首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the most favorable conditions for the production of ethanol by Pachysolen tannophilus, this yeast was grown in batch cultures with various initial concentrations of two of the constituents of the culture medium: d-xylose (so), ranging from 1 g·l−1 to 200 g·l−1, and yeast extract (lo), ranging from 0 g·l−1 to 8 g·l−1. The most favorable conditions proved to be initial concentrations of So=25 g·l−1 and lo=4 g·l−1, which gave a maximum specific growth rate of 0.26 h−1, biomass productivity of 0.023 g·l−1·h−1, overall biomass yield of 0.094 g·g−1, specific xylose-uptake rate (qs) of 0.3 g·g−1·h−1 (for t=50 h), specific ethanol-production rate (qE) of 0.065 g·g−1·h−1 and overall ethanol yield of 0.34 g·g−1; qs values decreased after the exponential growth phase while qE remained practically constant.  相似文献   

2.
We studied the effect of the initial substrate concentration over the range of 100–250 g·l−1 on the fermentation kinetics in batch cultures of Zymomonas mobilis NRRL B-4286 on glucose, fructose, and sucrose, using an adapted initial inoculum. With increasing concentrations of substrate, parameters related to growth were more rapidly and strongly affected than those related to ethanol production. This strain produced 94.0 g·l−1, 76.9 g·l−1, and 66.5 g·l−1 of ethanol at glucose, fructose, and sucrose concentrations of 200 g·l−1, respectively, more than the amount produced by the efficient strain ZM4 (NRRL B-14023).  相似文献   

3.
4.
Fed-batch culture of Alcaligenes latus, ATCC 29713, was investigated for producing the intracellular bioplastic poly(β–hydroxybutyric acid), PHB. Constant rate feeding, exponentially increasing feeding rate, and pH-stat fed batch methods were evaluated. pH-stat fed batch culture reduced or delayed accumulation of the substrate in the broth and led to significantly enhanced PHB productivity relative to the other modes of feeding. Presence of excessive substrate appeared to inhibit PHB synthesis, but not the production of cells. In fed-batch culture, the maximum specific growth rate (0.265?h?1) greatly exceeded the value (0.075?h?1) previously observed in batch culture of the same strain. Similarly, the maximum PHB production rate (up to 1.15?g?·?l?1?·?h?1) was nearly 8-fold greater than values observed in batch operations. Fed-batch operation was clearly superior to batch fermentation for producing PHB. A low growth rate was not a prerequisite for PHB accumulation, but a reduced or delayed accumulation of substrate appeared to enhance PHB accumulation. Under the best conditions, PHB constituted up to 63% of dry cell mass after 12?h of culture. The average biomass yield coefficient on sucrose was about 0.35, or a little less than in batch fermentations. The highest PHB concentrations attained were about 18?g?·?l?1.  相似文献   

5.
Biogas biorefineries have opened up new horizons beyond heat and electricity production in the anaerobic digestion sector. Added-value products such as polyhydroxyalkanoates (PHAs), which are environmentally benign and potential candidates to replace conventional plastics, can be generated from biogas. This work investigated the potential of an innovative two-stage growth-accumulation system for the continuous production of biogas-based polyhydroxybutyrate (PHB) using Methylocystis hirsuta CSC1 as cell factory. The system comprised two turbulent bioreactors in series to enhance methane and oxygen mass transfer: a continuous stirred tank reactor (CSTR) and a bubble column bioreactor (BCB) with internal gas recirculation. The CSTR was devoted to methanotrophic growth under nitrogen balanced growth conditions and the BCB targeted PHB production under nitrogen limiting conditions. Two different operational approaches under different nitrogen loading rates and dilution rates were investigated. A balanced nitrogen loading rate along with a dilution rate (D) of 0.3 day−1 resulted in the most stable operating conditions and a PHB productivity of ~53 g PHB m−3 day−1. However, higher PHB productivities (~127 g PHB m−3 day−1) were achieved using nitrogen excess at a D = 0.2 day−1. Overall, the high PHB contents (up to 48% w/w) obtained in the CSTR under theoretically nutrient balanced conditions and the poor process stability challenged the hypothetical advantages conferred by multistage vs single-stage process configurations for long-term PHB production.  相似文献   

