首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Glycosylation has profound effects on the quality of recombinant proteins produced in mammalian cells. The biosynthetic pathways of N-linked glycans on glycoproteins involves a relatively small number of enzymes and nucleotide sugars. Many of these glycoconjugate enzymes can utilize multiple N-glycans as substrates, thus generating a large number of glycan intermediates, and making the biosynthetic pathway resemble a network with diverging and converging paths. The N-glycans on secreted glycoprotein molecules include not only terminal glycans, but also pathway intermediates. To better assess the glycan distribution and the potential route of their synthesis, we created GlycoVis, a visualization program that displays the distribution and the potential reaction paths leading to each N-glycan on the reaction network. The substrate specificities of the enzymes involved were organized into a relationship matrix. With the input of glycan distribution data, the program outputs a reaction pathway map which labels the relative abundance levels of different glycans with different colors. The program also traces all possible reaction paths leading to each glycan and identifies each pathway on the map. Glycoform distribution of Chinese Hamster Ovary cell-derived tissue plasminogen activator (TPA), and human and mouse IgG were used as illustrations for the application of GlycoVis. In addition, the intracellular and secreted IgG from an NS0 producer cell line were isolated, and their glycoform profiles were displayed using GlycoVis for comparison. This visualization tool facilitates the analysis of potential reaction paths utilized under different physiological or culture conditions, and may provide insight on the potential targets for metabolic engineering.  相似文献   

2.
3.
Glycan Atlas is a set of glycan maps over the whole body of an organism. The glycan map that includes data of glycan structure and quantity displays micro-heterogeneity of the glycans in a tissue, an organ, or cells. The two-dimensional glycan mapping is widely used for structure analysis of N-linked oligosaccharides on glycoproteins. In this study we developed a comprehensive method for the mapping of both N- and O-glycans with and without sialic acid. The mapping data of 150 standard pyridylaminated glycans were collected. The empirical additivity rule which was proposed in former reports was able to adapt for this extended glycan map. The adapted rule is that the elution time of pyridylamino glycans on high performance liquid chromatography (HPLC) is expected to be the simple sum of the partial elution times assigned to each monosaccharide residue. The comprehensive mapping method developed in this study is a powerful tool for describing the micro-heterogeneity of the glycans. Furthermore, we prepared 42 pyridylamino (PA-) glycans from human serum and were able to draw the map of human serum N- and O-glycans as an initial step of Glycan Atlas editing.  相似文献   

4.
The cell surface glycoprotein γ-glutamyl transpeptidase (GGT) was isolated from healthy human kidney and liver to characterize its glycosylation in normal human tissue in vivo. GGT is expressed by a single cell type in the kidney. The spectrum of N-glycans released from kidney GGT constituted a subset of the N-glycans identified from renal membrane glycoproteins. Recent advances in mass spectrometry enabled us to identify the microheterogeneity and relative abundance of glycans on specific glycopeptides and revealed a broader spectrum of glycans than was observed among glycans enzymatically released from isolated GGT. A total of 36 glycan compositions, with 40 unique structures, were identified by site-specific glycan analysis. Up to 15 different glycans were observed at a single site, with site-specific variation in glycan composition. N-Glycans released from liver membrane glycoproteins included many glycans also identified in the kidney. However, analysis of hepatic GGT glycopeptides revealed 11 glycan compositions, with 12 unique structures, none of which were observed on kidney GGT. No variation in glycosylation was observed among multiple kidney and liver donors. Two glycosylation sites on renal GGT were modified exclusively by neutral glycans. In silico modeling of GGT predicts that these two glycans are located in clefts on the surface of the protein facing the cell membrane, and their synthesis may be subject to steric constraints. This is the first analysis at the level of individual glycopeptides of a human glycoprotein produced by two different tissues in vivo and provides novel insights into tissue-specific and site-specific glycosylation in normal human tissues.  相似文献   

5.
A simple procedure is described for the elimination ofO-linked glycans from bovine submaxillary mucin under non-reducing conditions, using triethylamine in aqueous hydrazine. The glycans were isolated as the hydrazones, which were converted to the reducing glycans by exchange with acetone in neutral aqueous solution. The glycan alditols obtained after reduction corresponded to those obtained by the reductive -elimination ofO-glycans.  相似文献   

