首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To obtain regenerable magnetic nanoparticles, triethoxy(3-isocyanatopropyl)silane and iminodiacetic acid (IZ) were used as the starting material and immobilized on Fe3O4 nanoparticles. Copper ions (Cu2+ ions) were loaded on the Fe-IZ nanoparticles and used for cellulase immobilization. The support was characterized by spectroscopic methods (FTIR, NMR) and thermogravimetric analysis, transmission electron microscopy, scanning electron microscope, X-ray diffraction, energy dispersive X-ray analysis, and vibrating sample magnetometer techniques. As a result of experiments, the amount of protein bound to immobilized cellulase (Fe-IZ-Cu-E) and cellulase activity was found to be 33.1 mg/g and 154 U/g at pH 5, 50°C, for 3 h. The results indicated that the free cellulase had kept only 50% of its activity after 2 h, while the Fe-IZ-Cu-E was observed to be around 77%, at 60°C. It was found that the immobilized cellulase maintained 93% of its initial catalytic activity after its sixth use. Furthermore, the Fe-IZ-Cu-E retained about 75% of its initial activity after 28 days of storage. To reuse the support material (Fe-IZ-Cu), it was regenerated by thorough washing with ammonia or imidazole.  相似文献   

2.
Abstract

In this study, 6-phosphogluconate dehydrogenase was covalently immobilized onto the N-2-aminoethyl-3-aminopropyltriethoxysilane (APTES) modified core-shell Fe3O4@SiO2 magnetic nanoparticles (ASMNPs) using glutaraldehyde (GA). Immobilization of 6PGDH on ASMNPs was confirmed using fourier transform-infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis. The NADP+ conversion ratio, the reusability, thermal, and storage stability of the immobilized 6PGDH were determined and compared with those of the free enzyme. The maximum retention of enzyme activity reached to 96% when the enzyme was immobilized on ASMNPs activated with monomer form of GA. Although the thermal stability of free and immobilized enzymes was similar, at 30?°C, the immobilized 6PGDH showed the improved thermal stability at 40?°C and 50?°C compared with free 6PGDH. While the free 6PGDH only converted 33% of NADP+ in reaction medium upon 480?s, the immobilized 6PGDH performed 56% conversion of NADP+ at same time. The immobilized 6PGDH retained 62% of its initial activity up to the fifth cycle and 35% of its initial activity after 22?days of storage at 4?°C.  相似文献   

3.
4.
5.
Magnetic nanoparticles prepared from an alkaline solution of divalent and trivalent iron ions could covalently bind protein via the activation ofN-ethyl-N-(3-dimethylaminopropyl) carbodiimide (EDC). Trypsin and avidin were taken as the model proteins for the formation of protein-nanoparticle conjugates. The immobilized yield of protein increased with molar ratio of EDC/nanoparticle. Higher concentrations of added protein could yield higher immobilized protein densities on the particles. In contrast to EDC, the yields of protein immobilization via the activation of cyanamide were relatively lower. Nanoparticles bound with avidin could attach a single-stranded DNA through the avidin-biotin interaction and hybridize with a DNA probe. The DNA hybridization was confirmed by fluorescence microscopy observations. Immobilized DNA on nanoparticles by this technique may have widespread applicability to the detection of specific nucleic acid sequence and targeting of DNA to particular cells.  相似文献   

6.
本研究采用3-丙氨基三乙氧基硅烷(APTES)和戊二醛修饰包裹有SiO2磁性Fe3O4纳米颗粒表面,将其作为固定化载体固定化乙醇脱氢酶,研究固定化条件对固定化效率的影响,并对固定化酶性质进行分析。研究发现,当Fe3O4@SiO2纳米颗粒修饰上氨基和醛基后依然具有良好的水分散性和胶体稳定性,适合作为固定化载体。通过单因素优化,发现当最适给酶量为11. 3U/100 mg,搅拌转速为150 r/min,固定化p H和固定化温度分别控制在6. 5和5℃~15℃,固定化时长为45 min时,具有较好的固定化效果,固定化率可达到60. 2%。在此条件下制备得到的固定化酶与游离酶相比,固定化酶具有良好的耐高温和耐碱性。所得固定化乙醇脱氢酶在连续使用8次后,固定化率仍保留在57%左右,表明该固定化酶具有较好的操作稳定性,可为连续生产NADH提供技术依据。  相似文献   

