首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NphB is a soluble prenyltransferase from Streptomyces sp. strain CL190 that attaches a geranyl group to a 1,3,6,8-tetrahydroxynaphthalene-derived polyketide during the biosynthesis of anti-oxidant naphterpin. Here we report multiple chemoenzymatic syntheses of various prenylated compounds from aromatic substrates including flavonoids using two prenyltransferases NphB and SCO7190, a NphB homolog from Streptomyces coelicolor A3(2), as biocatalysts. NphB catalyzes carbon-carbon-based and carbon-oxygen-based geranylation of a diverse collection of hydroxyl-containing aromatic acceptors. Thus, this simple method using the prenyltransferases can be used to explore novel prenylated aromatic compounds with biological activities. Kinetic studies with NphB reveal that the prenylation reaction follows a sequential ordered mechanism.  相似文献   

2.
Yang Y  Miao Y  Wang B  Cui G  Merz KM 《Biochemistry》2012,51(12):2606-2618
NphB is an aromatic prenyltransferase that catalyzes the attachment of a 10-carbon geranyl group to aromatic substrates. Importantly, NphB exhibits a rich substrate selectivity and product regioselectivity. A systematic computational study has been conducted in order to address several question associated with NphB-catalyzed geranylation. The reaction mechanism of the prenylation step has been characterized as a S(N)1 type dissociative mechanism with a weakly stable carbocation intermediate. A novel π-chamber composed of Tyr121, Tyr216, and 1,6-DHN is found to be important in stabilizing the carbocation. The observed difference in the rates of product formation from 5- and 2-prenylation arises from the differing orientations of the aromatic substrate in the resting state. 4-Prenylation shares the same resting state with 5-prenylation, but the lower free energy barrier for carbocation formation makes the latter reaction more facile. The high free energy barrier associated with 7-prenylation is caused by the unfavorable orientation of 1,6-DHN in active site pocket, along with the difficulty of proton elimination after the prenylation step. A water-mediated proton transfer facilitates the loss of hydrogen at the prenylation site to form the final prenylated product. Interestingly, the same crystallographically observed water molecule has been found to be responsible for proton loss in all three experimentally identified products. After proton transfer, the relaxation of the final product from a sp(3) carbon center to a sp(2) center triggers a "spring-loaded" product release mechanism which pushes the final product out of the binding pocket toward the edge of the active site. The hydrogen bond interactions between the two hydroxyl groups of the aromatic product and the side chains of Ser214 and Tyr288 help to "steer" the movement of the product. In addition, mutagenesis studies identify these same two side chains as being responsible for the observed regioselectivity, particularly 2-prenylation. These observations provide valuable insights into NphB chemistry, offering an opportunity to better engineer the active site and to control the reactivity in order to obtain high yields of the desired product(s). Furthermore, the S(N)1 reaction mechanism observed for NphB differs from the prenylation reaction found in, for example, the farnesyltransferase, which proceeds via an S(N)2-like reaction pathway. The spring-loaded release mechanism highlighted herein also offers novel insights into how enzymes facilitate product release.  相似文献   

3.
Fungal prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily share no sequence, but structure similarity with the prenyltransferases of the CloQ/NphB group. The members of the DMATS superfamily have been reported to catalyze different prenylations of diverse indole or tyrosine derivatives, while some members of the CloQ/NphB group used hydroxynaphthalenes as prenylation substrates. In this study, we report for the first time the prenylation of hydroxynaphthalenes by the members of the DMATS superfamily. Three tryptophan-containing cyclic dipeptide prenyltransferases (AnaPT, CdpNPT and CdpC3PT), one tryptophan C7-prenyltransferase and one tyrosine O-prenyltransferase (SirD) were incubated with naphthalene and 11 derivatives. The enzyme activity and preference of the tested prenyltransferases towards hydroxynaphthalenes differed clearly from each other. For an accepted substrate, however, different enzymes produced usually the same major prenylation product, i.e. with a regular C-prenyl moiety at para- or ortho-position to a hydroxyl group. Regularly, O-prenylated and diprenylated derivatives were also identified as enzyme products of substrates with low conversion rates and regioselectivity. This was unequivocally proven by mass spectrometry and nuclear magnetic resonance analyses. The K M values and turnover numbers (k cat) of the enzymes towards selected hydroxynaphthalenes were determined to be in the range of 0.064–2.8 mM and 0.038–1.30 s−1, respectively. These data are comparable to those obtained using indole derivatives. The results presented in this study expanded the potential usage of the members of the DMATS superfamily for production of prenylated derivatives including hydroxynaphthalenes.  相似文献   

