial cells at the center of the well did not show clear directional alignment, did not induce the expression of KLF-4 and COX-2 nor increased eNOS phosphorylation. In conclusion, this improved computational modeling predicts that the orbital shaker model generates different hydrodynamic conditions at the periphery versus the center of the well eliciting divergent endothelial cell responses. The possibility of generating different hydrodynamic conditions in the same well makes this model highly attractive to study responses of distinct regions of the same endothelial monolayer to different types of shear stresses thereby better reflecting in vivo conditions.  相似文献   

15.
Static cell culture has serious limitations in its ability to represent cellular behaviour within a live organism. In vivo, cells are constantly exposed to the flow of bodily fluids and contact with other cell types. Bioreactors provide the opportunity to study cells in an environment that more closely resembles the in vivo setting because cell cultures can be exposed to dynamic flow in contact with or in proximity to other cell types. In this study we compared the metabolic profile of a dynamic cell culture system to that of a static cell culture in three different cellular phenotypes: adipocytes, endothelial cells and hepatocytes. Albumin, glucose, free fatty acids, glycerol, and lactate were measured over 48 h. We show that all three cell types have increased glucose uptake in the presence of flow; lactate release was also significantly affected. We provide robust evidence that the presence of flow significantly modifies cellular metabolism. While flow provides a more uniform nutrient distribution and increases metabolite turnover, our results indicate that different cell types have specific metabolic responses to flow, suggesting cell-specific flow-regulated activation of metabolite signalling pathways.  相似文献   

16.
The ability of vascular endothelial, cells (ECs) to respond to fluid mechanical forces associated with blood flow is essential for flow-mediated vasoregulation and arterial wall remodeling. Abnormalities in endothelial responses to flow also play a role in the development of atherosclerosis. Although our understanding of the endothelial signaling pathways stimulated by flow has greatly increased over the past two decades, the mechanisms by which ECs sense flow remain largely unknown. Activation of flow-sensitive ion channels is among the fastest known endothelial responses to flow; therefore, these ion channels have been proposed as candidate flow sensors. This review focuses on: 1) describing the various types of flow-sensitive ion channels that have been reported in ECs, 2) discussing the implications of activation of these ion channels for endothelial function, and 3) proposing candidate mechanisms for activation of flow-sensitive ion channels.  相似文献   

17.
Yao X  Kwan HY  Dora KA  Garland CJ  Huang Y 《Biorheology》2003,40(1-3):23-30
Ca2+ is an important intracellular second messenger in signal transduction of endothelial cells. It has long been recognized that a mechanosensitive Ca2+-permeable channel is present in vascular endothelial cells. The activity of this channel may increase intracellular Ca2+ level in endothelial cells. A recent finding is that the activity of this channel may be regulated by cGMP through a protein kinase G-dependent pathway. Inhibition of the channel by cGMP abolishes the Ca2+ influx elicited by flow. Several inhibitors of the cation channel including Gd3+, Ni2+, and SK&F-96365 also inhibit the Ca2+ influx due to flow stimulation. These data suggest that a mechanosensitive cation channel is the primary pathway mediating the flow-induced Ca2+ entry in vascular endothelial cells. Another important finding is that the opening of this mechanosensitive channel by KT5823 leads to endothelium-dependent vascular dilation. Therefore, it appears that this channel may play a crucial role in the regulation of vascular tone.  相似文献   

18.
The structure and function of blood vessels adapt to environmental changes such as physical development and exercise. This phenomenon is based on the ability of the endothelial cells to sense and respond to blood flow; however, the underlying mechanisms remain unclear. Here we show that the ATP-gated P2X4 ion channel, expressed on endothelial cells and encoded by P2rx4 in mice, has a key role in the response of endothelial cells to changes in blood flow. P2rx4(-/-) mice do not have normal endothelial cell responses to flow, such as influx of Ca(2+) and subsequent production of the potent vasodilator nitric oxide (NO). Additionally, vessel dilation induced by acute increases in blood flow is markedly suppressed in P2rx4(-/-) mice. Furthermore, P2rx4(-/-) mice have higher blood pressure and excrete smaller amounts of NO products in their urine than do wild-type mice. Moreover, no adaptive vascular remodeling, that is, a decrease in vessel size in response to a chronic decrease in blood flow, was observed in P2rx4(-/-) mice. Thus, endothelial P2X4 channels are crucial to flow-sensitive mechanisms that regulate blood pressure and vascular remodeling.  相似文献   

19.
We have developed a microfluidic platform modeled after the physiologic microcirculation for multiplexed tissue-like culture and high-throughput analysis. Each microfabricated culture unit consisted of three functional components: a 50 microm wide cell culture pocket, an artificial endothelial barrier with 2 microm pores, and a nutrient transport channel. This configuration enabled a high density of cancer cells to be maintained for over 1 week in a solid tumor-like morphology when fed with continuous flow. The microfluidic chip contained 16 parallel units for "flow cell" based experiments where live cells were exposed to a soluble factor and analyzed via fluorescence microscopy or flow-through biochemistry. Each fluidically independent tissue unit contained approximately 500 cells fed with a continuous flow of 10 nL/min. As a demonstration, the toxicity profile of the anti-cancer drug paclitaxel was collected on HeLa cells cultured in the microfluidic format and compared with a 384-well dish for up to 5 days of continuous drug exposure.  相似文献   

20.
Neutrophils are the most abundant type of white blood cell. They form an essential part of the innate immune system1. During acute inflammation, neutrophils are the first inflammatory cells to migrate to the site of injury. Recruitment of neutrophils to an injury site is a stepwise process that includes first, dilation of blood vessels to increase blood flow; second, microvascular structural changes and escape of plasma proteins from the bloodstream; third, rolling, adhesion and transmigration of the neutrophil across the endothelium; and fourth accumulation of neutrophils at the site of injury2,3. A wide array of in vivo and in vitro methods has evolved to enable the study of these processes4. This method focuses on neutrophil transmigration across human endothelial cells.One popular method for examining the molecular processes involved in neutrophil transmigration utilizes human neutrophils interacting with primary human umbilical vein endothelial cells (HUVEC)5. Neutrophil isolation has been described visually elsewhere6; thus this article will show the method for isolation of HUVEC. Once isolated and grown to confluence, endothelial cells are activated resulting in the upregulation of adhesion and activation molecules. For example, activation of endothelial cells with cytokines like TNF-α results in increased E-selectin and IL-8 expression7. E-selectin mediates capture and rolling of neutrophils and IL-8 mediates activation and firm adhesion of neutrophils. After adhesion neutrophils transmigrate. Transmigration can occur paracellularly (through endothelial cell junctions) or transcellularly (through the endothelial cell itself). In most cases, these interactions occur under flow conditions found in the vasculature7,8.The parallel plate flow chamber is a widely used system that mimics the hydrodynamic shear stresses found in vivo and enables the study of neutrophil recruitment under flow condition in vitro9,10. Several companies produce parallel plate flow chambers and each have advantages and disadvantages. If fluorescent imaging is needed, glass or an optically similar polymer needs to be used. Endothelial cells do not grow well on glass.Here we present an easy and rapid method for phase-contrast, DIC and fluorescent imaging of neutrophil transmigration using a low volume ibidi channel slide made of a polymer that supports the rapid adhesion and growth of human endothelial cells and has optical qualities that are comparable to glass. In this method, endothelial cells were grown and stimulated in an ibidi μslide. Neutrophils were introduced under flow conditions and transmigration was assessed. Fluorescent imaging of the junctions enabled real-time determination of the extent of paracellular versus transcellular transmigration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号