首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Continuous precipitation coupled with continuous tangential flow filtration is a cost-effective alternative for the capture of recombinant antibodies from crude cell culture supernatant. The removal of surge tanks between unit operations, by the adoption of tubular reactors, maintains a continuous harvest and mass flow of product with the advantage of a narrow residence time distribution (RTD). We developed a continuous process implementing two orthogonal precipitation methods, CaCl2 precipitation for removal of host-cell DNA and polyethylene glycol (PEG) for capturing the recombinant antibody, with no influence on the glycosylation profile. Our lab-scale prototype consisting of two tubular reactors and two stages of tangential flow microfiltration was continuously operated for up to 8 days in a truly continuous fashion and without any product flow interruption, both as a stand-alone capture and as an integrated perfusion-capture. Furthermore, we explored the use of a negatively charged membrane adsorber for flow-through anion exchange as first polishing step. We obtained a product recovery of approximately 80% and constant product quality, with more than two logarithmic reduction values (LRVs) for both host-cell proteins and host-cell DNA by the combination of the precipitation-based capture and the first polishing step.  相似文献   

2.
The capture of recombinant antibodies from cell culture broth is the first critical step of downstream processing. We were able to develop a precipitation‐based method for the capture and purification of monoclonal antibodies based on divalent cations, namely ZnCl2. Traditional precipitation processes have to deal with high dilution factors especially for resolubilization and higher viscosity due to the use of PEG as precipitation or co‐precipitation agent. By the use of the crosslinking nature of divalent cations without the use of PEG, we kept viscosity from the supernatant and resolubilization dilution factors very low. This is especially beneficial for the solid–liquid separation for the harvest and wash of the precipitate in continuous mode. For this harvest and wash, we used tangential flow filtration that benefits a lot from low viscosity solutions, which minimizes the membrane fouling. With this precipitation based on ZnCl2, we were able to implement a very lean and efficient process. We demonstrated precipitation studies with three different antibodies, Adalimumab, Trastuzumab, and Denosumab, and a continuous capture case study using tangential flow filtration for precipitate recovery. In this study, we achieved yields of 70%.  相似文献   

3.
In the current environment of diverse product pipelines, rapidly fluctuating market demands and growing competition from biosimilars, biotechnology companies are increasingly driven to develop innovative solutions for highly flexible and cost‐effective manufacturing. To address these challenging demands, integrated continuous processing, comprised of high‐density perfusion cell culture and a directly coupled continuous capture step, can be used as a universal biomanufacturing platform. This study reports the first successful demonstration of the integration of a perfusion bioreactor and a four‐column periodic counter‐current chromatography (PCC) system for the continuous capture of candidate protein therapeutics. Two examples are presented: (1) a monoclonal antibody (model of a stable protein) and (2) a recombinant human enzyme (model of a highly complex, less stable protein). In both cases, high‐density perfusion CHO cell cultures were operated at a quasi‐steady state of 50–60 × 106 cells/mL for more than 60 days, achieving volumetric productivities much higher than current perfusion or fed‐batch processes. The directly integrated and automated PCC system ran uninterrupted for 30 days without indications of time‐based performance decline. The product quality observed for the continuous capture process was comparable to that for a batch‐column operation. Furthermore, the integration of perfusion cell culture and PCC led to a dramatic decrease in the equipment footprint and elimination of several non‐value‐added unit operations, such as clarification and intermediate hold steps. These findings demonstrate the potential of integrated continuous bioprocessing as a universal platform for the manufacture of various kinds of therapeutic proteins. Biotechnol. Bioeng. 2012; 109: 3018–3029. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
A continuous integrated bioprocess available from the earliest stages of process development allows for an easier, more efficient and faster development and characterization of an integrated process as well as production of small-scale drug candidates. The process presented in this article is a proof-of-concept of a continuous end-to-end monoclonal antibody production platform at a very small scale based on a 200 ml alternating tangential flow filtration perfusion bioreactor, integrated with the purification process with a model-based design and control. The downstream process, consisting of a periodic twin-column protein A capture, a virus inactivation, a CEX column and an AEX column, was compactly implemented in a single chromatography system, with a purification time of less than 4 hr. Monoclonal antibodies were produced for 17 days in a high cell density perfusion culture of CHO cells with titers up to 1.0 mg/ml. A digital twin of the downstream process was created by modelling all the chromatography steps. These models were used for real-time decision making by the implementation of control strategies to automatize and optimize the operation of the process. A consistent glycosylation pattern of the purified product was ensured by the steady state operation of the process. Regarding the removal of impurities, at least a 4-log reduction in the HCP levels was achieved. The recovery yield was up to 60%, and a maximum productivity of 0.8 mg/ml/day of purified product was obtained.  相似文献   

