首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid, in-process assessment of virus replication is disired to quickly investigate the effects of process parameters on virus infection, and to monitor consistency of process in routine manufacturing of viral vaccines. Live virus potency assays are generally based on plaque formation, cytopathic effect, or antigen production (TCID50) and can take days to weeks to complete. Interestingly, when infected with viruses, cultured cells undergo changes in cellular metabolism that can be easily measured. These phenomena appear to be common as they has been observed in a variety of virus-host systems, e.g., in insect cells infected with baculovirus, Vero cells infected with Rotavirus, MRC-5 cells infected with Hepatitis A virus, and MRC-5 cells infected with the Varicella Zoster Virus (VZV). In this article, changes in glycolytic metabolism of MRC-5 cells as a result of CVZ infection are described. Both glucose consumption and lactate production in VZV infected MRC-5 cells are significantly elevated in comparison to uninfected cells. Based on this result, a rapid, in-process assay to follow VZV infection has been developed. The relative increase in lactate production in infected cells () increases as the infection progresses and then plateaus as the infection peaks. This plateau correlates with time of peak virus titer and could be used as a harvest triggering parameter in a virus production process.Xu = cell density of uninfected cellsXi = cell density of infected cellsXT = total cell densityLi = cumulative lactate production in infected culturesLu = cumulative lactate production in uninfected culturesqLi = specific lactate production of infected cellsqLu = specific lactate production of uninfected cellsk1, K2 = constantsList of Symbols  相似文献   

2.
A mathematical model that describes the replication of influenza A virus in animal cells in large-scale microcarrier culture is presented. The virus is produced in a two-step process, which begins with the growth of adherent Madin-Darby canine kidney (MDCK) cells. After several washing steps serum-free virus maintenance medium is added, and the cells are infected with equine influenza virus (A/Equi 2 (H3N8), Newmarket 1/93). A time-delayed model is considered that has three state variables: the number of uninfected cells, infected cells, and free virus particles. It is assumed that uninfected cells adsorb the virus added at the time of infection. The infection rate is proportional to the number of uninfected cells and free virions. Depending on multiplicity of infection (MOI), not necessarily all cells are infected by this first step leading to the production of free virions. Newly produced viruses can infect the remaining uninfected cells in a chain reaction. To follow the time course of virus replication, infected cells were stained with fluorescent antibodies. Quantitation of influenza viruses by a hemagglutination assay (HA) enabled the estimation of the total number of new virions produced, which is relevant for the production of inactivated influenza vaccines. It takes about 4-6 h before visibly infected cells can be identified on the microcarriers followed by a strong increase in HA titers after 15-16 h in the medium. Maximum virus yield Vmax was about 1x10(10) virions/mL (2.4 log HA units/100 microL), which corresponds to a burst size ratio of about 18,755 virus particles produced per cell. The model tracks the time course of uninfected and infected cells as well as virus production. It suggests that small variations (<10%) in initial values and specific rates do not have a significant influence on Vmax. The main parameters relevant for the optimization of virus antigen yields are specific virus replication rate and specific cell death rate due to infection. Simulation studies indicate that a mathematical model that neglects the delay between virus infection and the release of new virions gives similar results with respect to overall virus dynamics compared with a time delayed model.  相似文献   

3.
Over the last years virus–host cell interactions were investigated in numerous studies. Viral strategies for evasion of innate immune response, inhibition of cellular protein synthesis and permission of viral RNA and protein production were disclosed. With quantitative proteome technology, comprehensive studies concerning the impact of viruses on the cellular machinery of their host cells at protein level are possible. Therefore, 2‐D DIGE and nanoHPLC‐nanoESI‐MS/MS analysis were used to qualitatively and quantitatively determine the dynamic cellular proteome responses of two mammalian cell lines to human influenza A virus infection. A cell line used for vaccine production (MDCK) was compared with a human lung carcinoma cell line (A549) as a reference model. Analyzing 2‐D gels of the proteomes of uninfected and influenza‐infected host cells, 16 quantitatively altered protein spots (at least ±1.7‐fold change in relative abundance, p<0.001) were identified for both cell lines. Most significant changes were found for keratins, major components of the cytoskeleton system, and for Mx proteins, interferon‐induced key components of the host cell defense. Time series analysis of infection processes allowed the identification of further proteins that are described to be involved in protein synthesis, signal transduction and apoptosis events. Most likely, these proteins are required for supporting functions during influenza viral life cycle or host cell stress response. Quantitative proteome‐wide profiling of virus infection can provide insights into complexity and dynamics of virus–host cell interactions and may accelerate antiviral research and support optimization of vaccine manufacturing processes.  相似文献   