6.
7.
R. Strasser 《Plant biosystems》2013,147(3):636-642
Abstract

N‐glycosylation is an abundant covalent protein modification in all eukaryotic cells. The biosynthesis and processing of protein N‐linked glycans results from a series of highly co‐ordinated step‐by‐step enzymatic conversions occurring mainly in the endoplasmic reticulum (ER) and Golgi apparatus. N‐glycan processing enzymes are thought to act on cargo glycoproteins in a highly ordered fashion in an assembly line. Thus, the subcellular localization of these enzymes together with their in vivo substrate specificity determines the carbohydrate structures of glycoproteins transported through the secretory pathway. While the substrate specificities of many plant N‐glycan processing enzymes are fairly well characterized, the molecular mechanisms underlying enzyme localization to the ER and Golgi have remained largely elusive so far. This review discusses current data on ER and Golgi localization of plant N‐glycan processing enzymes.  相似文献   

8.

Background

A variety of N-glycans attached to protein are known to involve in many important biological functions. Endoplasmic reticulum (ER) and Golgi localized enzymes are responsible to this template-independent glycan synthesis resulting glycoforms at each asparagine residues. The regulation mechanism such glycan synthesis remains largely unknown.

Methodology/Principal Findings

In order to investigate the relationship between glycan structure and protein conformation, we analyzed a glycoprotein of Drosophila melanogaster, chaoptin (Chp), which is localized in photoreceptor cells and is bound to the cell membrane via a glycosylphosphatidylinositol anchor. Detailed analysis based on mass spectrometry revealed the presence of 13 N-glycosylation sites and the composition of the glycoform at each site. The synthetic pathway of glycans was speculated from the observed glycan structures and the composition at each N-glycosylation site, where the presence of novel routes were suggested. The distribution of glycoforms on a Chp polypeptide suggested that various processing enzymes act on the exterior of Chp in the Golgi apparatus, although virtually no enzyme can gain access to the interior of the horseshoe-shaped scaffold, hence explaining the presence of longer glycans within the interior. Furthermore, analysis of Chp from a mutant (RNAi against dolichyl-phosphate α-d-mannosyltransferase), which affects N-glycan synthesis in the ER, revealed that truncated glycan structures were processed. As a result, the distribution of glycoforms was affected for the high-mannose-type glycans only, whereas other types of glycans remained similar to those observed in the control and wild-type.

Conclusions/Significance

These results indicate that glycan processing depends largely on the backbone structure of the parent polypeptide. The information we obtained can be applied to other members of the LRR family of proteins.  相似文献   

9.
The initial step essential in influenza virus infection is specific binding of viral hemagglutinin to host cell-surface glycan receptors. Influenza A virus specificity for the host is mediated by viral envelope hemagglutinin, that binds to receptors containing glycans with terminal sialic acids. Human viruses preferentially bind to α2→6 linked sialic acids on receptors of host cells, whereas avian viruses are specific for the α2→3 linkage on the target cells. Human influenza virus isolates more efficiently infect amniotic membrane (AM) cells than chorioallantoic membrane (CAM) cells. N-glycans were isolated from AM and CAM cells of 10-day-old chicken embryonated eggs and their structures were analyzed by multi-dimensional HPLC mapping and MALDI-TOF-MS techniques. Terminal N-acetylneuraminic acid contents in the two cell types were similar. However, molar percents of α2→3 linkage preferentially bound by avian influenza virus were 27.2 in CAM cells and 15.4 in AM cells, whereas those of α2→6 linkage favored by human influenza virus were 8.3 (CAM) and 14.2 (AM). Molar percents of sulfated glycans, recognized by human influenza virus, in CAM and AM cells were 3.8 and 12.7, respectively. These results have revealed structures and molar percents of N-glycans in CAM and AM cells important in determining human and avian influenza virus infection and viral adaptation.  相似文献   