4.
Between 1 and 2% of proteins coded for in the human genome, including all G protein gamma subunits, are predicted to be prenylated. Subsequently, prenylated proteins are proteolytically cleaved at the C terminus and carboxymethylated. These reactions are generally obligatory events required for functional expression of prenylated proteins. The biological role of prenyl substrates has made these reactions significant targets for anticancer drug development. Understanding the enzymology of this pathway will be key to success for this strategy. When Ggamma1, -2, -4, -10, -11, -12, and -13 were expressed in HEK293 cells they were completely processed according to the current understanding of the prenylation reaction. In contrast, Ggamma5 was processed to two forms; a minor one, fully processed as predicted, and a major one that was prenylated without further processing. When the Ca(1)a(2)X motif of Ggamma5, CSFL, was exchanged for that of Ggamma2, CAIL, Ggamma5 was completely processed. Conversely, Ggamma2-SFL was incompletely processed. Differential processing of Ggamma5 was found due to the presence of an aromatic amino acid in its Ca(1)a(2)X motif. Retrieving endogenous Ggamma subunits from HEK293 or Neuro-2a cells with FLAG-Gbeta constructs identified multiple Ggamma subunits by mass spectrometry in either cell, but in both cases the most prominent one was Ggamma5 expressed without C-terminal processing after prenylation. This work indicates that post-prenylation reactions can generate multiple products determined by the C-terminal Ca(1)a(2)X motif. Within the human genome 10% of predicted prenylated proteins have aromatic amino acids in their Ca(1)a(2)X sequence and would likely generate the prenylation pattern described here.  相似文献   

5.
Bonitz T  Alva V  Saleh O  Lupas AN  Heide L 《PloS one》2011,6(11):e27336
The linkage of isoprenoid and aromatic moieties, catalyzed by aromatic prenyltransferases (PTases), leads to an impressive diversity of primary and secondary metabolites, including important pharmaceuticals and toxins. A few years ago, a hydroxynaphthalene PTase, NphB, featuring a novel ten-stranded β-barrel fold was identified in Streptomyces sp. strain CL190. This fold, termed the PT-barrel, is formed of five tandem ααββ structural repeats and remained exclusive to the NphB family until its recent discovery in the DMATS family of indole PTases. Members of these two families exist only in fungi and bacteria, and all of them appear to catalyze the prenylation of aromatic substrates involved in secondary metabolism. Sequence comparisons using PSI-BLAST do not yield matches between these two families, suggesting that they may have converged upon the same fold independently. However, we now provide evidence for a common ancestry for the NphB and DMATS families of PTases. We also identify sequence repeats that coincide with the structural repeats in proteins belonging to these two families. Therefore we propose that the PT-barrel arose by amplification of an ancestral ααββ module. In view of their homology and their similarities in structure and function, we propose to group the NphB and DMATS families together into a single superfamily, the PT-barrel superfamily.  相似文献   

6.
CloQ is an aromatic prenyltransferase from the clorobiocin biosynthetic pathway of Streptomyces roseochromogenes var. oscitans. It is involved in the synthesis of the prenylated hydroxybenzoate moiety of the antibiotic, specifically catalyzing the attachment of a dimethylallyl moiety to 4-hydroxyphenylpyruvate. Herein, we report the crystal structure of CloQ and use it as a framework for interpreting biochemical data from both wild-type and variant proteins. CloQ belongs to the aromatic prenyltransferase family, which is characterized by an unusual core fold comprising five consecutive ααββ elements that form a central 10-stranded anti-parallel β-barrel. The latter delineates a solvent-accessible cavity where substrates bind and catalysis takes place. This cavity has well-defined polar and nonpolar regions, which have distinct roles in substrate binding and facilitate a Friedel-Crafts-type mechanism. We propose that the juxtaposition of five positively charged residues in the polar region circumvents the necessity for a Mg2+, which, by contrast, is a strict requirement for the majority of prenyltransferases characterized to date. Our structure of CloQ complexed with 4-hydroxyphenylpyruvate reveals the formation of a covalent link between the substrate and Cys215 to yield a thiohemiketal species. Through site-directed mutagenesis, we show that this link is not essential for enzyme activity in vitro. Furthermore, we demonstrate that CloQ will accept alternative substrates and, therefore, has the capacity to generate a range of prenylated compounds. Since prenylation is thought to enhance the bioactivity of many natural products, CloQ offers considerable promise as a biocatalyst for the chemoenzymatic synthesis of novel compounds with therapeutic potential.  相似文献   

