首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inhibition of triosephosphate isomerase (TPI) in glycolysis by the pyruvate kinase (PK) substrate phosphoenolpyruvate (PEP) results in a newly discovered feedback loop that counters oxidative stress in cancer and actively respiring cells. The mechanism underlying this inhibition is illuminated by the co-crystal structure of TPI with bound PEP at 1.6 Å resolution, and by mutational studies guided by the crystallographic results. PEP is bound to the catalytic pocket of TPI and occludes substrate, which accounts for the observation that PEP competitively inhibits the interconversion of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Replacing an isoleucine residue located in the catalytic pocket of TPI with valine or threonine altered binding of substrates and PEP, reducing TPI activity in vitro and in vivo. Confirming a TPI-mediated activation of the pentose phosphate pathway (PPP), transgenic yeast cells expressing these TPI mutations accumulate greater levels of PPP intermediates and have altered stress resistance, mimicking the activation of the PK–TPI feedback loop. These results support a model in which glycolytic regulation requires direct catalytic inhibition of TPI by the pyruvate kinase substrate PEP, mediating a protective metabolic self-reconfiguration of central metabolism under conditions of oxidative stress.  相似文献   

2.
Triosephosphate isomerase (TPI; EC 5. 3. 1. 1) displayed on the cell surface of Staphylococcus aureus acts as an adhesion molecule that binds to the capsule of Cryptococcus neoformans, a fungal pathogen. This study investigated the function of TPI on the cell surface of S. aureus and its interactions with biological substances such as fibronectin, fibrinogen, plasminogen, and thrombin were investigated. Binding of TPI to plasminogen was demonstrated by both surface plasmon resonance analysis and Far‐Western blotting. It is suggested that lysine residues contribute to this binding because the interaction was inhibited by ?‐aminocaproic acid. Activation of plasminogen to plasmin by staphylokinase or tissue plasminogen activator decreased in the presence of TPI, whereas TPI was degraded by plasmin. In other experiments, intact S. aureus cells had the ability to both increase and decrease plasminogen activation depending on the number of cells. Several molecules expressed on the surface of S. aureus were predicted to interact with plasminogen, resulting in its increased or decreased activation. These findings indicate that S. aureus sometimes localizes and sometimes disseminates in the host, depending on the molecules expressed under various conditions.  相似文献   

3.
An electrophoretically unique, thermolabile isozyme of triosephosphate isomerase (TPI; EC 5.3.1.1) accounts for 10–30% of the enzymatic activity in a range of mitotically active human cells and tissues. This type 2 form (subunit) of human TPI appears in two isozymes, an anodally migrating, relative to the constitutive TPI-1/1 homodimer, TPI-2/2 homodimer and the TPI-1/2 heterodimer with an intermediate mobility. Human cell types expressing the induced isozyme, which is the product of the same structural locus as the constitutive isozyme, include mitogen-stimulated lymphocytes, virally transformed B-lymphoblastoid cells, leukemia-derived T-lymphoblastoid cells, HeLa cells, both normal and transformed fibroblasts, and placental tissue. Extracts of nondividing or terminally differentiated human cells/tissues, such as erythrocytes, striated muscle, peripheral lymphocytes, and platelets, contain high levels of the constitutive TPI-1/1 isozyme but little or undetectable levels of the TPI-1/2 or TPI-2/2 isozyme. The cell division-associated TPI-1/2 and -2/2 isozymes are distinct in electrophoretic mobility from the deamidated forms of the constitutive isozyme. Extracts of dividing gorilla fibroblasts display an isozyme pattern identical to that of proliferating human cells, but various proliferating cells derived from the African green monkey, rabbit, and chicken express only the constitutive isozyme. Thus, expression of the cell division-associated isozyme of TPI is restricted to the hominoids, suggesting a recently evolved modification mechanism which is specifically activated in proliferating cells.Financial support was derived from Contract EY-77-C-02-2828 from the Department of Energy and Training Grant 5-T32-GM07544 from the National Institutes of Health.  相似文献   