10.
Sulfated N- and O-glycans exist in trace levels which are challenging to detect, especially when abundant neutral and sialylated glycans are present. Current matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS)-based sulfoglycomics approaches effectively utilize permethylation to discriminate sulfated glycans from sialyl-glycans. And a charge-based separation to isolate the sulfated glycans from the rest of the permethylated neutral and sialyl-glycans. However, these approaches suffer from concomitant sample losses during cleanup steps. Herein, we describe Glycoblotting as a straightforward complementary method with seamless glycan purification, enrichment, methylation, and labeling on a single platform to address sulfated glycan enrichment, sialic acid methylation, and sample loss. Glycoblottings’ on-bead chemoselective ligation of reducing sugars with hydrazide showed excellent recovery of sulfated glycans, allowing the detection of more sulfated glycan species. On-bead methyl esterification of sialic acid using 3-methyl-1-p-tolyltriazene (MTT) effectively discriminates sulfated glycans from sialyl-glycans. Furthermore, we have shown that using MTT as a methylating agent allowed us to simultaneously detect and differentiate sulfate from phosphate groups in isobaric N-glycan species. We believe that Glycoblotting will contribute significantly to the MALDI-TOF MS-based Sulphoglycomics workflow.  相似文献   

11.
The principal aim of this study was to demonstrate the optimization and fine-tuning of quantitative and nonselective analysis of O-linked glycans released from therapeutic glycoproteins. Two approaches for quantitative release of O-linked glycans were examined: ammonia-based β-elimination and hydrazinolysis deglycosylation strategies. A significant discrepancy in deglycosylation activity was observed between the ammonia-based and hydrazinolysis procedures. Specifically, the release of O-glycans from glycoproteins was approximately 20 to 30 times more efficient with hydrazine compared with ammonia-based β-elimination reagent. In addition, the ammonia-based reagent demonstrated bias in the release of particular glycan species. A robust quantitative hydrazinolysis procedure was developed for characterization of O-glycans. The method performance parameters were evaluated. It was shown that this procedure is superior for quantitative nonselective release of O-glycans. Identity confirmation and structure elucidation of O-glycans from hydrophilic interaction chromatography (HILIC) fractions was also demonstrated using linear ion trap Fourier transform mass spectrometry (LTQ FT MS) with mass accuracy below 1 ppm.  相似文献   

12.
Proper N- and O-glycosylation of recombinant proteins is important for their biological function. Although the N-glycan processing pathway of different expression hosts has been successfully modified in the past, comparatively little attention has been paid to the generation of customized O-linked glycans. Plants are attractive hosts for engineering of O-glycosylation steps, as they contain no endogenous glycosyltransferases that perform mammalian-type Ser/Thr glycosylation and could interfere with the production of defined O-glycans. Here, we produced mucin-type O-GalNAc and core 1 O-linked glycan structures on recombinant human erythropoietin fused to an IgG heavy chain fragment (EPO-Fc) by transient expression in Nicotiana benthamiana plants. Furthermore, for the generation of sialylated core 1 structures constructs encoding human polypeptide:N-acetylgalactosaminyltransferase 2, Drosophila melanogaster core 1 β1,3-galactosyltransferase, human α2,3-sialyltransferase, and Mus musculus α2,6-sialyltransferase were transiently co-expressed in N. benthamiana together with EPO-Fc and the machinery for sialylation of N-glycans. The formation of significant amounts of mono- and disialylated O-linked glycans was confirmed by liquid chromatography-electrospray ionization-mass spectrometry. Analysis of the three EPO glycopeptides carrying N-glycans revealed the presence of biantennary structures with terminal sialic acid residues. Our data demonstrate that N. benthamiana plants are amenable to engineering of the O-glycosylation pathway and can produce well defined human-type O- and N-linked glycans on recombinant therapeutics.  相似文献   