5.
Advances in cell culture expression levels in the last two decades have resulted in monoclonal antibody titers of ≥10 g/L to be purified downstream. A high capacity capture step is crucial to prevent purification from being the bottleneck in the manufacturing process. Despite its high cost and other disadvantages, Protein A chromatography still remains the optimal choice for antibody capture due to the excellent selectivity provided by this step. A dual flow loading strategy was used in conjunction with a new generation high capacity Protein A resin to maximize binding capacity without significantly increasing processing time. Optimum conditions were established using a simple empirical Design of Experiment (DOE) based model and verified with a wide panel of antibodies. Dynamic binding capacities of >65 g/L could be achieved under these new conditions, significantly higher by more than one and half times the values that have been typically achieved with Protein A in the past. Furthermore, comparable process performance and product quality was demonstrated for the Protein A step at the increased loading. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1335–1340, 2014  相似文献   

6.
Due to the increasing economic and social relevance of biotherapeutics, their production processes are continually being reconsidered and reoptimized in an effort to secure higher product concentrations and qualities. Monitoring the productivity of cultured cells is therefore a critically important part of the cultivation process. Traditionally, this is achieved by determining the overall product titer by high performance liquid chromatography (HPLC), and then calculating the specific cell productivity based on this titer and an associated viable cell density. Unfortunately, this process is typically time‐consuming and laborious. In this study, the productivity of Chinese Hamster Ovary (CHO) cells expressing a monoclonal antibody was analyzed over the course of the cultivation process. In addition to calculating the specific cell productivity based on the traditional product titer determined by HPLC analysis, culture productivity of single cells was also analyzed via flow cytometry using a cold capture assay. The cold capture assay is a cell surface labelling technique described by Brezinsky et al., which allows for the visualization of a product on the surface of the producing cell. The cell productivity results obtained via HPLC and the results of cold capture assay remained in great accordance over the whole cultivation process. Accordingly, our study demonstrates that the cold capture assay offers an interesting, comparatively time‐effective, and potentially cheaper alternative for monitoring the productivity of a cell culture.  相似文献   

7.
Continuous precipitation is a new unit operation for the continuous capture of antibodies. The capture step is based on continuous precipitation with PEG6000 and Zn++ in a tubular reactor integrated with a two-stage continuous tangential flow filtration unit. The precipitate cannot be separated with centrifugation, because a highly compressed sediment results in poor resolubilization. We developed a new two-stage tangential flow microfiltration method, where part of the concentrated retentate of the first stage was directly fed to the second stage, together with the wash buffer. Thus, the precipitate was concentrated and washed in a continuous process. We obtained 97% antibody purity, a 95% process yield during continuous operation, and a fivefold reduction in pre-existing high-molecular-weight impurities. For other unit operations, surge tanks are often required, due to interruptions in the product mass flow out of the unit operation (e.g., the bind/elute mode in periodic counter-current chromatography). Our setup required no surge tanks; thus, it provided a truly continuous antibody capture operation with uninterrupted product mass flow. Continuous virus inactivation and other flow-through unit operations can be readily integrated downstream of the capture step to create truly continuous, integrated, downstream antibody processing without the need for hold tanks.  相似文献   