4.
We present a comprehensive analysis of the catalytic cycle of the enzyme triosephosphate isomerase (TIM), including both the reactive chemistry and the catalytic loop and side-chain motions. Combining accurate mixed quantum mechanics/molecular mechanics (QM/MM) and protein structure prediction methods, we have modeled both the structural and chemical aspects of the reversible isomerization of dihydroxyacetone phosphate (DHAP) to d-glyceraldehyde 3-phosphate (GAP), for which there is a wealth of experimental data. The conjunction of this novel computational approach with the use of the recent near-atomic resolution TIM-DHAP Michaelis complex PDB structure, 1NEY.pdb, has enabled us to obtain robust qualitative and, where available, quantitative agreement with a wide range of experimental data. Among the principal conclusions that we are able to draw are the importance of the monoanionic (as opposed to dianioic) form of the substrate phosphate group in the catalytic cycle, detailed positioning and energetics of the key catalytic residues in the active-site, the flexible nature of Glu165, which favors its direct involvement in the formation of the enediol intermediate, energetics of the open and closed form of the catalytic loop region in the presence and absence of substrate, and quantitative reproduction of various experimentally measured reaction rates, typically to within approximately 1 kcal/mol. Our results are consistent with the available experimental data, and provide an initial picture as to why loop opening when GAP is the product has a higher barrier than when DHAP is the product.  相似文献   

5.
Three new electrophoretic variants of human erythrocyte triosephosphate isomerase (TPI) have been partially purified and compared with the normal isozyme with respect to stability, kinetics, and immunological properties. TPI 2HR1, an anodally migrating variant, was less stable than normal in guanidine denaturation and thermodenaturation tests, although it exhibited normal kinetic properties. The level of enzyme activity in erythrocytes from the proband with the phenotype TPI 1-2HR1 was about 60% of the normal mean. The variant allozyme TPI 2NG1, an anodally migrating allozyme associated with normal activity, was very thermolabile at 55 and 57°C. It was also much more labile than normal in stability tests in buffers at pH 5 and pH 10, although it exhibited normal kinetic and immunological properties. TPI 4NG1, a cathodally migrating variant associated with normal activity and normal kinetic as well as immunological properties, was more stable than normal in pH 5 buffer. Family studies demonstrated that the unique characteristics of these variants are genetically transmitted. In two-dimensional electrophoresis of purified isozymes the variant subunits were separated from the normal in the pI axis. However, there is no difference between the variants and the normal in the molecular weight axis, suggesting that the variants result from single amino acid substitutions.  相似文献   

6.
The process of thermal inactivation of triosephosphate isomerase covalently attached to a silica-based support activated with p-benzoquinone was found to be a complex one. At 50 degrees C, a characteristic activation preceding the thermal inactivation was observed. Following the intramolecular changes caused by heat, the values of K(M) and V(max) were determined during the activation. It was presumed that the complex thermal inactivation kinetics reflects the microheterogeneity of the immobilized enzyme molecules. The phosphate ion proved to be a better stabilizer than the substrate. (c) 1992 John Wiley & Sons, Inc.  相似文献   

