首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-performance liquid chromatography-mass spectrometry (HPLC-MS) method for the quantification of phenprocoumon, warfarin, and their known monohydroxylated metabolites in human plasma and urine was developed using a simple, selective solid-phase extraction scheme. Chromatographic separation was achieved on a reversed-phase Luna C18 column and step gradient elution resulted in a total run time of about 13 min. Limits of quantification (LOQ) were < or = 40 nM for the parent compounds and < or = 25 nM for the metabolites and the limit of detection (LOD) was < or = 2.5 nM for all analytes. Average recovery was 84% (+/- 3.7) and 74% (+/- 13.2) in plasma and urine, respectively. Intra- and inter-day coefficients of variation were < or = 8.6 and < or = 10.6% in plasma and urine, respectively. The method was successfully applied to the analysis of phenprocoumon samples from four healthy volunteers and should prove useful for future comparative studies of warfarin and phenprocoumon pharmacokinetics.  相似文献   

2.
A sensitive liquid chromatography-mass spectrometric (LC/MS) method for the quantification of schizandrin in rat plasma was developed and validated after solid-phase extraction (SPE). Chromatographic separation was achieved on a reversed-phase Shimadzu C(18) column with the mobile phase of acetonitrile-sodium acetate (10 micromol/L) and step gradient elution resulted in a total run time of about 11.7 min. The analytes were detected using an electrospray positive ionization mass spectrometry in the selected ion monitoring (SIM) mode. A good linear relationship was obtained in the concentration range studied (0.005-2.000 microg/mL) (r=0.9999). Lower limit of quantification (LLOQ) was 5 ng/mL and the lower limit of detection (LLOD) was 2 ng/mL using 100 microL plasma sample. Average recoveries ranged from 75.85 to 88.51% in plasma at the concentrations of 0.005, 0.100 and 1.000 microg/mL. Intra- and inter-day relative standard deviations were 5.95-12.93% and 3.87-14.53%, respectively. This method was successfully applied for the pharmacokinetic studies in rats.  相似文献   

3.
A simple, rapid and reliable method was developed for the quantification of oxymatrine (OMT) and its metabolite matrine (MT) in beagle dog plasma using a liquid-liquid extraction procedure followed by liquid chromatography-electrospray ionization mass spectrometric (LC-ESI-MS) analysis. Extend-C18 column (2.1 mm i.d. x 50 mm, 5 microm) with a C18 guard column (2.1 mm i.d. x 12.5 mm) was used as the analytical column. Linear detection responses were obtained for OMT concentration ranging from 5 to 4000 ng/ml and for MT concentration ranging from 5 to 2000 ng/ml. The precision and accuracy data, based on intra- and inter-day variations over 5 days, were lower than 5%. The limit of quantitation for OMT and MT were 2 and 1 ng/ml, respectively, and their recoveries were greater than 90%. Pharmacokinetic data of OMT and its active metabolite MT obtained with this method following a single oral dose of 300 mg OMT capsules to six beagle dogs was also reported for the first time.  相似文献   

4.
A sensitive and specific liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed for the investigation of the pharmacokinetics of 20(R)-dammarane-3beta,12beta,20,25-tetrol (25-OH-PPD) in rat. Ginsenoside Rh(2) was employed as an internal standard. The plasma samples were pretreated by liquid-liquid extraction and analyzed using LC/MS/MS with an electrospray ionization interface. The mobile phase consisted of methanol-acetonitrile-10 mmol/l aqueous ammonium acetate (42.5:42.5:15, v:v:v), which was pumped at 0.4 ml/min. The analytical column (50 mm x 2.1 mm i.d.) was packed with Venusil XBP C8 material (3.5 microm). The standard curve was linear from 10 to 3000 ng/ml. The assay was specific, accurate (accuracy between -1.19 and 2.57% for all quality control samples), precise and reproducible (within- and between-day precisions measured as relative standard deviation were <5% and <7%, respectively). 25-OH-PPD in rat plasma was stable over three freeze-thaw cycles and at ambient temperatures for 6h. The method had a lower limit of quantitation of 10 ng/ml, which offered a satisfactory sensitivity for the determination of (25-OH-PPD) in plasma. This quantitation method was successfully applied to pharmacokinetic studies of 25-OH-PPD after both an oral and an intravenous administration to rats and the absolute bioavailability is 64.8+/-14.3%.  相似文献   