8.
A new integrated continuous biomanufacturing platform for continuous production of antibodies at fixed cell volumes and cell concentrations for extended periods with immediate capture is presented. Upstream antibody production has reached technological maturity, however, the bottleneck for continuous biomanufacturing remains the efficient and cost-effective capture of therapeutic antibodies in an initial chromatography step. In this study, the first successful attempt at using one-column continuous chromatography (OCC) for the continuous capture of therapeutic antibodies produced through alternating tangential flow perfusion is presented. By performing upstream media optimizations, the upstream perfusion rate was reduced to one vessel volume per day (vv/d), increasing antibody titer and reducing the volume of perfusate. In addition, process improvements were performed to increase productivity by 80% over previously reported values. In addition, a real-time method for evaluating column performance to make column switching decisions was developed. This improved productivity coupled with the use of a single-column improved process monitoring and control in OCC compared to multi-column systems. This approach is the first report on using a single column for the implementation of an integrated continuous biomanufacturing platform and offers a cost-effective and flexible platform process for the manufacture of therapeutic proteins.  相似文献   

9.
The realization of an end‐to‐end integrated continuous lab‐scale process for monoclonal antibody manufacturing is described. For this, a continuous cultivation with filter‐based cell‐retention, a continuous two column capture process, a virus inactivation step, a semi‐continuous polishing step (twin‐column MCSGP), and a batch‐wise flow‐through polishing step were integrated and operated together. In each unit, the implementation of internal recycle loops allows to improve the performance: (a) in the bioreactor, to simultaneously increase the cell density and volumetric productivity, (b) in the capture process, to achieve improved capacity utilization at high productivity and yield, and (c) in the MCSGP process, to overcome the purity‐yield trade‐off of classical batch‐wise bind‐elute polishing steps. Furthermore, the design principles, which allow the direct connection of these steps, some at steady state and some at cyclic steady state, as well as straight‐through processing, are discussed. The setup was operated for the continuous production of a commercial monoclonal antibody, resulting in stable operation and uniform product quality over the 17 cycles of the end‐to‐end integration. The steady‐state operation was fully characterized by analyzing at the outlet of each unit at steady state the product titer as well as the process (HCP, DNA, leached Protein A) and product (aggregates, fragments) related impurities. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1303–1313, 2017  相似文献   

10.
There is renewed interest in the possibility of using precipitation for initial capture of high value therapeutic proteins as part of an integrated continuous downstream process. These precipitates can be continuously washed using tangential flow filtration, with long term operation achieved by operating the membrane modules below the critical filtrate flux for fouling. Our hypothesis was that the critical flux for the precipitated protein would be a function of the properties of the precipitate as determined by the precipitation conditions. We evaluated the critical flux using a flux‐stepping procedure for model protein precipitates (bovine serum albumin) generated using a combination of a crosslinking agent (zinc chloride) and an excluded volume precipitant (polyethylene glycol [PEG]). The critical flux varied with shear rate to approximately the 1/3 power, consistent with predictions of the classical polarization model. The critical flux increased significantly with increasing zinc chloride concentration, going from 60 L/m2/h for a 2 mM ZnCl2 solution to 200 L/m2/h for an 8 mM ZnCl2 solution. In contrast, the critical flux achieved a maximum value at an intermediate PEG concentration. Independent measurements of the effective size and viscosity of the protein precipitates were used to obtain additional understanding of the effects of ZnCl2 and PEG on the precipitation and the critical flux. These results provide important insights into the development of effective tangential flow filtration systems for processing large quantities of precipitated protein as would be required for large scale continuous protein purification by precipitation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1561–1567, 2017  相似文献   

11.
Recent advances in mammalian cell culture processes have significantly increased product titers, but have also resulted in substantial increases in cell density and cellular debris as well as process and product related impurities. As such, with improvements in titer, corresponding improvements in downstream processing are essential. In this study we have developed an alternative antibody harvest process that incorporates flocculation using a novel stimulus responsive polymer, benzylated poly(allylamine), followed by depth filtration. As tested on multiple antibodies, this process demonstrates high process yield, improved clearance of cells and cell debris, and efficient reduction of aggregates, host cell proteins (HCP) and DNA. A wide operating window was established for this novel flocculation process through design of experiments condition screening and optimization. Residual levels of impurities in the Protein A eluate were achieved that potentially meet requirements of drug substance and thus alleviate the burden for further impurities removal in subsequent chromatography steps. In addition, efficient clearance of residual polymer was demonstrated using a fluorescence tagged polymer in the presence of a stimulus reagent. The mechanism of HCP and aggregates removal during flocculation was also explored. This novel and efficient process can be easily integrated into current mAb purification platforms, and may overcome downstream processing challenges. Biotechnol. Bioeng. 2013;110: 2928–2937. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