7.
Chu CH  Lai YJ  Huang H  Sun YJ 《Proteins》2008,71(1):396-406
Triosephosphate isomerase (TIM) catalyzes the interconversion between dihydroxyacetone phosphate and D-glyceraldehyde-3-phosphate in the glycolysis-gluconeogenesis metabolism pathway. The Helicobacter pylori TIM gene (HpTIM) was cloned, and HpTIM was expressed and purified. The enzymatic activity of HpTIM for the substrate GAP was determined (K(m) = 3.46 +/- 0.23 mM and k(cat) = 8.8 x 10(4) min(-1)). The crystal structure of HpTIM was determined by molecular replacement at 2.3 A resolution. The overall structure of HpTIM was (beta/alpha)beta(beta/alpha)(6), which resembles the common TIM barrel fold, (beta/alpha)(8); however, a helix is missing after the second beta-strand. The conformation of loop 6 and binding of phosphate ion suggest that the determined structure of HpTIM was in the "closed" state. A highly conserved Arg-Asp salt bridge in the "DX(D/N)G" motif of most TIMs is absent in HpTIM because the sequence of this motif is "(211)SVDG(214)." To determine the significance of this salt bridge to HpTIM, four mutants, including K183S, K183A, D213Q, and D213A, were constructed and characterized. The results suggest that this conserved salt bridge is not essential for the enzymatic activity of HpTIM; however, it might contribute to the conformational stability of HpTIM.  相似文献   

8.
9.
Abstract A partial genomic library of Streptomyces sp. NCIM 2730 was constructed in Escherichia coli using pUC8 vector and screened for the presence of the d-glucose/xylose isomerase (GXI) gene using an 18-mer mixed oligonucleotide probe complementary to a highly conserved six-amino acid sequence of GXI from actinomycetes. Eight clones which hybridized with the radiolabelled oligoprobe showed the ability to complement xylose isomerase-defective E. coli mutants. The restriction map of the insert from one (pMSG27) of the eight GXI-positive clones showing detectable GXI activity was constructed. GXI-deficient strains of E. coli were able to utilize xylose as the sole carbon source for their growth upon transformation with pMSG27. E. coli JM105 (pMSG27) and E. coli JC1553 (pMSG27) were inducible by IPTG suggesting that the expression of the cloned gene was under the control of the lacZ promoter. Western blot analysis revealed that the cloned gene is expressed as a fusion protein of M r 110. This is the first report of expression of a catalytically active GXI from Streptomyces in Escherichia coli .  相似文献   

10.
Summary Three primary isoforms of the dimeric glycolytic enzyme, triosephosphate isomerase (TPI; EC 5.3.1.1), are detected in proliferating human cells. The electrophoretically separable isoforms result from the three possible combinations of constitutive subunits and subunits expressed only in proliferating cells. Only a single primary isoform is observed in quiescent cells. The two subunits, which differ by covalent modification (s), are products of the single structural locus for this enzyme. Expression of the proliferation specific subunit (TPI-2) is detected within 6–10 hr following mitogen stimulation of quiescent human cells, requires RNA synthesis and is inhibited by agents which inhibit interleukin 2 expression or function. Only the constitutive subunit (TPI-1) is detected in proliferating cells from nonhominoid primate species. A single class of TPI mRNA, which is increased > 10 fold following stimulation of quiescent cells, is detected on northern blot analysis and S1 nuclease digestion analysis of RNA from quiescent and proliferating human cells. It is similar in size to the TPI mRNA from proliferating cells of the African green monkey, a primate species not expressing TPI-2. Comparison of the structure of the TPI gene from rhesus monkey (nonexpressing species) to the gene from expressing species does not suggest a mechanism for generating TPI-2. Thus, the regulation of the expression of the hominoid restricted, proliferation specific subunit of TPI has been further defined, although the mechanism for generating TPI-2 remains elusive.  相似文献   

11.
Two new electrophoretic variants of human triosephosphate isomerase (TPI) have been partially purified and characterized. The TPI Manchester variant, a cathodally migrating electrophoretic allozyme identified in an individual with the phenotype TPI 1-Manchester, is associated with a normal level of enzyme activity in erythrocytes and normal kinetic properties. It is very thermolabile at 55 and 57° C, although it is not uniquely sensitive to either guanidine-HCl or urea denaturation. The TPI Hiroshima-2 variant is an anodally migrating allozyme (the phenotype of proband is TPI 1-Hiroshima-2) with normal activity and kinetic properties and also normal stability characteristics. It is inactivated less by antisera raised against normal human TPI than either the normal or the Manchester allozyme. Dissociation-reassociation experiments utilizing these allozymes have confirmed that normal human red blood cell TPI isozymes are produced by a sequence of reactions (presumably deamidations) involving alternating subunits.Financial support was derived from Contract EY-77-C-02-2828 from the Department of Energy.  相似文献   