7.
Prenylation plays a major role in the diversification of aromatic natural products, such as phenylpropanoids, flavonoids, and coumarins. This biosynthetic reaction represents the crucial coupling process of the shikimate or polyketide pathway providing an aromatic moiety and the isoprenoid pathway derived from the mevalonate or methyl erythritol phosphate (MEP) pathway, which provides the prenyl (isoprenoid) chain. In particular, prenylation contributes strongly to the diversification of flavonoids, due to differences in the prenylation position on the aromatic rings, various lengths of prenyl chain, and further modifications of the prenyl moiety, e.g., cyclization and hydroxylation, resulting in the occurrence of ca. 1000 prenylated flavonoids in plants. Many prenylated flavonoids have been identified as active components in medicinal plants with biological activities, such as anti-cancer, anti-androgen, anti-leishmania, and anti-nitric oxide production. Due to their beneficial effects on human health, prenylated flavonoids are of particular interest as lead compounds for producing drugs and functional foods. However, the gene coding for prenyltransferases that catalyze the key step of flavonoid prenylation have remained unidentified for more than three decades, because of the membrane-bound nature of these enzymes. Recently, we have succeeded in identifying the first prenyltransferase gene SfN8DT-1 from Sophora flavescens, which is responsible for the prenylation of the flavonoid naringenin at the 8-position, and is specific for flavanones and dimethylallyl diphosphate (DMAPP) as substrates. Phylogenetic analysis showed that SfN8DT-1 has the same evolutionary origin as prenyltransferases for vitamin E and plastoquinone. A prenyltransferase GmG4DT from soybean, which is involved in the formation of glyceollin, was also identified recently. This enzyme was specific for pterocarpan as its aromatic substrate, and (?)-glycinol was the native substrate yielding the direct precursor of glyceollin I. These enzymes are localized to plastids and the prenyl chain is derived from the MEP pathway. Further relevant genes involved in the prenylation of other types of polyphenol are expected to be cloned by utilizing the sequence information provided by the above studies.  相似文献   

8.
Although protein prenylation is widely studied, there are few good methods for isolating prenylated proteins from their nonprenylated relatives. We report that crosslinked agarose (e.g., Sepharose) chromatography medium that has been chemically functionalized with β-cyclodextrin (β-CD) is extremely effective in affinity chromatography of prenylated proteins. In this study, a variety of proteins with C-terminal prenylation target (“CAAX box”) sequences were enzymatically prenylated in vitro with natural and nonnatural prenyl diphosphate substrates. The prenylated protein products could then be isolated from starting materials by gravity chromatography or fast protein liquid chromatography (FPLC) on a β-CD-Sepharose column. One particular prenylation reaction, farnesylation of an mCherry-CAAX fusion construct, was studied in detail. In this case, purified farnesylated product was unambiguously identified by electrospray mass spectrometry. In addition, when mCherry-CAAX was prenylated with a nonnatural, functional isoprenoid substrate, the functional group was maintained by chromatography on β-CD-Sepharose, such that the resulting protein could be selectively bound at its C terminus to complementary functionality on a solid substrate. Finally, β-CD-Sepharose FPLC was used to isolate prenylated mCherry-CAAX from crude HeLa cell lysate as a model for purifying prenylated proteins from cell extracts. We propose that this method could be generally useful to the community of researchers studying protein prenylation.  相似文献   