5.
A method using high-performance liquid chromatography (HPLC) and solid-phase extraction (SPE) is described for the determination of ginsenoside Rg3 in human plasma. A 2.5-ml volume of plasma was mixed with 2.5 ml 60% methanol aqueous solution, and centrifuged at 1100 g for 10 min, the supernatant fluid was further purified by SPE with 200 mg/5 ml 40 μm octadecyl silica and separation was obtained using a reversed-phase column under isocratic conditions with ultraviolet absorbance detection. The intra- and inter-day precision, determined as relative standard deviations, were less than 5.0%, and method recovery was more than 97%. The lower limit of quantitation, based on standards with acceptable RSDs, was 2.5 ng/ml. No endogenous compounds were found to interfere with analyte. A good linear relationship with a regression coefficient of 0.9999 in the range of 2.5 to 200 ng/ml was observed. This method has been demonstrated to be suitable for pharmacokinetic studies in humans. Method development for determination of drug with low UV absorption by SPE and HPLC is also discussed.  相似文献   

6.
A sensitive and specific high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) method has been developed and validated for the determination of palmatine in canine plasma. Palmatine and jatrorrhizine (internal standard, I.S.) were extracted from plasma samples by solid-phase extraction (SPE) using Oasis HLB cartridges. The chromatographic separation was performed on a Waters XTerra MS C(18) reversed-phase column at 30 degrees C. The gradient mobile phase, delivered at 0.25 mL/min, was composed of a mixture of acetonitrile -0.1% (v/v) acetic acid aqueous solution adjusted to pH 2.8 with triethylamine. Positive electrospray ionization was utilized as the ionization source. Palmatine and the internal standard (I.S.) were determined using multiple reaction monitoring (MRM) of precursor-->product ion transitions at m/z 352-->336 and m/z 338-->322, respectively. The lower limit of quantification (LLOQ) was 0.1 ng/mL using 100 microL plasma samples and the linear calibration range was from 0.1 to 500 ng/mL. The inter-day and intra-day RSDs were lower than 9.9% and the recoveries of palmatine ranged from 87.3 to 100.9%. The mean extraction recoveries of palmatine and the I.S. were 99.2 and 96.8%, respectively. The method has been successfully applied to the pharmacokinetic studies of palmatine in beagle dogs after oral administration and intramuscular injection of palmatine.  相似文献   

7.
A simple, sensitive and selective liquid chromatography coupled with electrospray ionization mass spectrometry (LC/ESI/MS) method for the determination of simvastatin (I) has been developed. After extraction by ethyl acetate, using lovastatin (II) as internal standard, solutes are separated on a C(18) column with a mobile phase consisting of methanol-water (9:1). Detection is performed on an atmospheric pressure ionization single quadruple mass spectrometer equipped with an ESI interface and operates in positive ionization mode. Simvastatin quantification was realized by computing peak area ratio (I/II) of the extracts analyzed in SIM mode (m/z: 441 and m/z: 427 for I and II, respectively) and comparing them with calibration curve (r=0.9997). Accuracy and precision for the assay were determined by calculating the intra-batch and inter-batch variation at three concentrations 0.1, 5.0, 10.0 ng/ml; the intra batch relative standard deviation (RSD) was less than 10% and ranged from 1.8 to 8.5%, respectively; the inter-batch RSD was less than 20% and ranged from 4.1 to 16.5%. The limit of detection was 0.05 ng/ml.  相似文献   

8.
A method for the quantitative determination of perhexiline and its main hydroxylated metabolites in human plasma, based on liquid chromatography-mass spectrometry (LC-MS), was developed. The method used protein precipitation with acetonitrile followed by dilution with water and subsequent direct injection of the extract into the LC-MS system. Hexadiline was used as internal standard and the intra-assay coefficients of variation were 相似文献   

9.
Phenethyl isothiocyanate is unstable in aqueous media and at low pH, and rapidly degrades to phenethylamine. Concentrations of phenethylamine, a phenethyl isothiocyanate marker, in dog plasma, were determined utilizing solid-phase extraction and gas chromatography–mass spectrometry with chemical ionization using acetone as the reagent gas. Deuterated d5-amphetamine was used as an internal standard. After extraction, phenethylamine and d5-amphetamine were derivatized using MBHFBA. Ions monitored for d5-amphetamine were m/z 337 and 338; and for phenethylamine were m/z 318 and 319. Precision and accuracy were studied using control solutions prepared in naive dog plasma (80 and 300 ng/ml). Intra-day variability was determined using six replicates of each control solution analyzed on a single day. The relative standard deviation for the 80 ng/ml control was 12.9% and for the 300 ng/ml it was 12.1%. Relative accuracy was 10.9% for the low control and −4.1% for the high control. Inter-day variability was determined over a 6-day period. For the 80 and 300 ng/ml control solutions, the relative standard deviations were 15.8 and 9.1%, respectively, and relative accuracy values were 10.1 and −5.2%, respectively. Standard curves were prepared in naive dog plasma and were linear over the range of phenethylamine assayed (10–500 ng/ml). The results of this study indicate that the proposed method is simple, precise, accurate and sensitive enough for analysis of large numbers of plasma samples.  相似文献   