6.
The behaviour of Halomonas boliviensis during growth in fed-batch culture under different kind of nutrient restrictions was examined. The metabolic switch between growth and accumulation phase is determined by the limitation in one or more essential nutrient for bacterial growth. The aim of this study was to test the effect of applying limitations of a essential nutrient, such as nitrogen, and the influence of different O2 concentrations on poly(3-hydroxybutyrate) (PHB) production during the accumulation phase. Single limitations of nitrogen and oxygen provoke PHB accumulations of 45 and 37 % (g g?1), respectively, while N limitation with low O2 supply causes the highest PHB accumulation of 73 %. The characterization of the PHB production with the strain H. boliviensis would allow a better optimization of the process and enrich the knowledge about the PHB production from strains different than Cupriavidus necator.  相似文献   

7.
Aims: Utilization of cheap and readily available agricultural residues as cheap carbon sources for poly(3‐hydroxybutyrate) (PHB) production by Halomonas boliviensis. Methods and Results: Wheat bran was hydrolysed by a crude enzyme preparation from Aspergillus oryzae NM1 to provide a mixture of reducing sugars composed mainly of glucose, mannose, xylose and arabinose. Growth of H. boliviensis using a mixture of glucose (0·75% w/v) and xylose (0·25% w/v) in the medium led to a PHB content and concentration of 45 wt% and 1 g l?1, respectively, after 30 h. A similar PHB concentration was attained when H. boliviensis was grown on wheat bran hydrolysate but with a lower PHB content, 34 wt%. In a batch cultivation mode in a fermentor, using 1·8% (w/v) reducing sugars, the maximum PHB accumulation by H. boliviensis was attained in 20 h, but was reduced to about 30 wt%. By adding butyric acid (0·8% v/v), sodium acetate (0·8% w/v) and decreasing the reducing sugars concentration to 1·0% w/v in the medium, PHB accumulation and concentration were increased to 50 wt% and 4 g l?1, respectively, after 20 h. Butyric acid and sodium acetate for PHB production could also be provided by anaerobic digestion of solid potato waste. Conclusions: Cheap and readily available agricultural residues can be used as substrates to produce PHB. The production of PHB by H. boliviensis using wheat bran hydrolysate as source of carbon is expected to reduce the production cost and motivates further studies. Significance and Impact of the Study: Large‐scale commercial utilization of PHB is mainly hampered by its high production cost. Carbon source for PHB production accounts up to 50% of the total production costs. Thus, the use of waste agricultural residues can substantially reduce the substrate cost (and in turn even provide value to the waste), and can downsize the production costs. This improves the market competitiveness. Studies on PHB production by moderate halophiles were recently initiated with H. boliviensis and findings show that it has potential for commercial exploitation. PHB production by H. boliviensis using wheat bran and potato waste is hence interesting.  相似文献   

8.

This study concerned the anaerobic treatment of five different industrial wastewaters with a diverse and complex chemical composition. The kinetics of biotransformation of this wastewater at different chemical oxygen demand (COD) were studied in a batch reactor. Wastewater from an amino acid producing industry (Fermex) and from a tank that received several types of wastewaters (collector) contained 0.83 g l−1 and 0.085 g l−1 sulfate, respectively. During the study period of 20 days, methane formation was observed in all types of wastewaters. Studies on COD biodegradation showed the reaction velocity was higher for Fermex wastewater and lower for collector wastewater, with values of 0.0022 h−1 and 0.0011 h−1, respectively. A lower methanogenic activity of 0.163 g CH4 day−1 g−1 volatile suspended solids (VSS) and 0.20 g CH4 day−1 g−1 VSS, respectively, was observed for paper producing and brewery wastewater. Adapted granular sludge showed the best biodegradation of COD during the 20-day period. The sulfate-reducing activity in pharmaceutical and collector wastewater was studied. A positive effect of sulfate-reducing activity on methanogenic activity was noted for both types of wastewaters, both of which contained sulfate ions. All reactions of methane generation for the tested industrial wastewaters were first-order. The results of this study suggest that the tested wastewaters are amenable to anaerobic treatment.