12.
Joubert F  Neitz AW  Louw AI 《Proteins》2001,45(2):136-143
The crystal structure of malaria triosephosphate isomerase (TIM) was screened against the National Cancer Institute database of three-dimensional molecular structures. Ten top-scoring commercially available compounds were analyzed for inhibition of recombinant TIM. Two anionic dyes showed inhibition of TIM at concentrations of <100 mM. Four related sulfonated dyes were identified from the literature, docked, and screened in vitro. All showed inhibition of malaria TIM. Models indicate that these compounds bind in two suggested conformations to the active site region of the TIM enzyme. These compounds may be used in rational modification procedures for the synthesis of lead anti-TIM drugs.  相似文献   

13.
Triosephosphate isomerase (TIM) has been proposed as a target for drug design. TIMs from several parasites have a cysteine residue at the dimer interface, whose derivatization with thiol-specific reagents induces enzyme inactivation and aggregation. TIMs lacking this residue, such as human TIM, are less affected. TIM from Entamoeba histolytica (EhTIM) has the interface cysteine residue and presents more than ten insertions when compared with the enzyme from other pathogens. To gain further insight into the role that interface residues play in the stability and reactivity of these enzymes, we determined the high-resolution structure and characterized the effect of methylmethane thiosulfonate (MMTS) on the activity and conformational properties of EhTIM. The structure of this enzyme was determined at 1.5A resolution using molecular replacement, observing that the dimer is not symmetric. EhTIM is completely inactivated by MMTS, and dissociated into stable monomers that possess considerable secondary structure. Structural and spectroscopic analysis of EhTIM and comparison with TIMs from other pathogens reveal that conformational rearrangements of the interface after dissociation, as well as intramonomeric contacts formed by the inserted residues, may contribute to the unusual stability of the derivatized EhTIM monomer.  相似文献   

14.
徐剑  周君  刘晓红  陆小平 《昆虫知识》2009,46(5):703-709
从意大利蜜蜂Apis mellifera ligustica的肌肉组织中提取总RNA,采用RT-PCR的方法克隆蜜蜂第16号染色体上的丙糖磷酸异构酶基因的cDNA序列,将测序结果(GenBank登录号EU76098)与推导的氨基酸序列分别与GenBank中的其他物种进行同源比对分析。结果表明,该基因全长744bp,为完整的阅读框,编码247个氨基酸,成熟蛋白的理论分子量为26.89kD。比对结果显示AmTPI与家蚕、德国小镰、黄粉虫、丽蝇蛹集金小蜂、水稻等物种的基因相似性达69%以上,蛋白相似性达59%以上。将目的基因克隆到pGEX-4T-2融合表达载体上,并在大肠杆菌中得到成功表达,4h的表达量为总蛋白的42.1%。为了进一步探讨产物的酶学特性,实验还对表达产物进行纯化与浓缩。实验还构建增强型荧光真核表达质粒,为进一步研究AmTPI在真核细胞中的表达情况奠定基础。  相似文献   

