首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
【目的】木糖发酵是纤维素燃料乙醇生产的一个关键瓶颈,同时木质纤维素水解液中的乙酸严重抑制酿酒酵母的木糖发酵过程,因此通过基因工程手段提高菌株对木糖的利用以及对乙酸的耐受性具有重要意义。本研究以非氧化磷酸戊糖途径(PPP途径)中关键基因转醛醇酶基因(TAL1)为研究对象,探讨了3种不同启动子PTDH3、PAHP1和PUBI4,控制其表达对菌株利用木糖和耐受乙酸的影响。【方法】通过同源重组用3种启动子替换酿酒酵母基因工程菌NAPX37的TAL1基因的启动子PTAL1,再通过孢子分离和单倍体交配构建了纯合子,利用批次发酵比较了在以木糖为唯一碳源和混合糖(葡萄糖和木糖)为碳源条件下,3种启动子控制TAL1基因表达导致的发酵和乙酸耐受能力的差异。【结果】启动子PTDH3、PAHP1和PUBI4在不同程度上提高了TAL1基因的转录水平,提高了菌株对木糖的利用速率及乙酸耐受能力,提高了菌株在60 mmol/L乙酸条件下的葡萄糖利用速率。在以木糖为唯一碳源且无乙酸存在、以及混合糖为碳源的条件下,PAHP1启动子控制TAL1表达菌株的发酵结果优于PTDH3和PUBI4启动子的菌株,PAHP1启动子控制的TAL1基因的转录水平比较合适。在木糖为唯一碳源且乙酸为30 mmol/L时,PUBI4启动子控制TAL1基因表达的菌株发酵结果则优于PAHP1和PTDH3启动子菌株,此时PUBI4启动子控制的TAL1的转录水平比较合适。【结论】启动子PTDH3、PAHP1和PUBI4不同程度地提高TAL1基因的表达,在不同程度上改善了酵母菌株的木糖发酵速率和耐受乙酸性能,改善程度受发酵条件的影响。  相似文献   

3.
Synthesis of polyketides at high titer and yield is important for producing pharmaceuticals and biorenewable chemical precursors. In this work, we engineered cofactor and transport pathways in Saccharomyces cerevisiae to increase acetyl-CoA, an important polyketide building block. The highly regulated yeast pyruvate dehydrogenase bypass pathway was supplemented by overexpressing a modified Escherichia coli pyruvate dehydrogenase complex (PDHm) that accepts NADP+ for acetyl-CoA production. After 24 h of cultivation, a 3.7-fold increase in NADPH/NADP+ ratio was observed relative to the base strain, and a 2.2-fold increase relative to introduction of the native E. coli PDH. Both E. coli pathways increased acetyl-CoA levels approximately 2-fold relative to the yeast base strain. Combining PDHm with a ZWF1 deletion to block the major yeast NADPH biosynthesis pathway resulted in a 12-fold NADPH boost and a 2.2-fold increase in acetyl-CoA. At 48 h, only this coupled approach showed increased acetyl-CoA levels, 3.0-fold higher than that of the base strain. The impact on polyketide synthesis was evaluated in a S. cerevisiae strain expressing the Gerbera hybrida 2-pyrone synthase (2-PS) for the production of the polyketide triacetic acid lactone (TAL). Titers of TAL relative to the base strain improved only 30% with the native E. coli PDH, but 3.0-fold with PDHm and 4.4-fold with PDHm in the Δzwf1 strain. Carbon was further routed toward TAL production by reducing mitochondrial transport of pyruvate and acetyl-CoA; deletions in genes POR2, MPC2, PDA1, or YAT2 each increased titer 2–3-fold over the base strain (up to 0.8 g/L), and in combination to 1.4 g/L. Combining the two approaches (NADPH-generating acetyl-CoA pathway plus reduced metabolite flux into the mitochondria) resulted in a final TAL titer of 1.6 g/L, a 6.4-fold increase over the non-engineered yeast strain, and 35% of theoretical yield (0.16 g/g glucose), the highest reported to date. These biological driving forces present new avenues for improving high-yield production of acetyl-CoA derived compounds.  相似文献   