  相似文献   

9.
The effect of glucose feeding on bacitracin production was investigated by fed-batch culture of Bacillus licheniformis. In batch culture, bacitracin secretion was induced after the glucose initially contained in the medium was completely consumed. The concentration of bacitracin, however, increased to no more than 340 units·ml−1 in the batch cultivations. Therefore, additional glucose was supplied after exhaustion of the initial glucose. The effect of glucose feeding on bacitracin biosynthesss was investigated in two ways, the pH-stat modal feeding method and the CO2-dependent feeding method. A kinetic study of bacitracin production found that some glucose was necessary, even during the bacitracin production phase. Excessive feeding of glucose, however, caused a reduction in bacitracin biosynthetic activity. When 50 g·l−1 of defatted soy bean meal (SBM) was used, the bacitracin concentration reached 670 units·ml−1 with the pH-stat modal feeding method and 610 units·ml−1 with the CO2-dependent feeding method, respectively. The yield of bacitracin from consumed glucose was better for the pH-stat method. Using this control strategy, the highest concentration of bacitracin (940 units·ml−1) was obtained with 150 g·l−1 of SBM.  相似文献   

10.

A gas-phase biofilter inoculated with the fungus Fusarium solani, isolated from a consortium grown on hexane vapors, was used to degrade this compound. The biofilter, packed with perlite and operated with an empty bed residence time of 60 s, was supplied with hexane concentrations between 0.5 g m−3 and 11 g m−3. Biofilter performance was evaluated over 100 days of operation. Several strategies for supplying the nutritive mineral medium were assayed to maintain favorable conditions for the fungal growth and activity. The Fusarium system was able to sustain an average elimination capacity of 90 g m−3 reactor h−1 with a maximum of 130 g m−3 reactor h−1 . The mass transfer limitations due to high biomass development in the biofilter were confirmed in batch experiments. Bacterial contamination was observed, but experiments in the biofilter and in batch reactors using selective inhibitors and controlled pH confirmed the predominant role of the fungus. Results indicate that fungal biofilters can be an effective alternative to conventional abatement technologies for treating hydrophobic compounds.

  相似文献   

11.
《Acta Oecologica》1999,20(2):87-92
A study was conducted to determine soil chemistry in an uncut black spruce (Picea mariana) forest with and without the ericaceous understory shrub Kalmia angustifolia, as well as on a cut black spruce forest currently dominated by Kalmia. The organic (humus) and mineral (Ae, upper and lower B horizons) soils associated with Kalmia from uncut and cut forests, and non-Kalmia soils from uncut forest, were analyzed for selected soil properties. In general, mineral soils (B horizon) associated with Kalmia in uncut forest have lower values for organic matter (3.25%), organic nitrogen (0.66 mg·g−1), Fe3+ (95.4 μg·g−1) and Mn2+ (9 μg·g−1), and higher values for pH (4.12) and Ca2+ (27 μg·g−1) compared to non-Kalmia (organic matter, 3.43%; organic-N, 1.15 mg·g−1; Fe3+, 431 μg·g−1; Mn2+, 23.2 μg·g−1; pH, 3.14; Ca2+, 15.6 μg·g−1) and cut black spruce-Kalmia (organic matter, 3.74%; organic-N, 0.94 mg·g−1; Fe3+, 379 μg·g−1; Mn2+, 27 μg·g−1; pH, 2.87; Ca2+, 25.2 μg·g−1) forest. The high C:N ratio in Kalmia mineral soil from upper B (29.73) and lower B (identified as B+) (33.08) in uncut black spruce forest was recorded compared to non-Kalmia soils in B (18.17) and B+ (17.05) horizons in uncut black spruce forest. Phenolics leached out from Kalmia litter were lower in Kalmia associated soils than the non-Kalmia soils from the uncut forest, and Kalmia associated soils from the cut forest area. Results indicate that soils associated with Kalmia were nutrient poor particularly for nitrogen, phosphorus, iron and manganese, and provide some basis for the hypothesis that Kalmia has dominated microsites that were nutrient poor prior to Kalmia colonization.  相似文献   