15.
The redox properties of periplasmic protein disulfide isomerase (DsbA) from Escherichia coli were analyzed by measuring the equilibrium constant of the oxidation of reduced DsbA by oxidized glutathione. The experiments are based on the finding that the intrinsic tryptophan fluorescence of DsbA increases about threefold upon reduction of the enzyme, which can be explained by the catalytic disulfide bridge quenching the fluorescence of a neighboring tryptophan residue. From the specific fluorescence of DsbA equilibrated in the presence of different ratios of reduced and oxidized glutathione at pH 7, an equilibrium constant of 1.2 x 10(-4) M was determined, corresponding to a standard redox potential (E'0) of DsbA of -0.089 V. Thus, DsbA is a significantly stronger oxidant than cytoplasmic thioredoxins and its redox properties are similar to those of eukaryotic protein disulfide isomerase. The equilibrium constants for the DsbA/glutathione equilibrium were found to be strongly dependent on pH and varied from 2.5 x 10(-3) M to 3.9 x 10(-5) M between pH 4 and 8.5. The redox state-dependent fluorescence properties of DsbA should allow detailed physicochemical studies of the enzyme as well as the quantitative determination of the oxidized protein by fluorescence titration with dithiothreitol and open the possibility to observe bacterial protein disulfide isomerase "at work" during catalysis of oxidative protein folding.  相似文献   

16.
The structure of the thermostable triosephosphate isomerase (TIM) from Bacillus stearothermophilus complexed with the competitive inhibitor 2-phosphoglycolate was determined by X-ray crystallography to a resolution of 2.8 A. The structure was solved by molecular replacement using XPLOR. Twofold averaging and solvent flattening was applied to improve the quality of the map. Active sites in both the subunits are occupied by the inhibitor and the flexible loop adopts the "closed" conformation in either subunit. The crystallographic R-factor is 17.6% with good geometry. The two subunits have an RMS deviation of 0.29 A for 248 C alpha atoms and have average temperature factors of 18.9 and 15.9 A2, respectively. In both subunits, the active site Lys 10 adopts an unusual phi, psi combination. A comparison between the six known thermophilic and mesophilic TIM structures was conducted in order to understand the higher stability of B. stearothermophilus TIM. Although the ratio Arg/(Arg+Lys) is higher in B. stearothermophilus TIM, the structure comparisons do not directly correlate this higher ratio to the better stability of the B. stearothermophilus enzyme. A higher number of prolines contributes to the higher stability of B. stearothermophilus TIM. Analysis of the known TIM sequences points out that the replacement of a structurally crucial asparagine by a histidine at the interface of monomers, thus avoiding the risk of deamidation and thereby introducing a negative charge at the interface, may be one of the factors for adaptability at higher temperatures in the TIM family. Analysis of buried cavities and the areas lining these cavities also contributes to the greater thermal stability of the B. stearothermophilus enzyme. However, the most outstanding result of the structure comparisons appears to point to the hydrophobic stabilization of dimer formation by burying the largest amount of hydrophobic surface area in B. stearothermophilus TIM compared to all five other known TIM structures.  相似文献   

17.
We study the structural fluctuations of triosephosphate isomerase (TIM) by an elastic model, namely, the Gaussian network model (GNM), to identify a network of coupled motions in the allosteric communication between its deamidation and catalytic sites, and the promoting motions for the deamidation activity. For this, three TIM structures have been studied: one crystal structure and two model structures designed to describe different putative models for the deamidation reaction taking place at the subunit interface. The structural fluctuations have been mapped on the functional properties; then the differences in the fluctuations between the two models in relation to the deamidation reaction have been considered. The results demonstrate that the qualitative picture of the mean-square fluctuations and the correlations between the fluctuations are similar in both, but the differences may affect the observed barrier height of the deamidation reaction. The higher packing density at regions close to deamidation sites, reflected by the high-frequency fluctuating residues in the respective regions, the stronger positive correlation between the fluctuations of the deamidation sites, and enhanced positive correlation of the primary deamidation site with the extended vicinity of the catalytic region on the juxtaposed unit promote the probability of the deamidation reaction. The results in general emphasize the importance of structural fluctuations in enzyme reactions, as well as proposing the present methodology as a plausible approach for studies on the network of coupled promoting motions in protein functions.  相似文献   