4.
Enabling xylose catabolism is challenging, especially for unconventional yeasts and previously engineered background strains. In this study, the efficacy of a yeast mating approach with Yarrowia lipolytica that can combine a previously engineering and evolved xylose phenotype with a metabolite overproduction phenotype is demonstrated. Specifically, several engineered Y. lipolytica strains that produce α‐linolenic acid (ALA), riboflavin, and triacetic acid lactone (TAL) with an engineered and adapted xylose‐utilizing strain to obtain three diploid strains that rapidly produce these molecules directly from xylose are mated. Titers of 0.52 g L?1 ALA, 96.6 mg L?1 riboflavin, and 2.9 g L?1 TAL, are obtained from xylose in flask cultures and 1.42 g L?1 production of ALA is obtained using bioreactor condition. This total production level is generally on par or higher than the parental strain cultivated on glucose, although specific productivities decreased as a result of improved overall cell growth by the diploid strains. In the case of ALA, this lipid content reached similar levels to that of flaxseed oil. This result showcases the first study using strain mating in Y. lipolytica for producing biomolecules from xylose, and thus demonstrates the utility of this approach as a routine tool for metabolic engineering.  相似文献   

5.
Biobased chemicals have become attractive replacements for their fossil-fuel counterparts. Recent studies have shown triacetic acid lactone (TAL) to be a promising candidate, capable of undergoing chemical conversion to sorbic acid and other valuable intermediates. In this study, Saccharomyces cerevisiae was engineered for the high-level production of TAL by overexpression of the Gerbera hybrida 2-pyrone synthase (2-PS) and systematic engineering of the yeast metabolic pathways. Pathway analysis and a computational approach were employed to target increases in cofactor and precursor pools to improve TAL synthesis. The pathways engineered include those for energy storage and generation, pentose biosynthesis, gluconeogenesis, lipid biosynthesis and regulation, cofactor transport, and fermentative capacity. Seventeen genes were selected for disruption and independently screened for their effect on TAL production; combinations of knockouts were then evaluated. A combination of the pathway engineering and optimal culture parameters led to a 37-fold increase in titer to 2.2 g/L and a 50-fold increase in yield to 0.13 (g/g glucose). These values are the highest reported in the literature, and provide a 3-fold improvement in yield over previous reports using S. cerevisiae. Identification of these metabolic bottlenecks provides a strategy for overproduction of other acetyl-CoA-dependent products in yeast.  相似文献   

6.
The pentose phosphate pathway (PPP) plays an important role in the efficiency of xylose fermentation during cellulosic ethanol production. In simultaneous saccharification and co-fermentation (SSCF), the optimal temperature for cellulase hydrolysis of lignocellulose is much higher than that of fermentation. Successful use of SSCF requires optimization of the expression of PPP genes at elevated temperatures. This study examined the combinatorial expression of PPP genes at high temperature. The results revealed that over-expression of TAL1 and TKL1 in Saccharomyces cerevisiae (S. cerevisiae) at 30 °C and over-expression of all PPP genes at 36 °C resulted in the highest ethanol productivities. Furthermore, combinatorial over-expression of PPP genes derived from S. cerevisiae and a thermostable yeast Kluyveromyces marxianus allowed the strain to ferment xylose with ethanol productivity of 0.51 g/L/h, even at 38 °C. These results clearly demonstrate that xylose metabolism can be improved by the utilization of appropriate combinations of thermostable PPP genes in high-temperature production of ethanol.  相似文献   

7.
A major challenge associated with the fermentation of lignocellulose-derived hydrolysates is improved ethanol production in the presence of fermentation inhibitors, such as acetic and formic acids. Enhancement of transaldolase (TAL) and formate dehydrogenase (FDH) activities through metabolic engineering successfully conferred resistance to weak acids in a recombinant xylose-fermenting Saccharomyces cerevisiae strain. Moreover, hybridization of the metabolically engineered yeast strain improved ethanol production from xylose in the presence of both 30 mM acetate and 20 mM formate. Batch fermentation of lignocellulosic hydrolysate containing a mixture of glucose, fructose and xylose as carbon sources, as well as the fermentation inhibitors, acetate and formate, was performed for five cycles without any loss of fermentation capacity. Long-term stability of ethanol production in the fermentation phase was not only attributed to the coexpression of TAL and FDH genes, but also the hybridization of haploid strains.  相似文献   