13.
14.
Several glycoconjugates are involved in the immune response. Sialic acid is frequently the glycan terminal sugar and it may modulate immune interactions. Dendritic cells (DCs) are antigen-presenting cells with high endocytic capacity and a central role in immune regulation. On this basis, DCs derived from monocytes (mo-DC) are utilised in immunotherapy, though many features are ignored and their use is still limited. We analyzed the surface sialylated glycans expressed during human mo-DC generation. This was monitored by lectin binding and analysis of sialyltransferases (ST) at the mRNA level and by specific enzymatic assays. We showed that α2-3-sialylated O-glycans and α2-6- and α2-3-sialylated N-glycans are present in monocytes and their expression increases during mo-DC differentiation. Three main ST genes are committed with this rearrangement: ST6Gal1 is specifically involved in the augmented α2-6-sialylated N-glycans; ST3Gal1 contributes for the α2-3-sialylation of O-glycans, particularly T antigens; and ST3Gal4 may contribute for the increased α2-3-sialylated N-glycans. Upon mo-DC maturation, ST6Gal1 and ST3Gal4 are downregulated and ST3Gal1 is altered in a stimulus-dependent manner. We also observed that removing surface sialic acid of immature mo-DC by neuraminidase significantly decreased its endocytic capacity, while it increased in monocytes. Our results indicate the STs expression modulates the increased expression of surface sialylated structures during mo-DC generation, which is probably related with changes in cell mechanisms. The ST downregulation after mo-DC maturation probably results in a decreased sialylation or sialylated glycoconjugates involved in the endocytosis, contributing to the downregulation of one or more antigen-uptake mechanisms specific of mo-DC.  相似文献   

15.
Glycosylation is an important posttranslational modificationin proteins, and aberrant glycosylation occurs in malignancies.Human chorionic gonadotropin (hCG) is a glycoprotein hormoneproduced in high concentrations during pregnancy. It is alsoexpressed as particular glycoforms by certain malignancies.These glycoforms, which are called "hyperglycosylated" hCG (hCGh),have been reported to contain more complex glycan moieties.We have analyzed tryptic glycopeptides of the ß-subunitof hCG of various origins by liquid chromatography (LC) connectedto an electrospray mass spectrometer. Site-specific glycan structureswere visualized by the use of differential expression analysissoftware. hCGß was purified from urine of two patientswith testicular cancer, one with choriocarcinoma, one with aninvasive mole, two pregnant women at early and late gestation,from a pharmaceutical preparation and culture medium of a choriocarcinomacell line. N-glycans at Asn-13 and Asn-30 as well as O-glycansat Ser-121, Ser-127, Ser-132, and Ser-138 were characterized.In all samples, the major type of N-glycan was a biantennarycomplex-type structure, but triantennary structures linked toAsn-30 as well as fucosylation of the Asn-13-bound glycan areincreased in cancer-derived hCGß. There were significantsite-specific differences in the O-glycans, with constant core-2glycans at Ser-121, core-1 glycans at Ser-138, and putativesites unoccupied by any glycan. Core-2 glycans at either Ser-127or Ser-132 were enriched in cancer. The glycans of free hCGßwere larger and had a higher fucose content of Asn-13-linkedoligosaccharides than intact hCG. This may facilitate the detectionof this malignancy-associated variant by a lectin assay. Analysisof hCGh affinity purified with antibody B152 confirmed thatthis antibody recognizes a core-2 glycan on Ser-132.  相似文献   

16.
Mammalian Asn-linked glycans are extensively processed as they transit the secretory pathway to generate diverse glycans on cell surface and secreted glycoproteins. Additional modification of the glycan core by α-1,6-fucose addition to the innermost GlcNAc residue (core fucosylation) is catalyzed by an α-1,6-fucosyltransferase (FUT8). The importance of core fucosylation can be seen in the complex pathological phenotypes of FUT8 null mice, which display defects in cellular signaling, development, and subsequent neonatal lethality. Elevated core fucosylation has also been identified in several human cancers. However, the structural basis for FUT8 substrate specificity remains unknown.Here, using various crystal structures of FUT8 in complex with a donor substrate analog, and with four distinct glycan acceptors, we identify the molecular basis for FUT8 specificity and activity. The ordering of three active site loops corresponds to an increased occupancy for bound GDP, suggesting an induced-fit folding of the donor-binding subsite. Structures of the various acceptor complexes were compared with kinetic data on FUT8 active site mutants and with specificity data from a library of glycan acceptors to reveal how binding site complementarity and steric hindrance can tune substrate affinity. The FUT8 structure was also compared with other known fucosyltransferases to identify conserved and divergent structural features for donor and acceptor recognition and catalysis. These data provide insights into the evolution of modular templates for donor and acceptor recognition among GT-B fold glycosyltransferases in the synthesis of diverse glycan structures in biological systems.  相似文献   