10.
The present paper describes a method for the simultaneous determination of cocaine and cocaethylene in plasma. It was based in the extraction of the analytes by solid-phase microextraction (SPME), and gas chromatography-mass spectrometry (GC-MS) was used to identify and quantify the analytes in selected ion monitoring (SIM) mode. The method showed to be very simple, rapid and sensitive. The method was validated for the two compounds, including linearity (range 25-1000 ng/mL) and the main precision parameters. It was applied to ten plasma samples from cocaine and alcohol users, obtaining positive results in all cases.  相似文献   

11.
A sensitive and selective liquid chromatographic method coupled with mass spectrometry (LC-MS) was developed for the quantification of phloroglucinol in human plasma. Resorcinol was used as internal standard, with plasma samples extracted using ethyl acetate. A centrifuged upper layer was then evaporated and reconstituted with mobile phase. The reconstituted samples were injected into a C(18) XTerra MS column (2.1 x 100 mm) with 3.5-microm particle size. The analytical column lasted for at least 500 injections. The mobile phase was 15% acetonitrile (pH 3.0), with flow-rate at 200 microl/min. The mass spectrometer was operated in negative ion mode with selective ion monitoring (SIM). Phloroglucinol was detected without severe interferences from plasma matrix when used negative ion mode. Phloroglucinol produced a parent molecule ([M-H](-)) at m/z 125 in negative ion mode. Detection of phloroglucinol in human plasma was accurate and precise, with quantification limit at 5 ng/ml. This method has been successfully applied to a study of phloroglucinol in human specimens.  相似文献   

12.
Carboplatin is a platinum analogue that is used in a number of chemotherapeutic regimens for solid tumors, such as lung and ovarian carcinomas. Most often characterization of carboplatin's pharmacokinetic properties is based on measurement of platinum, rather than intact carboplatin. We have developed a sensitive LC-MS method for the determination of intact carboplatin in plasma ultrafiltrate and in tumor tissue. Carboplatin was extracted from rat plasma ultrafiltrate and tumor samples using solid-phase extraction cartridges and analyzed using reversed-phase chromatography with positive electrospray ionization followed by mass spectrometric detection. Using 50 microliter of plasma ultrafiltrate or 140 microliter of tumor homogenate supernatant, the extraction afforded a recovery of 58.7 and 45.8% for plasma and tumor, respectively. The mobile phase was 5% acetonitrile in 0.5% acetic acid at 0.2 ml/min that yielded a retention time of carboplatin of 2.2 min. The method has been validated at carboplatin plasma ultrafiltrate concentrations from 0.07 to 2.5 microgram/ml, and from 0.03 to 1.3 microgram/ml in tumor homogenates. The main advantages of this method compared with earlier methods are the ability to measure intact carboplatin in a sensitive and specific manner.  相似文献   

13.
A sensitive method was developed to determine fexofenadine in human plasma and urine by HPLC-electrospray mass spectrometry with MDL 026042 as internal standard. Extraction was carried out on C18 solid-phase extraction cartridges. The mobile phases used for HPLC were: (A) 12 mM ammonium acetate in water and (B) acetonitrile. Chromatographic separation was achieved on a LUNA CN column (10 cm x 2.0 mm I.D., particle size 3 microm) using a linear gradient from 40% B to 60% B in 10 min. The mass spectrometer was operated in the selected ion monitoring mode using the respective MH+ ions, m/z 502.3 for fexofenadine and m/z 530.3 for the internal standard. The limit of quantification achieved with this method was 0.5 ng/ml in plasma and 1.0 ng in 50 microl of urine. The method described was successfully applied to the determination of fexofenadine in human plasma and urine in pharmacokinetic studies.  相似文献   