4.
The conditions of immunoenzyme assay have been studied on the solid state phase of infected cells using the model of monoclonal antibodies MAK-14-7 to the virus of Venezuelan equine encephalomyelitis (VVEE) and monoclonal antibodies OKA-1 to vaccine virus in the systems of VNK-21 cells or 4647 cells infected by VVEE, or HeLa cells infected by vaccine virus. The titer of monoclonal antibodies detected grows with the dose of infected cells fixed in the holes of micropanel used for reaction and with the multiplicity of infection. The most intensive and contrasting dyeing of conjugate has been registered when the cells have been fixed with 0.25% glutaraldehyde 24 h after infection. The titers of ascytic preparations of monoclonal antibodies MAK-14-7 and OKA-1 under the optimal conditions of immunoenzyme assay reaction on the solid phase of infected cells present 1 : 10 000 and 1 : 100 000.  相似文献   

5.
Dengue is an important threat for world-wide public health. Different vaccines are under development, which are currently assessed using a battery of in vitro and in vivo assays before moving on to humans. It is also important to assess vaccine characteristics on human primary cells; among them, dendritic cells, the most efficient antigen-presenting cells, are the first targets of dengue virus infection. In this study, we used flow cytometry to compare the consequences of such an infection by dengue serotype 2 live-attenuated vaccine (LAV2) or its parental strain DEN2 16681 (DEN2). Optimal conditions of infection have first been defined by a mathematical approach, and flow cytometry allowed studying modifications induced in both infected and noninfected dendritic cell populations after surface and intracellular labeling. Both DEN2 and LAV2 increased the expression of the phenotypic markers CD80, CD86, CD40, CD1a, HLA ABC and CD83, demonstrating cellular activation. Stimulated dendritic cells produced tumor necrosis factor-alpha in particular, and, to a lower extent, interleukin 6. Of importance, whereas DEN2 induced cytokine production both in the infected and noninfected populations, LAV2-induced cytokine production was restricted to the infected population. This limited activation triggered by LAV2 would be in agreement with its attenuation. In conclusion, these in vitro experiments using primary human dendritic cells may participate, in combination with other assays, to the evaluation of the immunogenicity and safety of dengue vaccine candidates.  相似文献   

6.
7.
由于各种疾病在全球范围内的肆虐,国际市场对重组腺病毒载体(adenoviral vector,Adv)疫苗的需求量急剧增加,而工艺研究是解决这一问题的有效手段之一。在细胞接毒前施加高渗胁迫可以提高分批培养模式下的Adv产量,新兴的灌流培养也可以显著提高Adv的产量。将高渗胁迫工艺与灌流培养相结合,有望进一步提升高细胞密度生产过程中的Adv产量。本研究利用摇瓶结合拟灌流培养作为生物反应器灌流培养的缩小模型,使用渗透压为300–405 mOsm的培养基研究了高渗胁迫对细胞生长和Adv生产的影响。结果显示,在细胞生长阶段使用370 mOsm的高渗透压培养基,在病毒生产阶段使用300 mOsm的等渗透压培养基的灌流培养工艺有效地提高了Adv的产量。进一步研究发现这可能归因于病毒复制后期HSP70蛋白的表达量增加。将这种工艺放大至生物反应器中,Adv的产量达到3.2×1010 IFU/mL,是传统灌流培养工艺的3倍。本研究首次将高渗胁迫工艺与灌流培养相结合的策略应用于HEK 293细胞生产Adv,同时揭示了高渗胁迫工艺增产Adv的可能原因,为HEK 293细胞生产其他类型Adv的工艺优化提供了借鉴。  相似文献   