12.
Using the pyruvate production strain Escherichia coli YYC202 ldhA::Kan different process alternatives are studied with the aim of preventing potential product inhibition by appropriate product separation. This strain is completely blocked in its ability to convert pyruvate into acetyl-CoA or acetate, resulting in acetate auxotrophy during growth in glucose minimal medium. Continuous experiments with cell retention, repetitive fed-batch, and an in situ product recovery (ISPR) process with fully integrated electrodialysis were tested. Although the continuous approach achieved a high volumetric productivity (QP) of 110 g L(-1) d(-1), this approach was not pursued because of long-term production strain instabilities. The highest pyruvate/glucose molar yield of up to 1.78 mol mol(-1) together with high QP 145 g L(-1) d(-1) and high pyruvate titers was achieved by the repetitive fed-batch approach. To separate pyruvate from fermentation broth a fully integrated continuous process was developed. In this process electrodialysis was used as a separation unit. Under optimum conditions a (calculated) final pyruvate titer of >900 mmol L(-1) (79 g L(-1)) was achieved.  相似文献   

13.
Multi‐column capture processes show several advantages compared to batch capture. It is however not evident how many columns one should use exactly. To investigate this issue, twin‐column CaptureSMB, 3‐ and 4‐column periodic counter‐current chromatography (PCC) and single column batch capture are numerically optimized and compared in terms of process performance for capturing a monoclonal antibody using protein A chromatography. Optimization is carried out with respect to productivity and capacity utilization (amount of product loaded per cycle compared to the maximum amount possible), while keeping yield and purity constant. For a wide range of process parameters, all three multi‐column processes show similar maximum capacity utilization and performed significantly better than batch. When maximizing productivity, the CaptureSMB process shows optimal performance, except at high feed titers, where batch chromatography can reach higher productivity values than the multi‐column processes due to the complete decoupling of the loading and elution steps, albeit at a large cost in terms of capacity utilization. In terms of trade‐off, i.e. how much the capacity utilization decreases with increasing productivity, CaptureSMB is optimal for low and high feed titers, whereas the 3‐column process is optimal in an intermediate region. Using these findings, the most suitable process can be chosen for different production scenarios.  相似文献   

14.
An integrated cell cultivation and protein product separation process was developed using a new type of supermacroporous polyacrylamide gel, called cryogel (pAAm-cryogel) support matrix. Human fibrosarcoma HT1080 and human colon cancer HCT116 cell lines were used to secrete urokinase (an enzyme of immense therapeutic utility) into the culture medium. The secreted protein was isolated from the circulating medium using a chromatographic capture column. A pAAm cryogel support with covalently coupled gelatin (gelatin-pAAm cryogel) was used for the cultivation of anchorage dependent cells in the continuous cell culture mode in 5% carbon dioxide atmosphere. The cells were attached to the matrix within 4-6 h of inoculation and grew as a tissue sheet inside the cryogel matrix. Continuous urokinase secretion into the circulating medium was monitored as a parameter of growth and viability of cells inside the bioreactor. No morphological changes were observed in the cells eluted from the gelatin-cryogel support and re-cultured in T-flask. The gelatin-pAAm cryogel bioreactor was further connected to a pAAm cryogel column carrying Cu(II)-iminodiacetic acid (Cu(II)-IDA)-ligands (Cu(II)-IDA-pAAm cryogel), which had been optimized for the capture of urokinase from the conditioned medium of the cell lines. Thus an automated system was built, which integrated the features of a hollow fiber reactor with a chromatographic protein separation system. The urokinase was continuously captured by the Cu(II)-IDA-pAAm cryogel column and periodically recovered through elution cycles. The urokinase activity increased from 250 PU/mg in the culture fluid to 2,310 PU/mg after recovery from the capture column which gave about ninefold purification of the enzyme. Increased productivity was achieved by operating integrated bioreactor system continuously for 32 days under product inhibition free conditions during which no backpressure or culture contamination was observed. A total 152,600 Plough units of urokinase activity was recovered from 500 mL culture medium using 38 capture columns over a period of 32 days.  相似文献   

