首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a perfusion bioreactor system that allows the formation of steady state oxygen gradients in cell culture. In this study, gradients were formed in cultures of rat hepatocytes to study the role of oxygen in modulating cellular functions. A model of oxygen transport in our flat-plate reactor was developed to estimate oxygen distribution at the cell surface. Experimental measurements of outlet oxygen concentration from various flow conditions were used to validate model predictions. We showed that cell viability was maintained over a 24-h period when operating with a physiologic oxygen gradient at the cell surface from 76 to 5 mmHg O(2) at the outlet. Oxygen gradients have been implicated in the maintenance of regional compartmentalized metabolic and detoxification functions in the liver, termed zonation. In this system, physiologic oxygen gradients in reactor cultures contributed to a heterogeneous distribution of phosphoenolpyruvate carboxykinase (predominantly localized upstream) and cytochrome p450 2B (predominantly localized downstream) that correlates with the distribution of these enzymes in vivo. The oxygen gradient chamber provides a means of probing the oxygen effects in vitro over a continuous range of O(2) tensions. In addition, this system serves as an in vitro model of zonation that could be further extended to study the role of gradients in ischemia-reperfusion injury, toxicity, and bioartificial liver design.  相似文献   

2.
3.
The activities of several hepatic enzymes are preferentially zonated to the periportal or perivenous cells of the liver acinus. Employing dual-digitonin-pulse perfusion of rat liver in the study of acetyl-CoA carboxylase (ACC), we have identified a heretofore unrecognized feature of hepatic zonation, namely an intrahepatic gradient in enzyme specific activity. ACC activity shows a relative periportal localization in normally feeding rats, even when corrected for ACC protein mass. In contrast with results previously reported by us [Evans, Quistorff & Witters (1989) Biochem. J. 259, 821-829], the total mass of both hepatic ACC isoenzymes was not found to differ between the two hepatic zones in the present study. In perfusion eluates from fed animals, periportal ACC displays enhanced citrate reactivity and two kinetic components of acetyl-CoA reactivity; the largest periportal/perivenous gradient (5-fold) is accounted for by a species with a lower Km for acetyl-CoA. The zonal gradient in ACC maximal velocity, measured in eluates from fed rats, does not persist after ACC purification, although the isolated periportal enzyme, like dephosphorylated ACC, has a lower activation constant for citrate. Total ACC protein phosphatase activity is higher in periportal eluates, but no differences in the activities of either a 5'-AMP-activated ACC kinase or the cyclic-AMP-dependent protein kinase are noted between the hepatic zones. The induction of total hepatic ACC mass and specific activity, on fasting/refeeding with a high-carbohydrate diet, abolishes the periportal/perivenous activity gradient, largely owing to a selective activation of perivenous enzyme. Nutritional induction is also accompanied by a marked alteration in ACC acetyl-CoA kinetics and abolition of the gradient in total ACC phosphatase. These studies indicate that hepatic enzyme zonation, which is often attributed to differential expression of enzyme protein, may result from zonal variations in enzyme specific activity, owing to differences in allosteric regulation and/or covalent modification.  相似文献   

4.
A hybrid bioartificial liver device supporting a large mass of cells expressing differentiated hepatocyte metabolic capabilities is necessary for the successful treatment of fulminant hepatic failure. The three-compartment gel-entrapment porcine hepatocyte bioartificial liver was designed to provide "bridge" support to transplantation or until native liver recovery is achieved for patients with acute liver failure. The device is an automated mammalian cell culture system supporting 6-7 × 109 porcine hepatocytes entrapped in a collagen matrix and inoculated into the capillary lumen spaces of two 100 kDa molecular mass cut-off hollow fiber bioreactors. Gel contraction recreates a small lumen space within the hollow fiber which allows for the delivery of a nutrient medium. This configuration supported hepatocyte viability and differentiated phenotype as measured by albumin synthesis, ureagenesis, oxygen consumption, and vital dye staining during both cell culture and ex vivo application. The hollow fiber membrane was also shown to isolate the cells from xenogenic immunoglobulin attack. The gel-entrapment bioartificial liver maintained a large mass of functional hepatocytes by providing a three-dimensional cell culture matrix, by delivering basal nutrients through lumen media perfusion, and by preventing rejection of the xenocytes. These features make this device a favorable candidate for the treatment of clinical fulminant hepatic failure.  相似文献   

