首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Filamentous fungi are widely used in the production of biotechnological compounds. Since their morphology is strongly linked to productivity, it is a key parameter in industrial biotechnology. However, identifying the morphological properties of filamentous fungi is challenging. Owing to a lack of appropriate methods, the detailed three-dimensional morphology of filamentous pellets remains unexplored. In the present study, we used state-of-the-art X-ray microtomography (µCT) to develop a new method for detailed characterization of fungal pellets. µCT measurements were performed using freeze-dried pellets obtained from submerged cultivations. Three-dimensional images were generated and analyzed to locate and quantify hyphal material, tips, and branches. As a result, morphological properties including hyphal length, tip number, branch number, hyphal growth unit, porosity, and hyphal average diameter were ascertained. To validate the potential of the new method, two fungal pellets were studied—one from Aspergillus niger and the other from Penicillium chrysogenum. We show here that µCT analysis is a promising tool to study the three-dimensional structure of pellet-forming filamentous microorganisms in utmost detail. The knowledge gained can be used to understand and thus optimize pellet structures by means of appropriate process or genetic control in biotechnological applications.  相似文献   

2.
3.
S. Dickson  P. Kolesik 《Mycorrhiza》1999,9(4):205-213
 A method has been developed for the visualisation and three-dimensional (3D) measurement of mycorrhizal fungal structures inside plant roots. Sections of Allium porrum L. roots colonised by Glomus sp. 'City Beach' (WUM 16) and Lilium sp. roots colonised by Scutellospora calospora (Nicol. & Gerd.) Walker & Sanders (WUM 12(2)) were stained with acid fuchsin. This allowed fluorescence from the fungal structures to be observed under a laser scanning confocal microscope (LSCM) without interference from the plant cells. A series of horizontal optical sections were collected from a Glomus sp. arbuscule and from a hyphal coil of S. calospora. These data were used to produce extended focus images. Axial distortion in microscopic visualisation due to the refractive index mismatch between the immersion and mounting media was quantified using vertical scanning of the hyphae. A correction factor of 0.71 μm was used for the z-interval between the xy-slices. A series of binary xy-images from each structure was rendered into a 3D graphical model for viewing. The volume and surface area of the structures were estimated using computerised 3D measurement and also by stereological integration of binary xy-images. With both structures, the surface area estimates varied greatly between the two measuring systems, whereas differences in volume estimates were small. Computerised 3D measurement was considered more accurate than stereological integration of confocal binary images. Accepted: 25 August 1999  相似文献   

4.
The influence of the morphology and differentiation of Aspergillus terreus hyphae on the formation of mevinolinic acid (lovastatin) and (+)-geodin was tested. Lovastatin titre was the highest (above 60 mg l−1) in the system with smaller pellets (diameter below 1.5 mm) and high biomass concentration (above 10 g l−1 in the idiophase). These biomass features were induced by the higher initial number of spores in the preculture (above 2 × 1010 l−1). At the initial number of spores below 2 × 109 l−1 (+)-geodin biosynthesis was the most efficient but it was rather connected with the elevated C/N ratio than with the pellet size. In order to quantify the hyphal differentiation in fungal pellets a special approach was used. The sectioning of the stained pellets together with the image analysis and calculation procedures were applied. The analysis of hyphal differentiation indicated that lovastatin formation was correlated with the fraction of the active, growing hyphae.  相似文献   

5.
The diffusion of a solute, fluorescein into lysozyme protein crystals has been studied by confocal laser scanning microscopy (CLSM). Confocal laser scanning microscopy makes it possible to non-invasively obtain high-resolution three-dimensional (3-D) images of spatial distribution of fluorescein in lysozyme crystals at various time steps. Confocal laser scanning microscopy gives the fluorescence intensity profiles across horizontal planes at several depths of the crystal representing the concentration profiles during diffusion into the crystal. These intensity profiles were fitted with an anisotropic model to determine the diffusivity tensor. Effective diffusion coefficients obtained range from 6.2 x 10(-15) to 120 x 10(-15) m2/s depending on the lysozyme crystal morphology. The diffusion process is found to be anisotropic, and the level of anisotropy depends on the crystal morphology. The packing of the protein molecules in the crystal seems to be the major factor that determines the anisotropy.  相似文献   