18.
The structure of triosephosphate isomerase from Trypanosoma brucei complexed with the competitive inhibitor N-hydroxy-4-phosphono-butanamide was determined by X-ray crystallography to a resolution of 2.84 A. Full occupancy binding of the inhibitor is observed only at one of the active sites of the homodimeric enzyme where the flexible loop is locked in a completely open conformation by crystal contacts. There is evidence that the inhibitor also binds to the second active site of the enzyme, but with low occupancy. The hydroxamyl group of the inhibitor forms hydrogen bonds to the side chains of Asn 11, Lys 13, and His 95, whereas each of its three methylene units is involved in nonpolar interactions with the side chain of the flexible loop residue Ile 172. Interactions between the hydroxamyl and the catalytic base Glu 167 are absent. The binding of this phosphonate inhibitor exhibits three unusual features: (1) the flexible loop is open, in contrast with the binding mode observed in eight other complexes between triosephosphate isomerase and various phosphate and phosphonate compounds; (2) compared with these complexes the present structure reveals a 1.5-A shift of the anion-binding site; (3) this is the first phosphonate inhibitor that is not forced by the enzyme into an eclipsed conformation about the P-CH2 bond. The results are discussed with respect to an ongoing drug design project aimed at the selective inhibition of glycolytic enzymes of T. brucei.  相似文献   

19.
Unfolding and refolding of rabbit muscle triosephosphate isomerase (TIM), a model for (betaalpha)8-barrel proteins, has been studied by amide hydrogen exchange/mass spectrometry. Unfolding was studied by destabilizing the protein in guanidine hydrochloride (GdHCl) or urea, pulse-labeling with 2H2O and analyzing the intact protein by HPLC electrospray ionization mass spectrometry. Bimodal isotope patterns were found in the mass spectra of the labeled protein, indicating two-state unfolding behavior. Refolding experiments were performed by diluting solutions of TIM unfolded in GdHCl or urea and pulse-labeling with 2H2O at different times. Mass spectra of the intact protein labeled after one to two minutes had three envelopes of isotope peaks, indicating population of an intermediate. Kinetic modeling indicates that the stability of the folding intermediate in water is only 1.5 kcal/mol. Failure to detect the intermediate in the unfolding experiments was attributed to its low stability and the high concentrations of denaturant required for unfolding experiments. The folding status of each segment of the polypeptide backbone was determined from the deuterium levels found in peptic fragments of the labeled protein. Analysis of these spectra showed that the C-terminal half folds to form the intermediate, which then forms native TIM with folding of the N-terminal half. These results show that TIM folding fits the (4+4) model for folding of (betaalpha)8-barrel proteins. Results of a double-jump experiment indicate that proline isomerization does not contribute to the rate-limiting step in the folding of TIM.  相似文献   

20.
Triosephosphate isomerase (TIM) catalyzes the reaction to convert dihydroxyacetone phosphate into glyceraldehyde 3‐phosphate, and vice versa. In most organisms, its functional oligomeric state is a homodimer; however, tetramer formation in hyperthermophiles is required for functional activity. The tetrameric TIM structure also provides added stability to the structure, enabling it to function at more extreme temperatures. We apply Principal Component Analysis to find that the TIM structure space is clearly divided into two groups—the open and the closed TIM structures. The distribution of the structures in the open set is much sparser than that in the closed set, showing a greater conformational diversity of the open structures. We also apply the Elastic Network Model to four different TIM structures—an engineered monomeric structure, a dimeric structure from a mesophile—Trypanosoma brucei, and two tetrameric structures from hyperthermophiles Thermotoga maritima and Pyrococcus woesei. We find that dimerization not only stabilizes the structures, it also enhances their functional dynamics. Moreover, tetramerization of the hyperthermophilic structures increases their functional loop dynamics, enabling them to function in the destabilizing environment of extreme temperatures. Computations also show that the functional loop motions, especially loops 6 and 7, are highly coordinated. In summary, our computations reveal the underlying mechanism of the allosteric regulation of the functional loops of the TIM structures, and show that tetramerization of the structure as found in the hyperthermophilic organisms is required to maintain the coordination of the functional loops at a level similar to that in the dimeric mesophilic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号