5.
Zonal distribution of insulin stimulation of hepatic protein tyrosine phosphorylation, detected by immunoblotting with an anti-phosphotyrosine antibody, has been studied in the in situ perfused rat liver by dual-digitonin-pulse perfusion. Insulin promotes the rapid and sustained tyrosine phosphorylation of two proteins (pp150 and pp69) that are present only in the perivenous hepatocytes, while three others (pp46, pp48 and pp96) are stimulated identically in the periportal and perivenous cells. The ability of insulin to rapidly activate acetyl-CoA carboxylase is indistinguishable between the hepatic zones. Hepatic zonation of insulin-stimulated tyrosine phosphorylation could underly differential hepatic insulin responses and might provide clues to the identification of tyrosine phosphorylated proteins linked to insulin regulation of intracellular events.  相似文献   

6.
In a hepatic lobule, different sets of metabolic enzymes are expressed in the periportal (PP) and pericentral (PC) regions, forming a functional zonation, and the oxygen gradient is considered a determinant of zone formation. It is desirable to reproduce lobular microenvironment in vitro, but incubation of primary hepatocytes in conventional culture dishes has been limited at fixed oxygen concentrations due to technical difficulties.  相似文献   

7.
Since in the usual perfusion of isolated rat liver via the portal vein an insulin-dependent increase of hepatic glucose uptake could not be demonstrated, the possibility was considered that hepatic glucose uptake might not be a function of the absolute concentration of this substrate but of its concentration gradient between the portal vein and the hepatic artery. Therefore a new method was established for the simultaneous perfusion of isolated rat liver via both the hepatic artery (20-35% flow) and the portal vein (80-65% flow). When glucose was offered in a concentration gradient, 9.5 mM in the portal vein and 6 mM in the hepatic artery, insulin given via both vessels caused a shift from net glucose release to uptake. This insulin-dependent shift was not observed when glucose was offered without a gradient or with an inverse gradient, 6 mM in the portal vein and 9.5 mM in the hepatic artery. Using a portal-arterial glucose gradient as a signal the liver might be able to differentiate between endogenous and exogenous glucose.  相似文献   

8.
Nonalcoholic fatty liver disease (NAFLD) is a chronic hepatic disease associated with excessive accumulation of lipids in hepatocytes. As the disease progresses, oxidative stress plays a pivotal role in the development of hepatic lipid peroxidation. Cytochrome P450 1A1 (CYP1A1), a subtype of the cytochrome P450 family, has been shown to be a vital modulator in production of reactive oxygen species. However, the exact role of CYP1A1 in NAFLD is still unclear. The aim of this study was to investigate the effects of CYP1A1 on lipid peroxidation in oleic acid (OA)-treated human hepatoma cells (HepG2). We found that the expression of CYP1A1 is elevated in OA-stimulated HepG2 cells. The results of siRNA transfection analysis indicated that CYP1A1-siRNA inhibited the lipid peroxidation in OA-treated HepG2 cells. Additionally, compared with siRNA-transfected and benzo[a]pyrene (BaP)-OA-induced HepG2 cells, overexpression of CYP1A1 by BaP further accelerated the lipid peroxidation in OA-treated HepG2 cells. These observations reveal a regulatory role of CYP1A1 in liver lipid peroxidation and imply CYP1A1 as a potential therapeutic target.  相似文献   

9.
The liver acinus displays a physiological periportal to perivenous oxygen gradient. This gradient was implicated to use reactive oxygen species (ROS) as mediators for the zonal gene expression. Mitochondria use oxygen and produce ROS, therefore they may contribute to the zonation of gene expression. To further elucidate this, we used the Cre-loxP system to generate a hepatocyte-specific null mutation of the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) in mice. We found that ROS levels were enhanced in livers of MnSOD(-/-) mice which were reduced in size and displayed signs of liver failure such as intracellular protein droplets, increased apoptotic bodies and Bax levels as well as multinuclear hepatocytes. Further, the zonation of glutamine synthetase, glucokinase and phosphoenolpyruvate carboxykinase was no longer preserved. We conclude that deficiency of mitochondrial MnSOD initiates a dysregulation of zonated gene expression in liver.  相似文献   