7.
The immobilization of pullulanase from Klebsiella pneumoniae by grafting was investigated. Pullulanase was linked after activation of alginate via a covalent bond between the amine groups of the enzyme and the carboxylic acid groups of alginate. The immobilization yield was 60%. The activity of free pullulanase and immobilized pullulanase was followed by the quantification of reducing ends by colorimetric assay and the determination of the molar masses of the hydrolyzed pullulan by SEC/MALS/DRI. Compared to free pullulanase, the kinetics is largely slowed. The evolution of the weight average molar mass of pullulan leading to high production of shorter oligosaccharides during hydrolysis is not the same as that obtained with free enzyme. Immobilized pullulanase retained 75% and 30% of its initial activity after 24 h and 14 days of incubation at 60°C, respectively while free pullulanase lost its activity after 5 h of hydrolysis at the same temperature. The kinetic parameters of immobilized pullulanase were also investigated by isothermal titration calorimetry (ITC). The affinity of immobilized enzyme to its substrate was reduced compared to the free pullulanase due to steric hindrance and chemical links. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:883–889, 2015  相似文献   

8.
Yeast alcohol dehydrogenase (YADH) was immobilized covalently on Fe3O4 magnetic nanoparticles (10.6 nm) via carbodiimide activation. The immobilization process did not affect the size and structure of magnetic nanoparticles. The YADH-immobilized magnetic nanoparticles were superparamagnetic with a saturation magnetization of 61 emu g–1, only slightly lower than that of the naked ones (63 emu g–1). Compared to the free enzyme, the immobilized YADH retained 62% activity and showed a 10-fold increased stability and a 2.7-fold increased activity at pH 5. For the reduction of 2-butanone by immobilized YADH, the activation energies within 25–45 °C, the maximum specific activity, and the Michaelis constants for NADH and 2-butanone were 27 J mol–1, 0.23 mol min–1 mg–1, 0.62 mM, and 0.43 M, respectively. These results indicated a structural change of YADH with a decrease in affinity for NADH and 2-butanone after immobilization compared to the free enzyme.  相似文献   

9.
A proteolytic enzyme capable of cleaving intact proteins and synthetic substrates α?N?benzoyl?DL?arginine β?naphthylamide (Bz-Arg-NNap), α-N-benzoyl-L-arginine p-nitroanilde (Bz-Arg-NPhNO2), and α-N-benzoyl-L-arginine ethyl ester (Bz-Arg-OEt) was purified 92– fold from the rabbit testes. The enzyme exhibited optimal activity at pH 9.0 and 50°C. The polyacrylamide gel electrophoresis and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of the purified enzyme demonstrated multiple forms; the major band in the SDS-polyacrylamide gel electrophoresis corresponded to a Mt 48,000. The same value was established by the gel filtration over Sephadex G-75. The rabbit testicular alkaline proteinase (TAP) resembled acrosin in the hydrolysis of Bz-Arg-OEt. However, CaCl2, a potential stimulator of acrosin activity, inhibited the alkaline proteinase. The strong inhibitors of acrosin, eg pheny methyl sulphonyl fluoride (PMSF), tosyl lysine chloromethyl ketone (TLCK), and benzamidine did not inhibit the alkaline proteinase. TAP was activated by an acrosin inhibitor isolated from the rabbit testes. Since 0.5 M KCl was necessary for complete extraction of the enzyme and the bulk of the activity was present in 9,000g pellet of the testicular homogenate. The alkaline proteinase appeared to be associated with the membranous structures.  相似文献   

10.
Abstract

The hydrolysates of soy protein and milk protein are nutritional and functional food ingredients. Aspergillus pseudoglaucus aspergillopepsin I (App) is an acidic protease, including signal peptide, propeptide, and catalytic domain. Here, we cloned the catalytic domain App with or without propeptide in Escherichia coli. The results showed that the App without propeptide was not expressed or did not exhibit activity and App with propeptide (proApp) was highly expressed with a specific activity of 903?U/mg. Moreover, the denaturation temperature of proApp was 4.1?°C higher than App’s. The proApp showed 104?U/mg and 252?U/mg hydrolysis activities towards soy protein and milk protein under acidic conditions. By RP-HPLC analysis, the peptides obtained from the hydrolysates of soy protein and milk protein were hydrophilic peptides. This work first demonstrates efficient proteolysis of soy protein and milk protein through the functional expression of full-length proApp, which will likely have valuable industrial applications.  相似文献   