8.
Escherichia coli W3110 was previously engineered to co-utilize glucose and xylose by replacing the wild-type crp gene with a crp* mutant encoding a cAMP-independent CRP variant (Cirino et al., 2006 [Cirino, P.C., Chin, J.W., Ingram, L.O., 2006. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol. Bioeng. 95, 1167-1176.]). Subsequent deletion of the xylB gene (encoding xylulokinase) and expression of xylose reductase from Candida boidinii (CbXR) resulted in a strain which produces xylitol from glucose-xylose mixtures. In this study we examine the contributions of the native E. coli xylose transporters (the d-xylose/proton symporter XylE and the d-xylose ABC transporter XylFGH) and CRP* to xylitol production in the presence of glucose and xylose. The final batch xylitol titer with strain PC09 (Delta xylB and crp*) is reduced by 40% upon deletion of xylG and by 60% upon deletion of both xyl transporters. Xylitol production by the wild-type strain (W3110) expressing CbXR is not reduced when xylE and xylG are deleted, demonstrating tight regulation of the xylose transporters by CRP and revealing significant secondary xylose transport. Finally, plasmid expression of XylE or XylFGH with CbXR in PC07 (Delta xylB and wild-type crp) growing on glucose results in xylitol titers similar to that achieved with PC09 and provides an alternative strategy to the use of CRP*.  相似文献   

9.
Conditions for high-cell-density fermentations of Saccharomyces cerevisiae strains producing recombinant-DNA-derived proteins were established. Strains producing human immune interferon (IFN-gamma) from the constitutive PGK promoter failed to grow to high cell densities and exhibited low plasmid stability. Regulated expression of IFN-gamma was obtained in similar strains by employing a hybrid yeast GPD promoter that was subject to carbon source regulation due to the presence of regulatory DNA sequences from the yeast GAL 1,10 intergenic region. IFN-gamma expression programmed by this vector was low during growth on glucose and was induced by galactose. Previously defined fermentation conditions employing glucose as a carbon source were applied to this strain, resulting in high ceil densities with higher plasmid stability. Various methods of galactose induction of IFN-gamma expression in high-cell-density fermentations were investigated. Optimal conditions resulted in a 2000-fold induction and production of 2 g IFN-gamma/L fermentation culture.  相似文献   

10.
Kluyveromyces marxianus is thermotolerant yeast that is able to utilize a wider range of substrates and has greater thermal tolerance than most other yeast species. K. marxianus can assimilate xylose, but its ability to produce ethanol from xylose in oxygen-limited environments is poor. In the present study, the K. marxianus xylose reductase (KmXR) gene (Kmxyl1) was cloned and the recombinant enzyme was characterized to clarify the factors that limit xylose fermentation in K. marxianus NBRC1777. KmXR is a key enzyme in the xylose metabolism of K. marxianus, which was verified by disruption of the Kmxyl1 gene. The Km of the recombinant KmXR for NADPH is 65.67 μM and KmXR activity is 1.295 U/mg, which is lower than those of most reported yeast XRs, and the enzyme has no activity with coenzyme NADH. This result demonstrates that the XR from K. marxianus is highly coenzyme specific; combined with the extremely low XDH activity of K. marxianus with NADP+, the limitation of xylose fermentation is due to a redox imbalance under anaerobic conditions and low KmXR activity.  相似文献   

11.
The evolutionary adaptation was carried out on the thermotolerant yeast Kluyveromyces marxianus NIRE-K1 at 45 °C up to 60 batches to enhance its xylose utilization capability. The adapted strain showed higher specific growth rate and 3-fold xylose uptake rate and short lag phase as compared to the native strain. During aerobic growth adapted yeast showed 2.81-fold higher xylose utilization than that of native. In anaerobic batch fermentation, adapted yeast utilized about 91 % of xylose in 72 h and produced 2.88 and 18.75 g l?1 of ethanol and xylitol, respectively, which were 5.11 and 5.71-fold higher than that of native. Ethanol yield, xylitol yield and specific sugar consumption rate obtained by the adapted cells were found to be 1.57, 1.65 and 4.84-fold higher than that of native yeast, respectively. Aforesaid results suggested that the evolutionary adaptation will be a very effective strategy in the near future for economic lignocellulosic ethanol production.  相似文献   