9.
Protein prenylation is a post-translational modification where farnesyl or geranylgeranyl groups are enzymatically attached to a C-terminal cysteine residue. This modification is essential for the activity of small cellular GTPases, as it allows them to associate with intracellular membranes. Dissociated from membranes, prenylated proteins need to be transported through the aqueous cytoplasm by protein carriers that shield the hydrophobic anchor from the solvent. One such carrier is Rho GDP dissociation inhibitor (RhoGDI). Recently, it was shown that prenylated Rho proteins that are not associated with RhoGDI are subjected to proteolysis in the cell. We hypothesized that the role of RhoGDI might be not only to associate with prenylated proteins but also to regulate the prenylation process in the cell. This idea is supported by the fact that RhoGDI binds both unprenylated and prenylated Rho proteins with high affinity in vitro, and hence, these interactions may affect the kinetics of prenylation. We addressed this question experimentally and found that RhoGDI increased the catalytic efficiency of geranylgeranyl transferase-I in RhoA prenylation. Nevertheless, we did not observe formation of a ternary RhoGDI∗RhoA∗GGTase-I complex, indicating sequential operation of geranylgeranyltransferase-I and RhoGDI. Our results suggest that RhoGDI accelerates Rho prenylation by kinetically trapping the reaction product, thereby increasing the rate of product release.  相似文献   

10.
Prenylated polyphenols are secondary metabolites beneficial for human health because of their various biological activities. Metabolic engineering was performed using Streptomyces and Sophora flavescens prenyltransferase genes to produce prenylated polyphenols in transgenic legume plants. Three Streptomyces genes, NphB, SCO7190, and NovQ, whose gene products have broad substrate specificity, were overexpressed in a model legume, Lotus japonicus, in the cytosol, plastids or mitochondria with modification to induce the protein localization. Two plant genes, N8DT and G6DT, from Sophora flavescens whose gene products show narrow substrate specificity were also overexpressed in Lotus japonicus. Prenylated polyphenols were undetectable in these plants; however, supplementation of a flavonoid substrate resulted in the production of prenylated polyphenols such as 7-O-geranylgenistein, 6-dimethylallylnaringenin, 6-dimethylallylgenistein, 8-dimethylallynaringenin, and 6-dimethylallylgenistein in transgenic plants. Although transformants with the native NovQ did not produce prenylated polyphenols, modification of its codon usage led to the production of 6-dimethylallylnaringenin and 6-dimethylallylgenistein in transformants following naringenin supplementation. Prenylated polyphenols were not produced in mitochondrial-targeted transformants even under substrate feeding. SCO7190 was also expressed in soybean, and dimethylallylapigenin and dimethylallyldaidzein were produced by supplementing naringenin. This study demonstrated the potential for the production of novel prenylated polyphenols in transgenic plants. In particular, the enzymatic properties of prenyltransferases seemed to be altered in transgenic plants in a host species-dependent manner.  相似文献   

11.
Rab geranylgeranyltransferase (RabGGTase) catalyzes the prenylation of Rab proteins. Despite possessing a single active site, RabGGTase is able to add geranylgeranyl moieties onto each of the two C-terminal cysteine residues of Rab. We have studied the kinetics of Rab double prenylation employing a combination of a novel high pressure liquid chromatography (HPLC)-based in vitro prenylation assay and fluorescence spectroscopy. Transfer of the first geranylgeranyl group proceeds with a k(1) = 0.16 s(-1), while the conversion from singly to double prenylated Rab is 4-fold slower (k(2) = 0.039 s(-1)). We found that following the first transfer reaction, the conjugated lipid is removed from the active site of RabGGTase but mono-prenylated Rab.REP complex remains bound to RabGGTase with a K(d) < 1 nm. In contrast to the doubly prenylated Rab7.REP dissociation of the mono-prenylated species from RabGGTase was only weakly stimulated by phosphoisoprenoid. Based on the obtained rate constants we calculated that at least 72% of mono-prenylated Rab molecules proceed to double prenylation without dissociating from RabGGTase. The obtained data provides an explanation of how RabGGTase discriminates between mono-prenylated intermediate and double prenylated reaction product. It also indicates that the phosphoisoprenoid acts both as a substrate and as a sensor governing the kinetics of protein.protein interactions in the double prenylation reaction.  相似文献   