8.
A mathematical model of the host’s immune response to HIV infection is proposed. The model represents the dynamics of 13 subsets of T cells (HIV-specific and nonspecific, healthy and infected, T4 and T8 cells), infected macrophages, neutralizing antibodies, and virus. The results of simulation are in agreement with published data regarding T4 cell concentration and viral load, and exhibit the typical features of HIV infection, i.e. double viral peaks in the acute stage, sero conversion, inverted T cell ratio, establishment of set points, steady state, and decline into AIDS. This result is achieved by taking into account thymic aging, viral and infected cell stimulation of specific immune cells, background nonspecific antigens, infected cell proliferation, viral production by infected macrophages and T cells, tropism, viral, and immune adaptation. Starting from this paradigm, changes in the parameter values simulate observed differences in individual outcomes, and predict different scenarios, which can suggest new directions in therapy. In particular, large parameter changes highlight the potentially critical role of both very vigorous and extremely damped specific immune response, and of the elimination of virus release by macrophages. Finally, the time courses of virus, antibody and T cells production and removal are systematically investigated, and a comparison of T4 and T8 cell dynamics in a healthy and in a HIV infected host is offered.  相似文献   

9.
 We consider a two-dimensional model of cell-to-cell spread of HIV-1 in tissue cultures, assuming that infection is spread directly from infected cells to healthy cells and neglecting the effects of free virus. The intracellular incubation period is modeled by a gamma distribution and the model is a system of two differential equations with distributed delay, which includes the differential equations model with a discrete delay and the ordinary differential equations model as special cases. We study the stability in all three types of models. It is shown that the ODE model is globally stable while both delay models exhibit Hopf bifurcations by using the (average) delay as a bifurcation parameter. The results indicate that, differing from the cell-to-free virus spread models, the cell-to-cell spread models can produce infective oscillations in typical tissue culture parameter regimes and the latently infected cells are instrumental in sustaining the infection. Our delayed cell-to-cell models may be applicable to study other types of viral infections such as human T-cell leukaemia virus type 1 (HTLV-1). Received: 18 November 2000 / Published online: 28 February 2003 RID="*" ID="*" Research was partially supported by the NSERC and MITACS of Canada and a start-up fund from the College of Arts and Sciences at the University of Miami. On leave from Dalhousie University, Halifax, Nova Scotia, Canada. Current address: Department of Mathematics, Clarke College, Dubuque, Iowa 52001, USA Key words or phrases: HIV-1 – Cell-to-cell spread – Time delay – Stability – Hopf bifurcation – Periodicity  相似文献   

10.
Naturally occurring insect viruses can modify the behaviour of infected insects and thereby modulate virus transmission. Modifications of the virus genome could alter these behavioural effects. We studied the distance moved and the position of virus‐killed cadavers of fourth instars of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) infected with a wild‐type genotype of H. armigera nucleopolyhedrovirus (HaSNPV) or with one of two recombinant genotypes of this virus on cotton plants. The behavioural effects of virus infection were examined both in larvae infected with a single virus genotype, and in larvae challenged with mixtures of the wild‐type and one of the recombinant viruses. An egt‐negative virus variant caused more rapid death and lower virus yield in fourth instars, but egt‐deletion did not produce consistent behavioural effects over three experiments, two under controlled glasshouse conditions and one in field cages. A recombinant virus containing the AaIT‐(Androctonus australis Hector) insect‐selective toxin gene, which expresses a neurotoxin derived from a scorpion, caused faster death and cadavers were found lower down the plant than insects infected with unmodified virus. Larvae that died from mixed infections of the AaIT‐expressing recombinant and the wild‐type virus died at positions significantly lower, compared to infection with the pure wild‐type viral strain. The results indicate that transmission of egt‐negative variants of HaSNPV are likely to be affected by lower virus yield, but not by behavioural effects of egt gene deletion. By contrast, the AaIT recombinant will produce lower virus yields as well as modified behaviour, which together can contribute to reduced virus transmission under field conditions. In addition, larvae infected with both the wild‐type virus and the toxin recombinant behaved as larvae infected with the toxin recombinant only, which might be a positive factor for the risk assessment of such toxin recombinants in the environment.  相似文献   