11.
Magnetic particles of size 10 nm have been coated with silica to a mean diameter of 40 nm and charged with Cu2+ ions via a multidentate ligand, iminodiacetic acid (IDA), for the immobilization of His-tagged Bacillus stearothermopilus L1 lipase. Microporous (average pore diameter of 60 Å) silica gel with a mean particle diameter of 115 µm has been used as a comparative support material. The molar ratio of Cu2+ to IDA was found to be 1:1.14 and 1:1.99 in the silica gel and the silica-coated magnetic nanoparticles (SiMNs), respectively. The specific activity of the immobilized enzyme was found to conform to the following order: Cu2+-charged SiMN>SiMN>Cu2+-charged silica gel>silica gel. When it was immobilized on the Cu2+-charged SiMNs, over 70% of the initial activity of the lipase remained after it had been reused five times. However, only 20% of the initial activity remained after the enzyme immobilized on the Cu2+-charged silica gel had been reused five times. For the enzyme immobilized on supports without Cu2+ cations, all activity was lost after threefold reuse. The differences in the specific activities and the efficiencies of reuse of the enzymes immobilized on the various support materials are discussed in terms of immobilization mechanisms (physical adsorption vs. coordination bonding), mass transfer of a substrate and a product of the enzyme reaction, and the status of the Cu (Cu bound to the IDA on the silica layer vs. Cu directly adsorbed on the silica layer).  相似文献   

12.
Increasing concerns about biosafety of nanoparticles (NPs) has raised the need for detailed knowledge of NP interactions with biological molecules especially proteins. Herein, the concentration-dependent effect of magnetic NPs (MNPs) on bovine serum albumin and hen egg white lysozyme was explored. The X-ray diffraction patterns, zeta potential, and dynamic light scattering measurements together with scanning electron microscopy images were employed to characterize MNPs synthesized through coprecipitation method. Then, we studied the behavior of two model proteins with different surface charges and structural properties on interaction with Fe3O4. A thorough investigation of protein–MNP interaction by the help of intrinsic fluorescence at different experimental conditions revealed that affinity of proteins for MNPs is strongly affected by the similarity of protein and MNP surface charges. MNPs exerted structure-making kosmotropic effect on both proteins under a concentration threshold; however, binding strength was found to determine the extent of stabilizing effect as well as magnitude of the concentration threshold. Circular dichroism spectra showed that proteins with less resistance to conformational deformations are more prone to secondary structure changes upon adsorption on MNPs. By screening thermal aggregation of proteins in the presence of Fe3O4, it was also found that like chemical stability, thermal stability is influenced to a higher extent in more strongly bound proteins. Overall, this report not only provides an integrated picture of protein–MNP interaction but also sheds light on the molecular mechanism underling this process.  相似文献   

13.
Enzyme immobilization on magnetic nanoparticles (MNPs) has been a field of intense studies in biotechnology during the past decade. The present study suggests MNPs negatively charged by docusate sodium salt (AOT) as a support for pectinase immobilization. AOT is a biocompatible anionic surfactant which can stabilize MNPs. Electrostatic adsorption can occur between enzyme with positive charge and oppositely charged surface of MNPs (ca. 100 nm). The effect of three factors, i.e. initial enzyme concentration, aqueous pH and AOT concentration in different levels was investigated on pectinase immobilization. Maximum specific activity (1.98 U/mg enzyme) of immobilized pectinase and maximum enzyme loading of 610.5 mg enzyme/g support was attained through the experiments. Initial enzyme concentration is significantly important on both loading and activity of immobilized enzyme, while pH and AOT concentration only affect the amount of immobilized enzyme. Immobilized enzyme on MNPs was recovered easily through magnetic separation. At near pH of immobilization, protein leakage in reusability of immobilized enzyme was low and activity loss was only 10–20% after six cycles. Since pH is associated with immobilization by electrostatic adsorption, the medium pH was changed to improve the release of protein from the support, as well. MNPs properties were investigated using Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FT-IR) spectroscopy, and Dynamic Light Scattering (DLS) analysis.  相似文献   