14.
As a part of a pilot clinical study, a high-performance reversed-phase liquid chromatography analysis was developed to quantify temozolomide in plasma and urine of patients undergoing a chemotherapy cycle with temozolomide. All samples were immediately stabilized with 1 M HCl (1 + 10 of biological sample), frozen and stored at −20°C prior to analysis. The clean-up procedure involved a solid-phase extraction (SPE) of clinical sample (100 μl) on a 100-mg C18-endcapped cartridge. Matrix components were eliminated with 750 μl of 0.5% acetic acid (AcOH). Temozolomide was subsequently eluted with 1250 μl of methanol (MeOH). The resulting eluate was evaporated under nitrogen at RT and reconstituted in 200 μl of 0.5% AcOH and subjected to HPLC analysis on an ODS-column (MeOH-0.5% AcOH, 10:90) with UV detection at 330 nm. The calibration curves were linear over the concentration range 0.4–20 μg/ml and 2–150 μg/ml for plasma and urine, respectively. THe extraction recovery of temozolomide was 86–90% from plasma and 103–105% from urine over the range of concentrations considered. The stability of temozolomide was studied in vitro in buffered solutions at RT, and in plasma and urine at 37°C. An acidic pH (<5–6) shoul be maintained throughout the collection, the processing and the analysis of the sample to preserve the integrity of the drug. The method reported here was validated for use in a clinical study of temozolomide for the treatment of metastatic melanoma and high grade glioma.  相似文献   

15.
Rimonabant is the first therapeutically relevant cannabinoid antagonist, licensed in Europe for treatment of obesity when a risk factor is associated. The objective of this study was to develop and validate a method for measurement of rimonabant in human plasma and hair using liquid chromatography coupled to mass spectrometry (LC-MS/MS). Rimonabant and AM-251 (internal standard) were extracted from 50muL of plasma or 10mg of hair using diethylether. Chromatography was performed on a 150mmx2.1mm C18 column using a mobile phase constituted of formate buffer/acetonitrile. Rimonabant was ionized by electrospray in positive mode, followed by detection with mass spectrometry. Data were collected either in full-scan MS or in full-scan MS/MS mode, selecting the ion m/z 463.1 for rimonabant and m/z 555.1 for IS. The most intense product ion of rimonabant (m/z 380.9) and IS (m/z 472.8) were used for quantification. Calibration curves covered a range from 2.5 (lower limit of quantification) to 1000.0ng/mL (upper limit of quantification) in plasma and from 2.5 to 1000.0pg/mg in hair. Validation results demonstrated that rimonabant could be accurately and precisely quantified in both matrixes: accuracy and precision were within 85-115% and within 15% of standard deviation, respectively. Stability studies in plasma showed that rimonabant was stable during the assay procedure, but a 30% decrease was observed for one concentration after 3 weeks at -20 degrees C. This simple and robust LC-MS/MS method can be used for measuring rimonabant concentrations in human plasma and hair either in clinical or in forensic toxicology.  相似文献   

16.
A sensitive and reproducible high performance liquid chromatography method with UV detection was described for the determination of aesculin in rat plasma. After deproteinization by methanol using metronidazole as internal standard (I.S.), solutes were evaporated to dryness at 40 degrees C under a gentle stream of nitrogen. The residue was reconstituted in 100 microl of mobile phase and a volume of 20 microl was injected into the HPLC for analysis. Solutes were separated on a Diamonsil C18 column (250 mm x 4.6 mm i.d., 5 microm particle size, Dikma) protected by a ODS guard column (10 mm x 4.0 mm i.d., 5 microm particle size), using acetonitrile-0.1% triethylamine solution (adjusted to pH 3.0 using phosphoric acid) (10:90, v/v) as mobile phase (flow-rate 1.0 ml/min), and wavelength of the UV detector was set at 338 nm. No interference from any endogenous substances was observed during the elution of aesculin and internal standard (I.S., metronidazole). The retention times for I.S and aesculin were 10.4 and 12.4 min, respectively. The limit of quantification was evaluated to be 57.4 ng/ml and the limit of detection was 24.0 ng/ml. The method was used in the study of pharmacokinetics of aesculin after intraperitoneal injection (i.p.) administration in rats.  相似文献   