12.
Yarrowia lipolytica is widely used as a microbial producer of lipids and lipid derivatives. Here, we exploited this yeast’s potential to generate aromatic amino acids by developing chassis strains optimized for the production of phenylalanine, tyrosine and tryptophan. We engineered the shikimate pathway to overexpress a combination of Y. lipolytica and heterologous feedback-insensitive enzyme variants. Our best chassis strain displayed high levels of de novo Ehrlich metabolite production (up to 0.14 g l−1 in minimal growth medium), which represented a 93-fold increase compared to the wild-type strain (0.0015 g l−1). Production was further boosted to 0.48 g l−1 when glycerol, a low-cost carbon source, was used, concomitantly to high secretion of phenylalanine precursor (1 g l−1). Among these metabolites, 2-phenylethanol is of particular interest due to its rose-like flavour. We also established a production pathway for generating protodeoxyviolaceinic acid, a dye derived from tryptophan, in a chassis strain optimized for chorismate, the precursor of tryptophan. We have thus demonstrated that Y. lipolytica can serve as a platform for the sustainable de novo bio-production of high-value aromatic compounds, and we have greatly improved our understanding of the potential feedback-based regulation of the shikimate pathway in this yeast.  相似文献   

13.
Traditionally engineered to produce novel bioactive molecules, Type I modular polyketide synthases (PKSs) could be engineered as a new biosynthetic platform for the production of de novo fuels, commodity chemicals, and specialty chemicals. Previously, our investigations manipulated the first module of the lipomycin PKS to produce short chain ketones, 3-hydroxy acids, and saturated, branched carboxylic acids. Building upon this work, we have expanded to multi-modular systems by engineering the first two modules of lipomycin to generate unnatural polyketides as potential biofuels and specialty chemicals in Streptomyces albus. First, we produce 20.6 mg/L of the ethyl ketone, 4,6 dimethylheptanone through a reductive loop exchange in LipPKS1 and a ketoreductase knockouts in LipPKS2. We then show that an AT swap in LipPKS1 and a reductive loop exchange in LipPKS2 can produce the potential fragrance 3-isopropyl-6-methyltetrahydropyranone. Highlighting the challenge of maintaining product fidelity, in both bimodular systems we observed side products from premature hydrolysis in the engineered first module and stalled dehydration in reductive loop exchanges. Collectively, our work expands the biological design space and moves the field closer to the production of “designer” biomolecules.  相似文献   

14.
In nature, microorganisms often reside in symbiotic co-existence providing nutrition, stability, and protection for each partner by applying “division of labor.” This principle may also be used for the overproduction of targeted compounds in bioprocesses. It requires the engineering of a synthetic co-culture with distributed tasks for each partner. Thereby, the competition on precursors, redox cofactors, and energy—which occurs in a single host—is prevented. Current applications often focus on unidirectional interactions, that is, the product of partner A is used for the completion of biosynthesis by partner B. Here, we present a synthetically engineered Escherichia coli co-culture of two engineered mutant strains marked by the essential interaction of the partners which is achieved by implemented auxotrophies. The tryptophan auxotrophic strain E. coli ANT-3, only requiring small amounts of the aromatic amino acid, provides the auxotrophic anthranilate for the tryptophan producer E. coli TRP-3. The latter produces a surplus of tryptophan which is used to showcase the suitability of the co-culture to access related products in future applications. Co-culture characterization revealed that the microbial consortium is remarkably functionally stable for a broad range of inoculation ratios. The range of robust and functional interaction may even be extended by proper glucose feeding which was shown in a two-compartment bioreactor setting with filtrate exchange. This system even enables the use of the co-culture in a parallel two-level temperature setting which opens the door to access temperature sensitive products via heterologous production in E. coli in a continuous manner.  相似文献   