15.
An integrated product recovery system was developed to separate urokinase from the cell culture broth of human kidney cells HT1080. Supermacroporous monolithic cryogels provided ideal matrices with respect to surface and flow properties for use as cell culture scaffold as well as for affinity chromatographic capture step of the enzyme in the integrated system. The urokinase was produced continuously in the reactor running for 4 weeks with continuous circulation of 500 ml of culture medium. The enzyme activity in the culture medium reached to 280 Plough units (PU)/mg protein. Cu(II)-iminodiacetic acid (IDA)-polyacrylamide (pAAm) cryogel column was used to capture urokinase by integrating with the gelatin-coupled pAAm-cryogel bioreactor for HT1080 cell culture. After removing the urokinase capture column from the integrated system the bound protein was eluted. The metal affinity capture step gave 4.5-fold purification of the enzyme thus achieving a specific activity of 1300 PU/mg protein. The enzyme eluate from Cu(II)-IDA-pAAm cryogel capture column was further purified on benzamidine-Sepharose affinity column. This step finally led to a homogeneous preparation of different forms of urokinase in two different elution peaks with a best urokinase activity of 13 550 PU/mg of protein. As compared to initial activity in the cell culture broth, about 26.2- and 48.4-fold increase in specific activity was achieved with enzyme yields corresponding to 32% and 35% in two different peak fractions, respectively. Native electrophoresis and SDS-PAGE showed multiple protein bands corresponding to different forms of the urokinase, which were confirmed by Western blotting and zymography.  相似文献   

16.
There is growing interest in the development of fully integrated and continuous biomanufacturing processes for the production of monoclonal antibody products. A recent study has demonstrated the feasibility of using a two-stage countercurrent diafiltration (DF) process for continuous product formulation, but this system did not provide sufficient levels of buffer exchange for most applications. The objective of this study was to design and test a three-stage countercurrent DF system that could achieve at least 99.9% buffer exchange over 24 hr of continuous operation. Experimental data were obtained using concentrated solutions of human immunoglobulin G as a model protein, with the extent of vitamin B12 removal used to track the extent of DF. Pall Cadence™ inline concentrators with Delta 30 kD regenerated cellulose membranes were used in the three stages to achieve high conversion in a single pass. The three-stage system showed stable operation with >99.9% vitamin B12 removal and a minimal increase in pressure over the full 24 hr. Modules were effectively cleaned using sodium hydroxide, with nearly complete recovery of water permeability. A simple economic analysis was presented that accounts for the trade-offs between quantity of buffer used and membrane costs for this type of countercurrent staged DF process. The results provide important insights to the design and operation of a continuous process for antibody formulation.  相似文献   