6.
Several models have been developed simulating O2 transfer in bioreactors, but three limitations are often found: (i) an inadequate kinetic representation of O2 consumption or wrong boundary conditions, (ii) unrealistic parameter values, and (iii) inadequate experimental systems. In our study we minimized those possible sources of error. Oxygen uptake rate, void fraction of the pellet, and external O2 mass transfer coefficient were experimentally obtained from bioreactor studies in which pellets of Gibberella fujikuroi were naturally formed. Michaelis-Menten kinetics and diffusion equations were used to describe the O2 consumption rate and to evaluate the effectiveness factor in dynamic mode. The nonlinear mathematical model proposed was solved by the orthogonal collocation technique. The O2 consumption rate in pellets of G. fujikuroi of 1.7-2.0 mm is only marginally inhibited by diffusion constraints under conditions tested. Simulation analysis showed that the effectiveness factor decreased as the Thiele modulus and pellet diameter increased. The proposed model was applied to experimental data reported for other fungal pellets and allowed to predict optimal conditions for O2 transfer into mycelial pellets.  相似文献   

7.
8.
Humicola lutea 120-5 spores were entrapped in polyurethane sponge cubes and were cultivated inside the carrier to form an immobilized mycelium further used for production of acid proteinases in batch mode. A carrier—spore suspension ratio of 10:0.5 (wt) should be used to obtain optimal results. The polyurethane sponge-immobilized mycelium could be applied repeatedly, the enzyme activity secreted during the first 10 cycles being about the same as that produced by free cells. The advantages of immobilizing fungal cells by germinating conidia entrapped inside the supporting material are discussed.  相似文献   

9.
Summary An immobilized-cell tubular reactor for the continuous fermentation of lactose by Kluyveromyces fragilis was developed. Two types of supporting media were successfully tested; beechwood cubes and activated charcoal pellets. Ethanol productivity of 17.2 g/l/h was achieved from a 15% whey-lactose solution using K. fragilis immobilized on charcoal pellets, with a final ethanol concentration of 18 g/l. The use of two reactors in series demonstrated that it is possible to obtain up to 50 g/l of ethanol in the final product. No decrease in biological activity of the immobilized yeast cells occurred over a period of up to 31 days of continuous operation.  相似文献   

10.
Both parallel fermentations with Aspergillus awamori (CBS 115.52) and a literature study on several fungi have been carried out to determine a relation between fungal morphology and agitation intensity. The studied parameters include hyphal length, pellet size, surface structure or so-called hairy length of pellets, and dry mass per-wet-pellet volume at different specific energy dissipation rates. The literature data from different strains, different fermenters, and different cultivation conditions can be summarized to say that the main mean hyphal length is proportional to the specific energy dissipation rate according to a power function with an exponent of -0.25 +/- 0.08. Fermentations with identical inocula showed that pellet size was also a function of the specific energy dissipation rate and proportional to the specific energy dissipation rate to an exponent of -0.16 +/- 0.03. Based on the experimental observations, we propose the following mechanism of pellet damage during submerged cultivation in stirred fermenters. Interaction between mechanical forces and pellets results in the hyphal chip-off from the pellet outer zone instead of the breakup of pellets. By this mechanism, the extension of the hyphae or hair from pellets is restricted so that the size of pellets is related to the specific energy dissipation rate. Hyphae chipped off from pellets contribute free filamentous mycelia and reseed their growth. So the fraction of filamentous mycelial mass in the total biomass is related to the specific energy dissipation rate as well.To describe the surface morphology of pellets, the hyphal length in the outer zone of pellets or the so-called hairy length was measured in this study. A theoretical relation of the hairy length with the specific energy dissipation rate was derived. This relation matched the measured data well. It was found that the porosity of pellets showed an inverse relationship with the specific energy dissipation rate and that the dry biomass per-wet-pellet volume increased with the specific energy dissipation rates. This means that the tensile strength of pellets increased with the increase of specific energy dissipation rate. The assumption of a constant tensile strength, which is often used in literature, is then not valid for the derivation of the relation between pellet size and specific energy dissipation rate. The fraction of free filamentous mycelia in the total biomass appeared to be a function of the specific energy dissipation in stirred bioreactors. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 715-726, 1997.  相似文献   