11.
In this study we investigated virus production in two marine phytoplankton species and how it relates to the host's cell cycle. Phaeocystis pouchetii (Hariot) Lagerheim and Pyramimonas orientalis McFadden, Hill & Wetherby, growing synchronously in batch cultures, were infected with their respective viruses (PpV and PoV) at four different stages in the cell cycle and the production of free virus was then measured for 30 h. The virus production in P. orientalis infected with PoV depended on the time of infection, whereas no such relation was found for P. pouchetii infected with PpV. The P. orientalis cultures infected at the end of the dark period and at the beginning of the light period produced three times more virus than those infected in the middle of the light period and eight times more virus than those infected at the beginning of the dark period. The latent periods for PpV and PoV were 12–14 h and 18–20 h, respectively, and in both cases were independent of the host cell cycle. The differences in virus production may be attributed to light or cell cycle dependent regulation of host infection, metabolism, or burst size. Regardless of the mechanism, these differences may be related to differences in the ecological strategies of the hosts and their ability to form blooms.  相似文献   

12.

Background  

Many details in cell culture-derived influenza vaccine production are still poorly understood and approaches for process optimization mainly remain empirical. More insights on mammalian cell metabolism after a viral infection could give hints on limitations and cell-specific virus production capacities. A detailed metabolic characterization of an influenza infected adherent cell line (MDCK) was carried out based on extracellular and intracellular measurements of metabolite concentrations.  相似文献   

13.
The use of Vero cells for rabies vaccine production was recommended from the WHO in 2005. A controlled production process is necessary to reduce the risk of contaminants in the product. One step towards this is to turn away from animal-derived components (e.g. serum, trypsin, bovine serum albumin) and face a production process in animal component-free medium. In this study, a proteomic approach was applied, using 2-D differential gel electrophoresis and mass spectrometry to compare rabies virus propagation in Vero cells under different cultivation conditions in microcarrier culture. Protein alterations were investigated for uninfected and infected Vero cells over a time span from 1 to 8 days post-infection in two different types of media (serum-free versus serum-containing media). For mock-infected cells, proteins involved in stress response, redox status, protease activity or glycolysis, and protein components in the endoplasmic reticulum were found to be differentially expressed comparing both cultivation media at all sampling points. For virus-infected cells, additionally changes in protein expression involved in general cell regulation and in calcium homeostasis were identified under both cultivation conditions. The fact that neither of these additional proteins was identified for cells during mock infection, but similar protein expression changes were found for both systems during virus propagation, indicates for a specific response of the Vero cell proteome on rabies virus infection.  相似文献   