14.
AIMS: The aim of this study was to develop a method for microbial degradation of indigenous keratin wastes and to compare it with a method of alkaline hydrolysis. METHODS AND RESULTS: Native sheep skin and wool were chosen as a model mixture of collagen and keratin wastes discarded by the leather and fur industries. Suitable conditions were found for hydrolysis of this mixture by four newly isolated thermoactinomycete strains. Another set of experiments was carried out using alkaline hydrolysis of keratin wastes. It was shown that microbial hydrolysates contained predominantly low molecular peptides and amino acids, including essential ones, while the alkaline hydrolysis produced predominantly peptides of higher molecular weight. CONCLUSION: A simple and a low-cost method was proposed for rapid and effective biodegradation of keratin wastes using Thermoactinomyces strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The proposed method could find application in agriculture for preparing mixtures containing valuable peptides and amino acids.  相似文献   

15.
Photonic induced immobilization is a novel technology that results in spatially oriented and spatially localized covalent coupling of biomolecules onto thiol-reactive surfaces. Immobilization using this technology has been achieved for a wide selection of proteins, such as hydrolytic enzymes (lipases/esterases, lysozyme), proteases (human plasminogen), alkaline phosphatase, immunoglobulins' Fab fragment (e.g., antibody against PSA [prostate specific antigen]), Major Histocompability Complex class I protein, pepsin, and trypsin. The reaction mechanism behind the reported new technology involves "photonic activation of disulfide bridges," i.e., light-induced breakage of disulfide bridges in proteins upon UV illumination of nearby aromatic amino acids, resulting in the formation of free, reactive thiol groups that will form covalent bonds with thiol-reactive surfaces (see Fig. 1). Interestingly, the spatial proximity of aromatic residues and disulfide bridges in proteins has been preserved throughout molecular evolution. The new photonic-induced method for immobilization of proteins preserves the native structural and functional properties of the immobilized protein, avoiding the use of one or more chemical/thermal steps. This technology allows for the creation of spatially oriented as well as spatially defined multiprotein/DNA high-density sensor arrays with spot size of 1 microm or less, and has clear potential for biomedical, bioelectronic, nanotechnology, and therapeutic applications.  相似文献   

16.
An effective approach to the stabilization of hydrolytic enzymes (alkaline proteinase and cellulases) via the complex formation with chitosan for their further use as detergent components has been developed. Interaction with chitosan results in a 35–50% increase in the level of catalytic activity of the enzymes after incubation for 60 min under the conditions of detergent use (alkaline pH, increased temperature, the presence of anionic surfactants) as compared to the system in the absence of chitosan both due to the enzyme stabilization and the increase of the starting level of catalytic activity. A twofold decrease of the enzyme inactivation constant is observed under the aforementioned conditions in the case of alkaline proteinase. In the case of cellulase preparation, the method for the control of the concentration of the active enzyme in the system modeling synthetic detergents has been suggested. The method is based on the enzymatic destruction of the stabilizing agent, chitosan, by enzymes of the cellulase complex. The destruction of chitosan removed the stabilizing effect, thus resulting in the inactivation of cellulases. The developed approaches allow for the widening of the field of the possible application of enzymes as detergent components.  相似文献   

17.
Lipase from Rhizomucor miehei (RML) and Thermomyces lanuginosa lipase (TLL) were immobilized on silica core-shell magnetic nanoparticles (Fe3O4@SiO2) produced by coating Fe3O4 core with silica shell. The nanoparticles were functionalized with aldehyde groups followed by immobilization of RML and TLL by using a multi-component reaction in an extremely mild condition. Rapid immobilization of both enzymes (1.5−12 h) with high immobilization yields (81–100%) was observed. The maximum loading capacity of the support was determined to be 81 mg for RML and 97 mg for TLL. The thermal stability of the immobilized derivatives of RML and TLL were greatly improved by retaining 54 and 97 % of their initial activities at 65 °C, respectively. The immobilized preparations were used to produce biodiesel by transesterification of waste cooking oil. In an optimization study, Response Surface Methodology (RSM) and a central composite rotatable design (CCRD) were used to study the effect of amount of biocatalyst, temperature, reaction time, water adsorbent (wt.%) and ratio of t-butanol to oil (wt.%) on the yield of biodiesel production. Biodiesel production yield by immobilized TLL reached 93.1 % under optimal conditions while the maximum yield for RML was 57.5 %. Both immobilized derivatives showed high reusability after 5 cycles of the reaction.  相似文献   