11.
Five indigenous fungal strains with characteristics of the genus Penicillium capable of degrading and utilizing pyrene, as sole carbon source were isolated from soil of a former gas work site. Two strains were identified as Penicillium ochrochloron. One of the strains was able to degrade a maximum of 75% of 50 mg l−1 pyrene at 22 °C during 28 days of incubation. The presence of pyrene in the medium resulted in an aggregation of hyphae into pellets by the two Penicillium ochrochloron strains. Formation of pellets was observed after 48 h of incubation with difference in size and texture between the two strains. This indicated the individual variation within the same genus of fungi. However, remaining strains did not show this behavior even though they were capable of utilizing pyrene as sole carbon source. The macro- and microscopic morphology of fungal pellets was studied using scanning electron microscopy. It was found that the addition of varying concentration of pyrene ranging from 10 to 50 mg l−1 in the medium influenced shape and structure of the mycelial pellets. A two-fold increase in hyphal branching (with concomitant decrease in the average hyphal growth unit) was observed at a concentration of 10 mg l−1. The relevance of fungal growth and morphology for bioremediation of polycyclic aromatic hydrocarbons (PAHs) contaminated sites are discussed.  相似文献   

12.
Biosynthesis of metabolites and enzymes by filamentous fungi depends on their morphological form in submerged cultures. However, their early stages of growth lasting approximately 24 h, from the introduction of spores to the medium until the formation of stable morphological forms, such as clumps or pellets, have rarely been the objects of experimental and modeling studies. Microparticle‐enhanced cultivation (MPEC) has been applied only to a few fungal species, mainly Aspergilli. Therefore, the objective of this work was to formulate the kinetic model to describe the early stages of the fungal evolution in the standard cultivation and MPEC for Aspergillus terreus, Chaetomium globosum, Penicillium rubens, and Mucor racemosus. These fungi exhibit various mechanisms of agglomerates formation in submerged cultures. The experiments were performed in batch shake flasks (parameters identification) and a stirred tank bioreactor (model verification). In the balance equation for fungal cells, the mean projected area of hyphal objects measured by the digital analysis of microscopic images was used as the dependent variable. The analysis of the experimental data and model solution revealed that the effect of the microparticles (aluminum oxide at 6 g L?1) in MPEC toward the studied filamentous fungi was to the high extent species dependent. This effect was most evident in the case of spore coagulative A. terreus and noncoagulative M. racemosus.  相似文献   

13.
Fungal metabolites active for insects were obtained from fermentation products using okara media. The mechanisms of action of these compounds against insects were clarified using voltage clamp electrophysiology. The branching factor inducing hyphal branching in arbuscular mycorrhizal (AM) fungi was isolated from the root exudates of Lotus japonicus and identified as 5-deoxystrigol. Strigolactones were originally identified as seed germination stimulants of parasitic weeds; therefore, synthetic strigolactones were developed to exhibit the inducing activity of hyphal branching in AM fungi and diminish the stimulating activity of seed germination of parasitic weeds. Signaling molecules, acylhomoserine lactones (AHLs), in quorum sensing were identified in the fungal strain Mortierella alpina A-178, and the true producer of AHLs was clarified as symbiotic bacteria in the fungus. Since acyl-(S)-adenosylmethionine analogs may be good candidates for competitive inhibitors of AHL synthases, intermediate mimics in the biosynthesis of AHLs have been synthesized.  相似文献   

14.
The intrastructure of mycelial pellets of Mortierella alpina, which accumulate fatty acids in mycelia, was visualized following labeling with fluorescein isothiocyanate (FITC) and Nile red using fluorescence microscopy. The pellet was an ellipse shape, but its intrastructure was shaped as a doughnut with a cave inside. Using three-dimensional image analysis, it was shown that the lipid was produced on the edge of the pellet, which corresponded to the area where the mycelial density was high. The cavity ratio of the pellet section was determined on the basis of the FITC fluorescence intensity, and in the early culture stage remained at 0.2 in a 10-kl fermentor culture, but finally increased to 0.35. Mycelial pellet volume paralleled the cavity ratio. Application of the technique used here allows analysis of the intrastructure of fungal pellets and new types of fungal biological study.  相似文献   