12.
13.
14.
1,2,4‐Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4‐butanetriol trinitrate. In Saccharomyces cerevisiae, BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate dehydratase, 2‐ketoacid decarboxylase, and alcohol dehydrogenase. We here aimed to improve the BT yield in S. cerevisiae by genetic engineering. First, the amount of the key intermediate 2‐keto‐3‐deoxy‐xylonate as described previously was successfully reduced in 41% by multiple integrations of Lactococcus lactis 2‐ketoacid decarboxylase gene kdcA into the yeast genome. Since the heterologous BT synthetic pathway is independent of yeast native metabolism, this manipulation has led to NADH/NADPH imbalance and deficiency during BT production. Overexpression of the NADH kinase POS5Δ17 lacking the mitochondrial targeting sequence to relieve NADH/NADPH imbalance resulted in the BT titer of 2.2 g/L (31% molar yield). Feeding low concentrations of glucose and xylose to support the supply of NADH resulted in BT titer of 6.6 g/L with (57% molar yield). Collectively, improving the NADH/NADPH ratio and supply from glucose are essential for the construction of a xylose pathway, such as the BT synthetic pathway, independent of native yeast metabolism.  相似文献   

15.
A yeast with the xylose isomerase (XI) pathway was constructed by the multicopy integration of XI overexpression cassettes into the genome of the Saccharomyces cerevisiae MT8-1 strain. The resulting yeast strain successfully produced ethanol from both xylose as the sole carbon source and a mixed sugar, consisting of xylose and glucose, without any adaptation procedure. Ethanol yields in the fermentation from xylose and mixed sugar were 61.9% and 62.2% of the theoretical carbon recovery, respectively. Knockout of GRE3, a gene encoding nonspecific aldose reductase, of the host yeast strain improved the fermentation profile. Not only specific ethanol production rates but also xylose consumption rates was improved more than twice that of xylose-metabolizing yeast with the XI pathway using GRE3 active yeast as the host strain. In addition, it was demonstrated that xylitol in the medium exhibits a concentration-dependent inhibition effect on the ethanol production from xylose with the yeast harboring the XI-based xylose metabolic pathway. From our findings, the combination of XI-pathway integration and GRE3 knockout could be result in a consolidated xylose assimilation pathway and increased ethanol productivity.  相似文献   

16.
Xylulokinase is one of the key enzymes in xylose metabolism and fermentation, and fine-tuned expression of xylulokinase can improve xylose fermentation in yeast. To improve the efficiency of xylose fermentation in Kluyveromyces marxianus, the gene KmXYL3, which encodes a d-xylulokinase (E.C. 2.7.1.17), was isolated from K. marxianus NBRC1777. KmXYL3 was expressed in Escherichia coli BL21 (DE3) cells, and the specific activity of the resulting recombinant purified xylulokinase was 23.5 mU/mg. Disruption of KmXYL3 resulted in both loss of xylitol utilization and marked decrease in xylose utilization, proving that KmXYL3 encodes a xylulokinase that catalyzes the reaction from xylulose to xylulose 5-phosphate in the xylose metabolic pathway. The slow assimilation of xylose observed in the KmXYL3-disrupted strain indicates that KmXYL3 is critical for xylose and xylitol utilization; however, K. marxianus utilizes a bypass pathway for xylose assimilation, and this pathway does not involve xylitol or xylulose.  相似文献   

17.
 The thermotolerant yeast strain, Kluyveromyces marxianus IMB3, was found to be capable of ethanol production during growth at 45°C on media containing milled paper and exogenously added commercial cellulase. At maximum achievable cellulose concentrations in shake-flask cultures, ethanol production increased to 6.6 g/l at 45°C, representing an overall level of conversion of 21% of the maximum theoretical yield. Subsequent studies involving variations in added cellulase concentrations to the batch systems demonstrated that ethanol yields could be increased to 10 g/l at 45°C, which represented 39% of the maximum theoretical yield. As a result of ethanol production at 45°C in the systems examined, we suggest that the thermotolerant ethanol-producing yeast strain K. marxianus represents a novel candidate for use in simultaneous saccharification and conversion of the resulting substrates to ethanol. Received: 9 June 1994/Received revision: 8 August 1994/Accepted: 12 August 1994  相似文献   