10.
11.
Oxygen is vital to the function of all tissues including the liver and lack of oxygen, that is, hypoxia can result in both acute and chronic injuries to the liver in vivo and ex vivo. Furthermore, a permanent oxygen gradient is naturally present along the liver sinusoid, which plays a role in the metabolic zonation and the pathophysiology of liver diseases. Accordingly, here, we introduce an in vitro microfluidic platform capable of actively creating a series of oxygen concentrations on a single continuous microtissue, ranging from normoxia to severe hypoxia. This range approximately captures both the physiologically relevant oxygen gradient generated from the portal vein to the central vein in the liver, and the severe hypoxia occurring in ischemia and liver diseases. Primary rat hepatocytes cultured in this microfluidic platform were exposed to an oxygen gradient of 0.3–6.9%. The establishment of an ascending hypoxia gradient in hepatocytes was confirmed in response to the decreasing oxygen supply. The hepatocyte viability in this platform decreased to approximately 80% along the hypoxia gradient. Simultaneously, a progressive increase in accumulation of reactive oxygen species and expression of hypoxia-inducible factor 1α was observed with increasing hypoxia. These results demonstrate the induction of distinct metabolic and genetic responses in hepatocytes upon exposure to an oxygen (/hypoxia) gradient. This progressive hypoxia-on-a-chip platform can be used to study the role of oxygen and hypoxia-associated molecules in modeling healthy and injured liver tissues. Its use can be further expanded to the study of other hypoxic tissues such as tumors as well as the investigation of drug toxicity and efficacy under oxygen-limited conditions.  相似文献   

12.
The zonation of the purinergic action of ATP in the hepatic parenchyma was investigated in the bivascularly perfused rat liver by means of anterograde and retrograde perfusion. Livers from fed rats were used, and ATP was infused according to four different experimental protocols: (A) anterograde perfusion and ATP infusion via the portal vein; (B) anterograde perfusion and ATP via the hepatic artery; (C) retrograde perfusion and ATP via the hepatic vein; (D) retrograde perfusion and ATP via the hepatic artery. The following metabolic parameters were measured: glucose release, lactate production and oxygen consumption. The hemodynamic effects were evaluated by measuring the sinusoidal mean transit times by means of the indicator-dilution technique. ATP was infused during 20 min at four different rates (between 0.06-0.77 µmol min-1 g liver-1; 20-200 µM) in each of the four experimental protocols.The results that were obtained allow several conclusions with respect to the localization of the effects of ATP along the hepatic acini: (1) In retrograde perfusion the sinusoidal mean transit times were approximately twice those observed in anterograde perfusion. ATP increased the sinusoidal mean transit times only in retrograde perfusion (protocols C and D). The effect was more pronounced with protocol D. These results allow the conclusion that the responsive vasoconstrictive elements are localized in a pre-sinusoidal region; (2) All hepatic cells, periportal as well as perivenous, were able to metabolize ATP, so that concentration gradients were generated with all experimental protocols. Extraction of ATP was more pronounced in retrograde perfusion, an observation that can be attributed, partly at least, to the longer sinusoidal transit times. In anterograde perfusion, the extraction of ATP was time-dependent, a phenomenon that cannot be satisfactorily explained with the available data; (3) ATP produced a transient initial inhibition of oxygen uptake when protocols A and B were employed. These protocols are the only ones in which the cells situated shortly after the intrasinusoidal confluence of the portal vein and the hepatic artery were effectively supplied with ATP. The decrease in oxygen consumption was more pronounced at low ATP infusions when protocol B was employed. These observations allow the conclusion that the former phenomenon is localized mainly in cells situated shortly after the intrasinusoidal confluence of the portal vein and hepatic artery. Oxygen consumption in all other cells, especially the proximal periportal ones, is increased by ATP; (4) In agreement with previous data found in the literature, glycogenolysis stimulation by ATP was more pronounced in the periportal region. The cells that respond more intensively are not the proximal periportal ones, but those situated in the region of the intrasinusoidal confluence of the portal vein and the hepatic artery.  相似文献   