15.
Changing fungal morphology with the use of morphological engineering techniques leads to improving the production of metabolites by filamentous fungi in the submerged culture. Adding mineral microparticles is one such simple method to change fungal pellet size. Here, it was studied for a lovastatin producer, Aspergillus terreus ATCC 20542. The experiments were conducted in shake flasks and 10 μm talc microparticles were added to the preculture. Intrapellet oxygen concentration profiles were determined by an oxygen microprobe. Talc microparticles caused a decrease of A. terreus pellets diameter from about 2000 to 900 μm, dependent on their concentration in the preculture. Smaller pellets produced more lovastatin, whose titre exceeded then 120 mg L?1, utilising more lactose. The decrease in pellet size resulted in changes of oxygen concentration profiles in the pellets. The estimated critical pellet diameter, at which the non‐oxygenated zone was observed in the centre of the pellets, was 1700 μm. Smaller pellets were fully penetrated by oxygen. To conclude, facilitated diffusion of oxygen into the pellets of smaller diameter and their less dense structure made lactose utilisation by A. terreus more efficient, which ultimately increased lovastatin production in the runs with talc microparticles added, compared to the control runs.  相似文献   

16.
A rapid method for harvesting and immobilization of oleaginous microalgae using pellet-forming filamentous fungi was developed. The suitable conditions for pellet formation by filamentous fungi were determined. Among the strains tested, Trichoderma reesei QM 9414 showed superior pellet forming ability. Its pellets were used to harvest oleaginous microalga Scenedesmus sp. With increasing volume ratio of fungal pellets to microalgae culture up to 1:2, >94% of microalgal cells were rapidly harvested within 10 min. The ratio of fungal pellets could manipulate both harvesting time and initial concentration of microalgal cells in the pellets. The microalgae–fungal pellets were successfully used as immobilized cells for effective phytoremediation of secondary effluent from seafood processing plants under nonsterile condition. The chemical oxygen demand, total nitrogen, and total phosphorus removal were >74%, >44%, and >93%, respectively. The scanning electron microscopy showed that the microalgal cells were not only entrapped in the pellets but also got attached to the fungal hyphae with sticky exopolysaccharides, possibly secreted by the fungi. The extracted lipids from the pellets were mainly composed of C16–C18 (>83%) with their suitability as biodiesel feedstocks. This study has shown the promising strategy to rapidly harvest and immobilize microalgal cells and the possible application in phytoremediation of industrial effluent.  相似文献   

17.
Summary Phagocytosis ofNostoc filaments byGeosiphon, a fungus closely related to AM forming Glomales, was observed under light microscopes. Incorporation can only be performed ifNostoc primordia come into contact with growing hyphal tips of the fungus. The fungal wall just below the apex softens, and fungal cytoplasm is bulged out repeatedly covering the vegetativeNostoc cells but not the heterocytes. New heterocytes are differentiated by the internalised filament whose cells can increase up to ten times in volume after recovering from incorporation strain. TheNostoc cells are coated stepwise by short finger-shaped protuberances of the fungal hypha. These hernia-like outgrowths first remain separated, after 1 to 2 days they merge. Adjacent hyphal walls inside the complex covering disintegrate. Periphal fungal wall portions are united to form a smooth strong outer envelope. Internalisation is categorised as phagocytosis. The partnership is partly specific,Nostoc strains capable of living endocytobiotically are often partners in other symbioses besidesGeosiphon.Abbreviations AM arbuscular mycorrhiza (formerly VAM vesicular arbuscular mycorrhiza) - DIC differential interference contrast - LD light/dark Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   

18.
19.
A new method of sample preparation for cryo-scanning electron microscopy was used to visualize internal infection of wheat (Triticum aestivum) roots by the pathogenic fungus Rhizoctonia solani AG-8. The new method retained fungal hyphae and root cells in situ in disintegrating root tissues, thus avoiding the distortions that can be introduced by conventional preparation by chemical fixation, dehydration and embedding. Infected roots frozen in liquid nitrogen were cryo-planed and etched (sublimed) at -80 degrees C for a critical length of time (up to 9 min) in the microscope column to reveal plant and fungal structures in three dimensions. Root and fungal structures were well preserved irrespective of infection severity. Root and hyphal cell walls were clearly seen and hyphal architecture within and between root cells was preserved. This rapid method permits three-dimensional in situ visualization of fungal invasion within roots and has broad application for examination of diseases caused by other necrotrophic fungi.  相似文献   

20.
Aphelenchoides saprophilus nematodes fed on sclerotia, mycelium, and alginate-formulated pellets of Sclerotinia sclerotiorum, mycelium of Trichoderma harzianum, and mixed fungal cultures. As many as 500 nematodes were found inside individual sclerotia. Results suggest potential impacts of fungivory on S. sclerotiorum and its ecological interactions with plant hosts and biocontrol fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号