17.
Human gut symbiont bifidobacteria possess carbohydrate-degrading enzymes that act on the O-linked glycans of intestinal mucins to utilize those carbohydrates as carbon sources. However, our knowledge about mucin type O-glycan degradation by bifidobacteria remains fragmentary, especially regarding how they decompose sulfated glycans, which are abundantly found in mucin sugar-chains. Here, we examined the abilities of several Bifidobacterium strains to degrade a sulfated glycan substrate and identified a 6-sulfo-β-d-N-acetylglucosaminidase, also termed sulfoglycosidase, encoded by bbhII from Bifidobacterium bifidum JCM 7004. A recombinant BbhII protein showed a substrate preference toward 6-sulfated and 3,4-disulfated N-acetylglucosamines over non-sulfated and 3-sulfated N-acetylglucosamines. The purified BbhII directly released 6-sulfated N-acetylglucosamine from porcine gastric mucin and the expression of bbhII was moderately induced in the presence of mucin. This de-capping activity may promote utilization of sulfated glycans of mucin by other bacteria including bifidobacteria, thereby establishing the symbiotic relationship between human and gut microbes.  相似文献   

18.
Sialidases can be used to transfer sialic acids from sialoglycans to asialoglycoconjugates via the trans-glycosylation reaction mechanism. Some pathogenic bacteria decorate their surfaces with sialic acids which were often scavenged from host sialoglycoconjugates using their surface-localized enzymes. In this study, we constructed an in vitro trans-sialylation system by reconstructing the exogenous sialoglycoconjugate synthesis system of pathogens on the surfaces of yeast cells. The nanH gene encoding an extracellular sialidase of Corynebacterium diphtheriae was cloned into the yeast surface display vector pYD1 based on the Aga1p–Aga2p platform to immobilize the enzyme on the surface of the yeast Saccharomyces cerevisiae. The surface-displayed recombinant NanH protein was expressed as a fully active sialidase and also transferred sialic acids from pNP-α-sialoside, a sialic acid donor substrate, to human-type asialo-N-glycans. Moreover, this system was capable of attaching sialic acids to the glycans of asialofetuin via α(2,3)- or α(2,6)-linkage. The cell surface-expressed C. diphtheriae sialidase showed its potential as a useful whole cell biocatalyst for the transfer of sialic acid as well as the hydrolysis of N-glycans containing α(2,3)- and α(2,6)-linked sialic acids for glycoprotein remodeling.  相似文献   

19.
The glycan epitopes termed stage-specific embryonic antigens (SSEA) occur on glycoproteins and glycolipids in mammals. However, it is not known whether these epitopes are attached to N- or O-glycans on glycoproteins and/or on glycolipids in the developing mouse embryo. In this paper the expression of the antigens SSEA-1, SSEA-3, SSEA-4 and LeY was examined on ovulated eggs, early embryos and blastocysts lacking either complex and hybrid N-glycans or core-1 derived O-glycans. In all cases, antigen expression determined by fluorescence microscopy of bound monoclonal antibodies to embryos at the stage of development of maximal expression was similar in mutant and control embryos. Thus, none of these developmental antigens are expressed solely on either complex N- or core 1-derived O-glycans attached to glycoproteins in the preimplantation mouse embryo. Furthermore, neither of these classes of glycan is essential for the expression of SSEA-1, SSEA-3, SSEA-4 or LeY on mouse embryos.  相似文献   

20.
Post-translational modifications (PTMs) of proteins play important roles in the physiology of eukaryotes. In the PTMs, non-reversible glycosylations are classified as N-glycosylations and O-glycosylations, and are catalyzed by various glycosidases and glycosyltransferases. However, β-glycosidases are not known to play a role in N- and O-glycan processing, although both glycans provide partial structures as substrates for β-galactosidase and β-N-acetylglucosaminidase in the Golgi apparatus of human cells. We explored human Golgi β-galactosidase using fluorescent substrates based on a quinone methide cleavage (QMC) substrate design platform that was previously developed to image exo-type glycosidases in living cells. As a result, we discovered a novel Golgi β-galactosidase in human cells. It is possible to predict a novel and important function in glycan processing of this β-galactosidase, because various β-galactosyl linkages in N- and O-glycans exist in Golgi apparatus. In addition, these results show that the QMC platform is excellent for imaging exo-type glycosidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号