13.
Periportal and perivenous hepatocytes from rat liver were isolated by combined digitonin-collagenase perfusion, and gluconeogenesis, urea synthesis and fatty acid synthesis was measured both in freshly isolated cells and in primary culture. A periportal zonation of gluconeogenesis and urea synthesis of about 3 and 1.5 fold, respectively, was observed. This zonation persisted unchanged for 23 hours in culture under identical conditions of incubation for periportal and perivenous cells. Fatty acid synthesis was not zonated.  相似文献   

14.
This study elucidated the effects of cornuside on carbon tetrachloride (CCl?)-induced hepatotoxicity. Rats were treated intraperitoneally with 0.5 mL/kg of CCl?. Sixteen h after CCl? treatment, the levels of serum aminotransferases, tumor necrosis factor-α (TNF-α), and lipid peroxidation were significantly elevated, whereas the hepatic antioxidative enzyme activities were decreased. These changes were attenuated by cornuside. Histological studies also indicated that cornuside inhibited CCl?-induced liver damage. Furthermore, the contents of hepatic nitrite, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were elevated after CCl? treatment, while cytochrome P450 2E1 (CYP2E1) expression was suppressed. Cornuside treatment inhibited the formation of liver nitrite, and reduced the overexpression of iNOS and COX-2 proteins, but restored the liver CYP2E1 content as compared with the CCl?-treated rats. Our data indicate that cornuside protects the liver from CCl?-induced acute hepatotoxicity, perhaps due to its ability to restore the CYP2E1 function and suppress inflammatory responses, in combination with its capacity to reduce oxidative stress.  相似文献   

15.
Acetaminophen (APAP) overdose-induced acute liver injury (AILI) is a significant clinical problem worldwide, the hepatotoxicity mechanisms are well elucidated, but the factors involved in the necrosis and repair still remain to be investigated. APAP was injected intraperitoneally in male Institute of Cancer Research (ICR) mice. Quantitative proteome analysis of liver tissues was performed by 2-nitrobenzenesulfenyl tagging, two-dimensional-nano high-performance liquid chromatography separation, and matrix-assisted laser desorption/ionization–time of flight mass spectrometry analysis. Diffrenetial proteins were verified by the immunochemistry method. 36 and 44 differentially expressed proteins were identified, respectively, at 24 hr after APAP (200 or 300 mg·kg −1) administration. The decrease in the mitochondrial protective proteins Prdx6, Prdx3, and Aldh2 accounted for the accumulation of excessive reactive oxygen species (ROS) and aldehydes, impairing mitochondria structure and function. The Gzmf combined with Bax and Apaf-1 jointly contributed to the necrosis. The blockage of Stat3 activation led to the overexpression of unphosphorylated Stat3 and the overproduction of Bax. The overexpression of unphosphorylated Stat3 represented necrosis; the alternation from Stat3 to p-Stat3 in necrotic regions represented hepatocytes from death to renewal. The high expressions of P4hα1, Ncam, α-SMA, and Cygb were involved in the liver repair, they were not only the markers of activated HSC but also represented an intermediate stage of hepatocytes from damage or necrosis to renewal. Our data provided a comprehensive report on the profile and dynamic changes of the liver proteins in AILI; the involvement of Gzmf and the role of Stat3 in necrosis were revealed; and the role of hepatocyte in liver self-repair was well clarified.  相似文献   

16.
The role of the liver in metabolism of heparin was studied using the isolated rat liver perfused in vitro for 10 hr. Porcine intestinal heparin (1000 u) was added to the recirculating liver perfusate, and serial heparin measurements were performed on the liver perfusate every 2 hr, as well as on bile samples secreted by the perfused liver. Heparin concentration remained at a constant level throughout the 10 hr of perfusion, and there was no detectable heparin secreted into bile samples. The findings suggest that hepatic metabolism/clearance plays a minimal role in heparin kinetics in plasma.  相似文献   