15.
Hepatitis delta antigen (HDAg) consists of two species, large (LHDAg) and small (SHDAg), which are identical in sequence except that the large form contains 19 extra amino acids at the C terminus. The large form is prenylated on the Cxxx motif. The small form can trans activate HDV RNA replication, while the large form inhibits it. To determine the molecular basis for their differential functions, we examined the effects of prenylation on the conformation and function of HDAg. We show that the presence of prenylates masks a conformational epitope which is present in SHDAg but hidden in wild-type LHDAg; this epitope becomes exposed in all of the nonprenylated mutant LHDAgs. Prenylation also plays a major role in conferring the trans-dominant negative inhibitory activity of LHDAg, since the loss of prenylation in LHDAg reduced its inhibitory activity. The primary amino acids of the C-terminal sequence also contributed to the maintenance of the HDAg protein conformation; a prenylated LHDAg mutant with a five-amino-acid deletion had an exposed C-terminal epitope. By examining LHDAg mutants which have deletions of various extents of C-terminal sequence, with or without the prenylation motif, we have further shown that all of the prenylated mutants have much higher levels of trans-dominant suppressor activities than do the corresponding nonprenylated mutants. Surprisingly, a few nonprenylated LHDAg mutants were able to trans activate HDV RNA replication, while all of the prenylated ones lost this function. These results suggest that isoprenylates cause the masking of a conformational epitope of HDAg and that conformational differences between the large and small HDAgs account for the differences in their trans-activating and trans-dominant inhibitory biological activities.  相似文献   

16.
Flavonoids are natural compounds found in many plants, including the important fruit crop, tomato. Prenylated flavonoids consist of a large group of compounds, which often exhibit antitumour, antibacterial and/or anti-androgen activities. In this study, we engineered the biosynthesis of prenylated flavonoids using a Streptomyces prenyltransferase HypSc (SCO7190) possessing broad-range substrate specificity, in tomato as a host plant. LC/MS/MS analysis demonstrated the generation of 3'-dimethylallyl naringenin in tomato fruits when recombinant HypSc protein was targeted to the plastids, whereas the recombinant protein hardly produced this compound in vitro. This is the first report confirming the accumulation of a prenylated flavonoid using a bacterial prenyltransferase in transgenic plants, and our results suggest that the product specificities of prenyltransferases can be significantly influenced by the host plant.  相似文献   

17.
General thermodynamic calculations using the semiempiric PM3 method have led to the conclusion that prenyldiphosphate converting enzymes require at least one divalent metal cation for the activation and cleavage of the diphosphate–prenyl ester bond, or they must provide structural elements for the efficient stabilization of the intermediate prenyl cation. The most important common structural features, which guide the product specificity in both terpene synthases and aromatic prenyl transferases are aromatic amino acid side chains, which stabilize prenyl cations by cation–π interactions. In the case of aromatic prenyl transferases, a proton abstraction from the phenolic hydroxyl group of the second substrate will enhance the electron density in the phenolic ortho-position at which initial prenylation of the aromatic compound usually occurs.A model of the structure of the integral transmembrane-bound aromatic prenyl transferase UbiA was developed, which currently represents the first structural insight into this group of prenylating enzymes with a fold different from most other aromatic prenyl transferases. Based on this model, the structure–activity relationships and mechanistic aspects of related proteins, for example those of Lithospermum erythrorhizon or the enzyme AuaA from Stigmatella aurantiaca involved in the aurachin biosynthesis, were elucidated. The high similarity of this group of aromatic prenyltransferases to 5-epi-aristolochene synthase is an indication of an evolutionary relationship with terpene synthases (cyclases). This is further supported by the conserved DxxxD motif found in both protein families. In contrast, there is no such relationship to the aromatic prenyl transferases with an ABBA-fold, such as NphB, or to any other known family of prenyl converting enzymes. Therefore, it is possible that these two groups might have different evolutionary ancestors.  相似文献   