17.
We report the use of caprylic acid based impurity precipitation as (1) an alternative method to polishing chromatography techniques commonly used for monoclonal antibody purification and (2) an impurity reduction step prior to harvesting the bioreactor. This impurity reduction method was tested with protein A purified antibodies and with cell culture fluid. First, the operational parameters influencing precipitation of host cell proteins and high molecular weight aggregate in protein A pools were investigated. When used as a polishing step, the primary factor affecting purification and yield was determined to be pH. Caprylic acid precipitation was comparable to polishing IEX chromatography in reducing host cell protein and aggregate levels. A virus reduction study showed complete clearance of a model retrovirus during caprylic acid precipitation of protein A purified antibody. Caprylic acid mediated impurity precipitation in cell culture showed that the impurity clearance was generally insensitive to pH and caprylic acid concentration whereas yield was a function of caprylic acid concentration. Protein A purification of caprylic acid precipitated cell culture fluid generated less turbid product pool with reduced levels of host cell proteins and high molecular weight aggregate. The results of this study show caprylic acid precipitation to be an effective purification method that can be incorporated into a production facility with minimal cost as it utilizes existing tanks and process flow. Eliminating flow through chromatography polishing step can provide process intensification by avoiding the process tank volume constraints for high titer processes. Biotechnol. Bioeng. 2012; 109: 2589–2598. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Controlled feeding of nutrient supplements to a cell culture to enhance monoclonal antibody productivity has been practiced widely in high-yield, fed-batch processes. In this study, a similar feeding concept has been applied to a perfused culture and evaluated for the effects on bioreactor productivity and product quality. Our experimental results show that, by using such a "controlled-fed perfusion" approach, the volumetric antibody productivity (antibody per liter per day) was significantly increased by nearly twofold over the perfusion process, and surpassed fed-batch and batch processes by almost tenfold. The substantial boost in the overall productivity is attributable primarily to the combined effects of increased cell density as well as reduced product dilution. Both were achieved through careful nutrient supplementation in conjunction with metabolite minimization. As the manufacturing process evolved from roller bottles to the controlled-fed perfusion bioreactor system, the immunoreactivity and the cDNA sequences of the antibody were well preserved. However, the product glycosylation distribution patterns did alter. The controlled-feed perfusion process demonstrated a unique encompassment of the advantages of fed-batch and perfusion methods; that is, high product concentration with high volume throughput. Therefore, it may be very suitable for large-scale production of monoclonal antibodies.  相似文献   

19.
As upstream product titers increase, the downstream chromatographic capture step has become a significant “downstream bottleneck.” Precipitation becomes more attractive under these conditions as the supersaturation driving force increases with the ever-increasing titer. In this study, two precipitating reagents with orthogonal mechanisms, polyethylene glycol (PEG) as a volume excluder and zinc chloride (ZnCl2) as a cross linker, were examined as precipitants for two monoclonal antibodies (mAbs), one stable and the other aggregation-prone, in purified drug substance and harvested cell culture fluid forms. Manual batch solubility and redissolution experiments were performed as scouting experiments. A high throughput (HTP) liquid handling system was used to investigate the design space as fully as possible while reducing time, labor, and material requirements. Precipitation and redissolution were studied by systematically varying the concentrations of PEG and ZnCl2 to identify combinations that resulted in high yield and good quality for the stable mAb; PEG concentrations in the range 7–7.5 wt/vol% together with 10 mM ZnCl2 gave a yield of 97% and monomer contents of about 93%. While yield for the unstable mAb was high, quality was not acceptable. Performance at selected conditions was further corroborated for the stable mAb using a continuous tubular precipitation reactor at the laboratory scale. The HTP automation system was a powerful tool for locating desired (customized) conditions for antibodies of different physicochemical properties.  相似文献   

20.
Coiled Flow Inverter Reactor (CFIR) has recently been explored for facilitating continuous operation of several unit operations involved in downstream processing of biopharmaceuticals such as viral inactivation and protein refolding. The application of CFIR for continuous precipitation of clarified cell culture supernatant has been explored. The pH based precipitation is optimized in the batch mode and then in the continuous mode in CFIR using a design of experiments (DOE) study. Improved clearance of host cell DNA (52× vs. 39× in batch), improved clearance of host cell proteins (HCP) (7× vs. 6× in batch) and comparable recovery (90 vs. 91.5 % in batch) are observed along with six times higher productivity. To further demonstrate wider applicability of CFIR in performing continuous precipitation, two more case studies involving use of two different precipitation protocols (CaCl2 based and caprylic acid based) are also performed. In both cases, clearance of host cell DNA, HCP, and product recovery are found to be comparable or better in CFIR than in batch operations. Moreover, increase in productivity of 16 times (CaCl2 based) and eight times (caprylic acid based) is obtained for the two precipitation protocols, respectively. The data clearly demonstrate that CFIR can be seamlessly integrated into a continuous bioprocess train for performing continuous precipitation of clarified cell culture supernatant. To our knowledge this is the first report of such use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号