17.
18.
The action of cyanide (500 μM ), 2,4-dinitrophenol (50 μM ) and atractyloside (100 μM ) on glycogen catabolism and oxygen uptake was investigated in the bivascularly perfused liver of fed rats. Cyanide, 2,4-dinitrophenol and atractyloside were infused at identical rates into the hepatic artery in either the anterograde or retrograde perfusion. The accessible aqueous cell spaces were determined by means of the multiple-indicator dilution technique. Glucose release, oxygen uptake and glycolysis were measured as metabolic parameters. Oxygen uptake changes per unit cell space caused by atractyloside (inhibition) and 2,4-dinitrophenol (stimulation) were equal in the retrograde perfusion (periportal cells) and the anterograde perfusion (space enriched in perivenous cells); the decreases caused by cyanide were higher in the retrograde perfusion. Glucose release from periportal cells was not increased upon inhibition of oxidative phosphorylation, a phenomenon which was independent of the mechanism of action of the inhibitor. There were nearly identical changes in glycolysis in the periportal and perivenous cells. It was concluded that: (1) oxygen concentration in the perfused rat liver, if maintained above 100 μM , had little influence on the zonation of the respiratory activity; (2) in spite of the lower activities of the key enzymes of glycolysis in the periportal hepatocytes, as assayed under standard conditions, these cells were as effective as the perivenous ones in generating ATP in the cytosol when oxidative phosphorylation was impaired; (3) the key enzymes of glycogenolysis and glycolysis in periportal and perivenous cells responded differently to changes in the energy charge.  相似文献   

19.
The hepatotoxic effects of hyperthermic liver perfusion were investigated in male Fischer 344 rat livers. Perfusions were carried out at 37, 41, 42, 42.5, and 43 degrees C for 2 hr. During the 2 hr, the perfusate was analyzed for activity of aspartate aminotransferase (AST), lactate dehydrogenase (LDH), N-acetyl-beta-glucosaminidase (NAG), and glutathione (GSH), oxidized glutathione (GSSG), allantoin, and potassium. After perfusion, each liver was homogenized and analyzed for total xanthine oxidase (XO) activity, percentage type-D and type-O XO, and total GSH content. Perfusate AST, LDH, NAG, and potassium levels were increased significantly with time and were significantly different in all hyperthermic perfusions from the 37 degrees C perfusion values by the end of the perfusion. Perfusate GSH + GSSG levels were increased significantly in all hyperthermic perfusions after 60 min. Liver GSH levels were significantly lowered following perfusion at hyperthermic temperatures. There was a temperature-dependent increase in the percentage of XO in the type-O form following perfusion at hyperthermic temperatures, which was strongly and positively correlated with the loss of hepatic GSH. These data support the hypothesis that hyperthermic toxicity to the liver is the result of oxidative stress brought about by conversion of XO to the type-O form.  相似文献   

20.
There is a considerable discrepancy between oxygen supply and demand in the liver because hepatic oxygen consumption is relatively high but about 70% of the hepatic blood supply is poorly oxygenated portal vein blood derived from the gastrointestinal tract and spleen. Oxygen is delivered to hepatocytes by blood flowing from a terminal branch of the portal vein to a central venule via sinusoids, and this makes an oxygen gradient in hepatic lobules. The oxygen gradient is an important physical parameter that involves the expression of enzymes upstream and downstream in hepatic microcirculation, but the lack of techniques for measuring oxygen consumption in the hepatic microcirculation has delayed the elucidation of mechanisms relating to oxygen metabolism in liver. We therefore used FITC-labeled erythrocytes to visualize the hepatic microcirculation and used laser-assisted phosphorimetry to measure the partial pressure of oxygen in the microvessels there. Noncontact and continuous optical measurement can quantify blood flow velocities, vessel diameters, and oxygen gradients related to oxygen consumption in the liver. In an acute hepatitis model we made by administering acetaminophen to mice we observed increased oxygen pressure in both portal and central venules but a decreased oxygen gradient in the sinusoids, indicating that hepatocyte necrosis in the pericentral zone could shift the oxygen pressure up and affect enzyme expression in the periportal zone. In conclusion, our optical methods for measuring hepatic hemodynamics and oxygen consumption can reveal mechanisms related to hepatic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号