18.
Furanocoumarins constitute a sub‐family of coumarin compounds with important defense properties against pathogens and insects, as well as allelopathic functions in plants. Furanocoumarins are divided into two sub‐groups according to the alignment of the furan ring with the lactone structure: linear psoralen and angular angelicin derivatives. Determination of furanocoumarin type is based on the prenylation position of the common precursor of all furanocoumarins, umbelliferone, at C6 or C8, which gives rise to the psoralen or angelicin derivatives, respectively. Here, we identified a membrane‐bound prenyltransferase PcPT from parsley (Petroselinum crispum), and characterized the properties of the gene product. PcPT expression in various parsley tissues is increased by UV irradiation, with a concomitant increase in furanocoumarin production. This enzyme has strict substrate specificity towards umbelliferone and dimethylallyl diphosphate, and a strong preference for the C6 position of the prenylated product (demethylsuberosin), leading to linear furanocoumarins. The C8‐prenylated derivative (osthenol) is also formed, but to a much lesser extent. The PcPT protein is targeted to the plastids in planta. Introduction of this PcPT into the coumarin‐producing plant Ruta graveolens showed increased consumption of endogenous umbelliferone. Expression of PcPT and a 4–coumaroyl CoA 2'–hydroxylase gene in Nicotiana benthamiana, which does not produce furanocoumarins, resulted in formation of demethylsuberosin, indicating that furanocoumarin production may be reconstructed by a metabolic engineering approach. The results demonstrate that a single prenyltransferase, such as PcPT, opens the pathway to linear furanocoumarins in parsley, but may also catalyze the synthesis of osthenol, the first intermediate committed to the angular furanocoumarin pathway, in other plants.  相似文献   

19.
The mevalonate–isoprenoid–cholesterol biosynthesis pathway plays a key role in human health and disease. The importance of this pathway is underscored by the discovery that two major isoprenoids, farnesyl and geranylgeranyl pyrophosphate, are required to modify an array of proteins through a process known as protein prenylation, catalyzed by prenyltransferases. The lipophilic prenyl group facilitates the anchoring of proteins in cell membranes, mediating protein–protein interactions and signal transduction. Numerous essential intracellular proteins undergo prenylation, including most members of the small GTPase superfamily as well as heterotrimeric G proteins and nuclear lamins, and are involved in regulating a plethora of cellular processes and functions. Dysregulation of isoprenoids and protein prenylation is implicated in various disorders, including cardiovascular and cerebrovascular diseases, cancers, bone diseases, infectious diseases, progeria, and neurodegenerative diseases including Alzheimer’s disease (AD). Therefore, isoprenoids and/or prenyltransferases have emerged as attractive targets for developing therapeutic agents. Here, we provide a general overview of isoprenoid synthesis, the process of protein prenylation and the complexity of prenylated proteins, and pharmacological agents that regulate isoprenoids and protein prenylation. Recent findings that connect isoprenoids/protein prenylation with AD are summarized and potential applications of new prenylomic technologies for uncovering the role of prenylated proteins in the pathogenesis of AD are discussed.  相似文献   

20.
GTPases of the Rab family are key components of vesicular transport in eukaryotic cells. Posttranslational attachment of geranylgeranyl moieties is essential for Rab function. Geranylgeranyltransferase type II (GGTase-II) catalyzes the modification of Rab proteins once they are in complex with their escort protein (REP). Upon completion of prenylation, REP and modified Rab leave the enzyme, enabling a new round of catalysis. We have studied the mechanism underlying substrate binding and product release in the geranylgeranylation of Rab proteins. Binding of the Rab7:REP-1 complex to GGTase-II was found to be strongly modulated by geranylgeranyl pyrophosphate (GGpp). The affinity of GGTase-II for the Rab7:REP-1 complex increases from ca. 120 nM to ca. 2 nM in the presence of GGpp. To study the effect of GGpp on interaction of the enzyme with its product, we generated semisynthetic doubly prenylated Rab7 bearing a fluorescent reporter group. Using this novel compound, we demonstrated that the affinity of doubly prenylated Rab7:REP-1 complex for GGTase-II was 2 and 18 nM in the absence and presence of GGpp, respectively. The difference in affinities originates mainly from a difference in the dissociation rates. Thus, binding of the new isoprenoid substrate molecule facilitates the product release by GGTase-II. The affinity of GGpp for the prenylated Rab7:REP-1:GGTase-II was K(d) = 22 nM, with one molecule of GGpp binding per molecule of prenylated ternary complex. We interpreted this finding as an indication that the geranylgeranyl moieties transferred to Rab protein do not occupy the GGpp binding site of the GGTase-II. In summary, these results demonstrate that GGpp acts as an allosteric activator that stabilizes the Rab7:REP-1:GGTase-II complex and triggers product release upon prenylation, preventing product inhibition of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号