18.
Saccharomyces cerevisiae was metabolically engineered for xylose utilization. The Pichia stipitis CBS 6054 genes XYL1 and XYL2 encoding xylose reductase and xylitol dehydrogenase were cloned into S. cerevisiae. The gene products catalyze the two initial steps in xylose utilization which S. cerevisiae lacks. In order to increase the flux through the pentose phosphate pathway, the S. cerevisiae TKL1 and TAL1 genes encoding transketolase and transaldolase were overexpressed. A XYL1- and XYL2-containing S. cerevisiae strain overexpressing TAL1 (S104-TAL) showed considerably enhanced growth on xylose compared with a strain containing only XYL1 and XYL2. Overexpression of only TKL1 did not influence growth. The results indicate that the transaldolase level in S. cerevisiae is insufficient for the efficient utilization of pentose phosphate pathway metabolites. Mixtures of xylose and glucose were simultaneously consumed with the recombinant strain S104-TAL. The rate of xylose consumption was higher in the presence of glucose. Xylose was used for growth and xylitol formation, but not for ethanol production. Decreased oxygenation resulted in impaired growth and increased xylitol formation. Fermentation with strain S103-TAL, having a xylose reductase/xylitol dehydrogenase ratio of 0.5:30 compared with 4.2:5.8 for S104-TAL, did not prevent xylitol formation.  相似文献   

19.
【背景】马克斯克鲁维酵母(Kluyveromyces marxianus)具有完整的木糖代谢途径,可以高效利用木质纤维素中的木糖,因此对其糖转运蛋白基因的研究或可有效解决酵母木糖转运的相关问题。【目的】根据马克斯克鲁维酵母DMKU3-1042中KLMA_70145和KLMA_80101基因位点的功能预测,获得马克斯克鲁维酵母GX-UN120相应的糖转运蛋白基因序列并探究其功能。【方法】将转运蛋白基因分别克隆表达至酿酒酵母EBY.VW4000中考察重组菌株生长特性,以此间接评价对应转运蛋白的转运能力。【结果】Km_SUT2基因编码的糖转运蛋白可有效提高宿主细胞转运木糖、阿拉伯糖、山梨糖、核糖、乳糖和葡萄糖的能力,但却不能转运甘露糖、果糖、蔗糖和半乳糖。类似地,Km_SUT3基因编码的糖转运蛋白可提高细胞转运木糖、阿拉伯糖、山梨糖、半乳糖、核糖、乳糖和葡萄糖的能力,但却不能转运甘露糖和果糖。然而在葡萄糖存在的条件下,重组菌株对各种碳源的利用均受抑制,但Km_SUT3转运木糖和核糖过程中受葡萄糖的抑制作用较小。【结论】马克斯克鲁维酵母GX-UN120中转运蛋白Km_SUT2和Km_SUT3可...  相似文献   

20.
Six different yeasts were used to study their metabolism of glucose and xylose, and mainly their capacity to produce ethanol and xylitol. The strains used were Candida guilliermondii, Debaryomyces hansenii, Saccharomyces cerevisiae, Kluyveromyces marxianus, Meyerozyma guilliermondii and Clavispora lusitaniae, four isolated from a rural mezcal fermentation facility. All of them produced ethanol when the substrate was glucose. When incubated in a medium containing xylose instead of glucose, only K. marxianus and M. guilliermondii were able to produce ethanol from xylose. On the other hand, all of them could produce some xylitol from xylose, but the most active in this regard were K. marxianus, M. guilliermondii, C. lusitaniae, and C. guilliermondii with the highest amount of xylitol produced. The capacity of all strains to take up glucose and xylose was also studied. Xylose, in different degrees, produced a redox imbalance in all yeasts. Respiration capacity was also studied with glucose or xylose, where C. guilliermondii, D. hansenii, K. marxianus and M. guilliermondii showed higher cyanide resistant respiration when grown in xylose. Neither xylose transport nor xylitol production were enhanced by an acidic environment (pH 4), which can be interpreted as the absence of a proton/sugar symporter mechanism for xylose transport, except for C. lusitaniae. The effects produced by xylose and their magnitude depend on the background of the studied yeast and the conditions in which these are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号