12.
Halomonas boliviensis LC1 is able to accumulate poly(β-hydroxybutyrate) (PHB) under conditions of excess carbon source and depletion of essential nutrients. This study was aimed at an efficient production of PHB by growing H. boliviensis to high cell concentrations in batch cultures. The effect of ammonium, phosphate, and yeast extract concentrations on cell concentration [cell dry weight (CDW)] and PHB content of H. boliviensis cultured in shake flasks was assayed using a factorial design. High concentrations of these nutrients led to increments in cell growth but reduced the PHB content to some extent. Cultivations of H. boliviensis under controlled conditions in a fermentor using 1.5% (w/v) yeast extract as N source, and intermittent addition of sucrose to provide excess C source, resulted in a polymer accumulation of 44 wt.% and 12 g l−1 CDW after 24 h of cultivation. Batch cultures in a fermentor with initial concentrations of 2.5% (w/v) sucrose and 1.5% (w/v) yeast extract, and with induced oxygen limitation, resulted in an optimum PHB accumulation, PHB concentration and CDW of 54 wt.%, 7.7 g l−1 and 14 g l−1, respectively, after 19 h of cultivation. The addition of casaminoacids in the medium increased the CDW to 14.4 g l−1 in 17 h but reduced the PHB content in the cells to 52 wt.%.  相似文献   

13.
Aims: To investigate the effect of various single nutrient deficiencies on poly-β-hydroxybutyrate (PHB) biosynthesis in a methane-utilizing mixed culture (dominant species Methylocystis sp. GB 25 DSM 7674). Methods and Results: Poly-β-hydroxybutyrate accumulation experiments were performed in 7 and 70 l bioreactors and initiated by potassium, sulfur or iron deficiency. After 24 h the PHB content reached levels of 33·6%, 32·6% and 10·4% respectively. Interestingly a polymer with an ultra-high average-weight molecular weight (Mw) of 3·1 MDa was accumulated under potassium-limited conditions. When sulfur and iron were lacking Mw were lower by 20·6 and 41·6%. Potassium-deficiency experiments were furthermore characterized by a maximum specific PHB formation rate 0·08 g g−1residual biomass (R) h−1 and a yield coefficient of 0·45 g PHB g−1 CH4. Conclusions: Biosynthesis of an ultra-high Mw PHB in a methane-utilizing mixed culture can be induced by potassium deficiency. Significance and Impact of the Study: This study greatly extends the knowledge in the field of bacterial biopolymer formation with gaseous substrates. The special system used here combines the use of methane a low-cost substrate available from natural and renewable sources with the possibility of employing a mixed-culture in an open system for the synthesis of a high-value product.  相似文献   