17.
To support pharmacokinetic studies of ginsenosides, a novel method to quantitatively analyze ginsenoside Rg3 (Rg3), its prosapogenin ginsenoside Rh2 (Rh2) and aglycone 20(S)-protopanaxadiol (ppd) in rat plasma was developed and validated. The method was based on gradient separation of ginsenosides present in rat plasma using high performance liquid chromatography (HPLC), followed by detection with electrospray ionization(ESI) mass spectrometry (MS) in negative ion mode with the mobile phase additive, ammonium chloride (500 microM). Differentiation of ginsenosides was achieved through simultaneous detection of the [M(+)Cl(-)] adduct of ginsenoside Rg3 and [M(+)Cl(-)] adducts of its deglycosylated metabolites Rh2 and ppd, and other ions after solid phase extraction (SPE). The /specific ions monitored were m/z 819.50 for Rg3, m/z 657.35 for Rh2, m/z 495.40 for ppd and m/z 799.55 for the internal standard (digitoxin). The mean recoveries for Rg3, Rh2 and ppd were 77.85, 82.65 and 98.33%, respectively using 0.1 ml plasma for extraction. The lower limits of quantification were 10.0, 2.0 and 8.0 ng/ml (equivalent to 0.1, 0.02 and 0.08 ng in each 10 microl injection onto the HPLC column) for Rg3, Rh2 and ppd, respectively. The method has been demonstrated to be highly sensitive and accurate for the determination of Rg3 and its metabolites in rat plasma.  相似文献   

18.
Paclitaxel is an anticancer agent extracted from the bark of the yew tree and is widely used in chemotherapy for solid tumors, including non-small cell lung cancer and ovarian carcinoma. Most assays to measure paclitaxel in plasma require a large amount of sample (0.4-1 ml) to achieve the necessary sensitivity, and are not suitable when only small sample sizes are available. To circumvent this latter limitation, we developed a sensitive liquid chromatography-mass spectrometry (LC-MS) method for the determination of paclitaxel in plasma based on the use of small sample volumes (50 microl plasma). A solid phase extraction procedure was employed that enabled the eluent to be directly injected onto a reversed phase chromatographic HPLC system using positive electrospray ionization followed by mass spectrometric detection. The extraction recoveries of paclitaxel were 98 and 83% from plasma and brain tissues, respectively. The mobile phase consisted of 50% acetonitrile in 0.1% formic acid that was pumped at 0.2 ml/min to yield a retention time for paclitaxel of 6.2 and 5.4 min for cephalomannine, the internal standard. The method has been validated at paclitaxel plasma concentrations from 0.036 to 9.9 microg/ml, and from 0.054 to 1.96 microg/ml in brain homogenates. A sensitive and specific assay for paclitaxel has been developed that has the advantages of using small sample sizes, and a single extraction step without solvent evaporation.  相似文献   

19.
A sensitive and accurate liquid chromatographic-electrospray mass spectrometric (LC-ES-MS) method for the determination of haloperidol (H) and reduced haloperidol (RH) in human plasma is presented, using chlorohaloperidol as the internal standard. A 2-ml volume of plasma subjected to basic (NaOH) extraction, acid (HCl) back-extraction, acid wash and basic (NaOH) re-extraction. The extraction solvent was hexane-isoamyl alcohol (99:1, v/v) for the whole procedure. A Nucleosil C18 column (150×1 mm) was used for high-performacne liquid chromatography, together with 2 mM HCOONH4-acetonitrile (55:45, v/v; pH 3.0) as the mobile phase. For each drug, four characteristic ions were monitored. Linearity was assessed in the ranges 0.1–50 and 0.25–50 ng/ml for H and RH, respectively. Recoveries were 58 and 70% and detection limits were 0.075 and 0.100 ng/ml for H and RH, respectively. Correlation coefficients were better than 0.999 for both compounds. R.S.D.s for repeatability and reproducibility at 0.25 ng/ml were 11.1 and 8.5% for H and 9.4 and 11.2% for RH, respectively. One of the main advantages of (LC-ES-MS) over other detection systems is the increase in selectivity obtained by monitoring three ions of confirmation for each of the drugs.  相似文献   

20.
A sensitive high-performance liquid chromatographic method for determination of intact glibenclamide in human plasma has been developed. Sample clean-up prior to chromatographic analysis was accomplished by extraction of the drug using a solid-phase RP-8 or RP-18 cartridge instead of the conventional liquid-liquid extraction methods described. For the separation of the drug from the endogenous components a reversed-phase column (LiChrosorb RP-8) of 5 μm particle size and 250×4 mm I.D., together with a mobile phase consisting of acetonitrile-12 μM perchloric acid (47:53) was selected. The method employs progesterone as an internal standard, and a reversed-phase column combined with UV detection of the drug at 230 nm. The detector response was linear up to the concentration of 400 ng/ml and the average recovery was 100.36%. The sensitivity of the method was 5 ng/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号