18.
Hybrid magnetic Fe3O4@SiO2-poly(ethylene oxide)-maltose (Fe3O4@SiO2-PEO-mal) nanoparticles synthesized by our group can be used as affinity adsorption carriers for direct separation of maltose binding protein-fused Hep I (MBP-Hep I) from a crude enzyme solution in a magnetic field. In this work, different PEO molecular weights for Fe3O4@SiO2-PEO-mal nanoparticles were used for characterizing of MBP-Hep I immobilization. The results showed that all four kinds of Fe3O4@SiO2-PEO-mal magnetic nanoparticles (6k, 20k, 35k and 100k for PEO) exhibited excellent adsorption capacities and the adsorption ratio increased as the PEO molecular weight increased from 6k to 100k. All four kinds of immobilized MBP-Hep I exhibited significantly improved stability at 30 °C compared with free MBP-Hep I and their half-lives were 20–50 times that of the free MBP-Hep I. Fe3O4@SiO2-PEO-mal nanoparticles with a PEO molecular weight of 100k were best able to immobilize MBP-Hep I (Fe3O4@SiO2-PEO100k-mal-MBP-Hep I). The molecular weight distribution profiles and anticoagulant activities, obtained from heparin depolymerization by free Hep I, free MBP-Hep I and Fe3O4@SiO2-PEO100k-mal-MBP-Hep I were the same. Furthermore, Fe3O4@SiO2-PEO100k-mal-MBP-Hep I exhibited reasonable reusability during enzymatic production of low molecular weight heparins (LMWHs).  相似文献   

19.
Glucose oxidase (GOD) and lactate dehydrogenase (LDH) were immobilized onto magnetic nanoparticles, viz. Fe3O4, via carbodiimide and glutaraldehyde. The immobilization efficiency was largely dependent upon the immobilization time and concentration of glutaraldehyde. The magnetic nanoparticles had a mean diameter of 9.3 nm and were superparamagnetic. The immobilization of GOD and LDH on the nanoparticles slightly decreased their saturation magnetization. However, the FT-IR spectra showed that GOD and LDH were immobilized onto the nanoparticles by different binding mechanisms, the reason for which was not well explained. The optimum pH values of the immobilized GOD and LDH were changed to 8 and 10, respectively. The free and immobilized enzyme kinetic parameters (Km and Vmax) were determined by Michaelis-Menten enzyme kinetics. The Km values for free and immobilized GOD were 0.168 and 0.324 mM, respectively, while those for free and immobilized LDH were 0.19 and 0.163 mM for NAD, and 2.976 and 4.785 mM for lactate, respectively. High operational stability was observed, with more than 80% of the initial enzyme activity being retained for the immobilized GOD up to 12 h and for the immobilized LDH up to 24 h. The immobilized GOD was applied to a sequential injection analysis system for the application of bioprocess monitoring.  相似文献   

20.
The NiFe2O4 magnetic nanoparticles (NF‐MNPs) were prepared for one‐step selective affinity purification and immobilization of His‐tagged recombinant glucose dehydrogenase (GluDH). The prepared nanoparticles were characterized by a Fourier‐transform infrared spectrophotometer and microscopy. The immobilization and purification of His‐tagged GluDH on NF‐MNPs were investigated. The optimal immobilization conditions were obtained that mixed cell lysis and carriers in a ratio of 0.13 in pH 8.0 Tris‐HCl buffer at 30℃ and incubated for 2 h. The highest activity recovery and protein bindings were 71.39% and 38.50 μg mg–1 support, respectively. The immobilized GluDH exhibited high thermostability, pH‐stability and it can retain more than 65% of the initial enzyme after 10 cycles for the conversion of glucose to gluconolactone. Comparing with a commercial Ni‐NTA resin, the NF‐MNPs displayed a higher specific affinity with His‐tagged recombinant GluDH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号