14.
Aims: To search for new bacteria for efficient production of polyhydroxyalkanoates (PHAs) from glycerol. Methods and Results: Samples were taken from different environments in Germany and Egypt, and bacteria capable of growing in mineral salts medium with glycerol as sole carbon source were enriched. From a wastewater sediment sample in Egypt, a Gram‐negative bacterium (strain MW1) was isolated that exhibited good growth and that accumulated considerable amounts of polyhydroxybutyrate (PHB) from glycerol and also from other carbon sources. The 16S rRNA gene sequence of this isolate exhibited 98·5% and 96·2% similarity to Zobellella denitrificans strain ZD1 and to Zobellella taiwanensis strain ZT1 respectively. The isolate was therefore affiliated as strain MW1 of Z. denitrificans. Strain MW1 grows optimally on glycerol at 41°C and pH 7·3 and accumulated PHB up to 80·4% (w/w) of cell dry weight. PHB accumulation was growth‐associated. Although it was not an absolute requirement, 20 g l?1 sodium chloride enhanced both growth (5 g cell dry weight per litre) and PHB content (87%, w/w). Zobellella denitrificans strain MW1 is also capable to accumulate the poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) copolymer if sodium propionate was used as cosubstrate in addition to glycerol. Conclusions: A new PHB‐accumulating strain was isolated and identified. This strain is able to utilize glycerol for growth and PHB accumulation to high content especially in the presence of NaCl that will enable the utilization of waste glycerol from biodiesel industry. Significance and Impact of the Study: This study is the first report on accumulation of PHA in a member of the new genus Zobellella. Furthermore, utilization of glycerol as the sole carbon source for fast growth and PHB biosynthesis, growth in the presence of NaCl and high PHB contents of the cells will make this newly isolated bacterium a potent candidate for industrial production of PHB from crude glycerol occurring as byproduct during biodiesel production.  相似文献   

15.
Citric acid was produced by five species of the yeast Candida after growth on a medium containing soy biodiesel-based crude glycerol. After growth on a medium containing 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C, Candida parapsilosis ATCC 7330 and C. guilliermondii ATCC 9058 produced the highest citric acid levels. On 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C, the citric acid level produced by C. parapsilosis ATCC 7330 was 1.8 g L?1 or 11.3 g L?1, respectively, while C. guilliermondii ATCC 9058 produced citric acid concentrations of 3.0 g L?1 or 10.4 g L?1, respectively. Biomass production by C. guilliermondii ATCC 9058 on 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C was highest at 1.2 g L?1 or 6.9 g L?1, respectively. The citric acid yields observed for C. guilliermondii ATCC 9058 after growth on 10 g L?1 or 60 g L?1 crude glycerol (0.35 g g?1 or 0.21 g g?1, respectively) were generally higher than for the other Candida species tested. When similar crude glycerol concentrations were present in the culture medium, citric acid yields observed for some of the Candida species utilized in this study were about the same or higher compared to citric acid yields by Yarrowia lipolytica strains. Based on the findings, it appeared that C. guilliermondii ATCC 9058 was the most effective species utilized, with its citric acid production being similar to what has been observed when citric acid-producing strains of Y. lipolytica were grown on crude glycerol under batch conditions that could be of significance to biobased citric acid production.  相似文献   

16.
《Biomass》1988,15(4):249-257
An experiment was conducted in the growth chamber to quantify the biomass production, N removal and N2 fixation from a synthetic medium by Chlamydomonas reinhardtii and Anabaena flos-aquae. Nitrogen was supplied at a concentration of 100 mg liter−1 of NO315N and NH4+15 (3·5 atom %), respectively. After 21 days Chlamydomonas reinhardtii removed an average of 83·8 and 78·7 mg N liter−1 as NO3 and NH4+, respectively. Averages of 0·89 and 0·71 g liter−1 (first batch), 1·63 and 0·95 g liter (second batch) algal biomass were collected from NO3 and NH4+ media, respectively. Uptake rates of 0·11 mg 15N g−1 algae day−1 from NO3 medium and 0·10 mg 15N g−1 algae day−1 from NH4+ medium were calculated. Algal cells grown in NO3 and NH4+ medium contained 71 and 65 g N kg−1 (first batch), 39 and 58 g N kg−1 (second batch), respectively. Anabaena flos-aquae produced averages of 0·58 and 0·46 g liter−1 (first batch), 0·55 and 0·48 g liter−1 (second batch) after 14 days of growth from NO3 and NH4+ media, respectively. Blue-green algal biomass contained higher N (81–98 g kg−1) than green algae. Isotope dilution method for determining N2 fixation indicated that 55% and 77% of total N of blue-green algae grown in NO3 and NH4+ media, respectively, was derived from the atmosphere.  相似文献   