14.
This contribution is concerned with population balance modeling of virus–host cell interactions during vaccine production. Replication of human influenza A virus in cultures of adherent Madin–Darby canine kidney (MDCK) cells is considered as a model system. The progress of infection can be characterized by the intracellular amount of viral nucleoprotein (NP) which is measured via flow cytometry. This allows the differentiation of the host cell population and gives rise to a distributed modeling approach. For this purpose a degree of fluorescence is introduced as an internal coordinate which is linearly linked to the intracellular amount of NP. Experimental results for different human influenza A subtypes reveal characteristic dynamic phenomena of the cell distribution like transient multimodality and reversal of propagation direction. The presented population balance model provides a reasonable explanation for these dynamic phenomena by the explicit consideration of different states of infection of individual cells. Kinetic parameters are determined from experimental data. To translate the emerging infinite dimensional parameter estimation problem to a finite dimension the parameters are assumed to depend linearly on the internal coordinate. As a result, the model is able to reproduce all characteristic dynamic phenomena of the considered process for the two examined virus strains and allows deeper insight into the underlying kinetic processes. Thus, the model is an important contribution to the understanding of the intracellular virus replication and virus spreading in cell cultures and can serve as a stepping stone for optimization in vaccine production. Biotechnol. Bioeng. 2013; 110: 2252–2266. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
A segregated mathematical model was developed for the analysis and interpretation of cultivation data of growth of the recombinant yeast Saccharomyces cerevisiae on multiple substrates (glucose, maltose, pyruvate, ethanol, acetate, and galactose). The model accounts for substrate consumption, plasmid stability, and production level of a model protein, a modified nucleocapsid protein of the Puumala virus. Recombinant nucleocapsid proteins from different Hantaviruses have previously been demonstrated as suitable antigens for diagnostics as well as for sero‐epidemiological studies. The model is based on a system of 10 nonlinear ordinary differential equations and accounts for the influence of various factors, e.g., selective pressure for enhancing plasmid stability by formaldehyde or the toxic effects of the intracellular accumulation of the heterologous protein on cell growth and product yield. The model allows the growth of two populations of cells to be simulated: plasmid‐bearing and plasmid‐free yeast cells, which have lost the plasmid during cultivation. Based on the model, sensitivity studies in respect to parameter changes were performed. These enabled, for example, the evaluation of the impact of an increase in the initial concentration of nutrients and growth factors (e.g., vitamins, microelements, etc.) on the biomass yield and the heterologous protein production level. As expected, the productivity of the heterologous protein in S. cerevisiae is closely correlated with plasmid stability. The 25 free model parameters, including the yield coefficients for different growth stages and dynamic constants, were estimated by nonlinear techniques, and the model was validated against a data set not used for parameter estimation. The simulation results were found to be in good agreement with the experimental data.  相似文献   

16.
The vast majority of the world’s population is infected with Herpes simplex virus (HSV). Although antiviral therapy can reduce the incidence of reactivation and asymptomatic viral shedding and limits morbidity and mortality from active disease, it cannot cure infection. Therefore, the development of an effective vaccine is an important global health priority. In this study, the induction of IFN-γ production was compared in different herpes simplex virus 1 (HSV-1) vaccines. Glycoprotein D (gD1) as a major immunogenic HSV-1 glycoprotein was chosen to our study. Balb/c mice were administered with DNA vaccine encoding gD1, subunit glycoprotein vaccine including insect cells infected by a gD1 recombinant Baculovirus, prime DNA vaccine boosted by subunit glycoprotein vaccine, inactivated KOS strain as a positive control, pcDNA3 plasmid and Sf9 cells as negative controls. Evaluation tests showed that the amount of IFN-γ mRNA at 8, 16 and 32 hours after restimulation sharply decreased whereas, the IFN-γ protein level is significantly increased. Our results revealed that at 14 days after immunization IFN-γ secretion of stimulated cells in all of the vaccinated groups dramatically raised rather than secreted IFN-γ levels in mice that were analyzed at 7 days after vaccination. In comparison to other groups; Prime-Boost immunization dramatically caused vigorous and prompt IFN-γ production at 7 days after immunization and 8 hours after restimulation. The article is published in the original.  相似文献   

17.
腺相关病毒(adeno-associated virus, AAV)是基因治疗领域最常使用的病毒载体之一,产量低、成本高是该产业面临的关键瓶颈问题。本研究旨在基于多基因缺失型杆状病毒,建立双病毒感染昆虫细胞以生产AAV的技术体系。首先,进行AAV生产用多基因缺失型重组杆状病毒的构建和扩增,并检测杆状病毒滴度及其感染细胞的效果;然后,使用双杆状病毒共感染昆虫细胞,并优化感染条件;最后,基于优化条件进行AAV生产,并检测评估产量、质量等相关指标。结果表明,AAV生产用多基因缺失型杆状病毒滴度较野生型无差异,感染后细胞存活率下降明显减缓。使用双病毒路线进行AAV优化生产,Bac4.0-1的基因组滴度为1.63×1011 VG/mL,Bac5.0-2的基因组滴度为1.02×1011 VG/mL,较野生型产量分别提升了240%和110%。电镜下,3组均具有正常的AAV病毒形态,且转导活性相近。本研究建立了基于多基因缺失型杆状病毒感染昆虫细胞的AAV生产体系,显著提高了AAV产量,具有一定的应用价值。  相似文献   