17.
利用分批发酵研究了灵芝(Ganoderma lucidum)胞外多糖的合成特性,结果表明Ganoderma lucidum多糖合成和菌体生长呈部分生长关联型。菌体干重、胞外多糖分别达到15.56g·L-1<、3.02g·L-1<,胞外多糖对细胞干重得率系数(Yp/x)为0.19。根据分批发酵试验结果采用Logistic方程、Luedeking-Piret方程和类似Luedeking-Piret方程,得到了描述灵芝生长、胞外多糖以及葡萄糖底物消耗分批发酵动力学模型。同时在初始葡萄糖变化较大范围内,试验数据与模型预测值进行了比较拟合,平均相对误差小于5%,表现出很好的适用性。表明该动力学模型对指导灵芝胞外多糖的发酵生产具有实际意义。  相似文献   

18.
A mixed fermentation strategy based on exponentially fed-batch cultures (EFBC) and nutrient pulses with sucrose and yeast extract was developed to achieve a high concentration of PHB by Azotobacter vinelandii OPNA, which carries a mutation on the regulatory systems PTSNtr and RsmA-RsmZ/Y, that negatively regulate the synthesis of PHB. Culture of the OPNA strain in shake flaks containing PY-sucrose medium significantly improved growth and PHB production with respect to the results obtained from the cultures with the parental strain (OP). When the OPNA strain was cultured in a batch fermentation keeping constant the DOT at 4%, the maximal growth rate (0.16 h−1) and PHB yield (0.30 gPHB gSuc−1) were reached. Later, in EFBC, the OPNA strain increased three fold the biomass and 2.2 fold the PHB concentration in relation to the values obtained from the batch cultures. Finally, using a strategy of exponential feeding coupled with nutrient pulses (with sucrose and yeast extract) the production of PHB increased 7-fold to reach a maximal PHB concentration of 27.3 ± 3.2 g L−1 at 60 h of fermentation. Overall, the use of the mutant of A. vinelandii OPNA, impaired in the PHB regulatory systems, in combination with a mixed fermentation strategy could be a feasible strategy to optimize the PHB production at industrial level.  相似文献   

19.
20.

Aim

Taking into account that a novel strain of Bacillus megaterium was isolated from Uyuni salt lake (Bolivia) in a previous work, the objectives of this new study were to determine the maximal Poly‐3‐hydroxybutyrate production potential of B. megaterium strain uyuni S29 in an industrial conventional media, the possibility that the strain accumulates different types of polyhydroxyalkanoates, the cellular morphology during the biosynthesis process and the characterization of the produced biopolymers.

Methods and Results

The micro‐organism was first tested in a 3‐L bioreactor obtaining a high specific growth rate of 1·64 h?1. A second fed‐batch experiment was carried out in shaking flasks, reaching up to 70% PHB of cell dry mass. The biosynthesized polymers were extracted by two different extraction procedures and characterized. The results showed that all of them were PHB with thermal properties different to the conventional PHB. The micrographs taken by TEM show the different cell morphology during the fermentation process.

Conclusions

In this previous study, the strain not only grew properly in the industrial conditions proposed without spore formation, but also produced and accumulated a large content of PHB, never reached before for its genus. Therefore, if the culture conditions can be optimized, the biopolymer production could be increased.

Significance and Impact of the Study

The impact of the study has related to the area of the biomaterials and their production. The study provides new data related to the high production of PHB from the wild novel strain B. megaterium uyuni S29, the highest polymer accumulation for the genus Bacillus without spores formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号