18.
The Soil and Water Assessment Tool (SWAT) is increasingly used to quantify h y drologic and water quality impacts of bioenergy production, but crop‐growth parameters for candidate perennial rhizomatous grasses (PRG) Miscanthus × giganteus and upland ecotypes of Panicum virgatum (switchgrass) are limited by the availability of field data. Crop‐growth parameter ranges and suggested values were developed in this study using agronomic and weather data collected at the Purdue University Water Quality Field Station in northwestern Indiana. During the process of parameterization, the comparison of measured data with conceptual representation of PRG growth in the model led to three changes in the SWAT 2009 code: the harvest algorithm was modified to maintain belowground biomass over winter, plant respiration was extended via modified‐DLAI to better reflect maturity and leaf senescence, and nutrient uptake algorithms were revised to respond to temperature, water, and nutrient stress. Parameter values and changes to the model resulted in simulated biomass yield and leaf area index consistent with reported values for the region. Code changes in the SWAT model improved nutrient storage during dormancy period and nitrogen and phosphorus uptake by both switchgrass and Miscanthus.  相似文献   

19.
Optimization of productivity and economics of industrial bioprocesses requires characterization of interdependencies between process parameters and process performance. In the case of penicillin production, as in other processes, process performance is often closely interlinked with the physiology and morphology of the organism used for production. This study presents a systematic approach to efficiently characterize the physiological effects of multivariate interdependencies between bioprocess design parameters (spore inoculum concentration, pO2 control level and substrate feed rate), morphology, and physiology. Method development and application was performed using the industrial model process of penicillin production. Applying traditional, statistical bioprocess analysis, multivariate correlations of raw bioprocess design parameters (high spore inoculum concentration, low pO2 control as well as reduced glucose feeding) and pellet morphology were identified. A major drawback of raw design parameter correlation models; however, is the lack of transferability across different process scales and regimes. In this context, morphological and physiological bioprocess modeling based on scalable physiological parameters is introduced. In this study, raw parameter effects on pellet morphology were efficiently summarized by the physiological parameter of the biomass yield per substrate. Finally, for the first time to our knowledge, the specific growth rate per spore was described as time‐independent determinant for switching from pellet to disperse growth during penicillin production and thus introduced as a novel, scalable key process parameter for pellet morphology and process performance. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:689–699, 2014  相似文献   

20.
Many eukaryotic proteins have been successfully expressed in insect cells infected with a baculovirus in which the foreign gene has been placed under the control of a viral promoter. This system can be costly at large scale due to the quality of virus stock, problems of oxygen transfer, and severity of large-scale contamination. To circumvent this problem, we have investigated the expression of a foreign protein, human interleukin-2 (IL-2), in insect larvae, Trichoplusia ni, infected with the baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV). The IL-2 gene was placed under control of the p10 promoter so that the polyhedra remained intact for efficient primary infection. From our results, it was clear that early infection limited larval growth and late infection delayed product production until near pupation, hence infection timing was important. Also, the harvest time was crucial for obtaining high yield, because IL-2 production had a sharp optimal peak with a time of occurrence dependent on both temperature and the initial amount of infection virus. Specifically, we found that, by raising the infection temperature to 30 degrees C, we more than doubled the protein productivity. Furthermore, a significant concern of the larvae/baculovirus expression system has been the large amount of protease produced by the larvae, which adversely affects the protein yield. Therefore, we screened several protease inhibitors and characterized the larval protease specificity and timing to attenuate their impact. This report elucidates and delineates the factors that most directly impact protein yield in the larvae expression system, using IL-2 as a model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号