首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the role of ras gene activity in cellular transformation by polyomavirus, murine C3H10T1/2 cells were rendered ras deficient by transfection with an antisense ras gene construct. Ras deficiency resulted in a partial suppression of the polyomavirus-induced transformed phenotype. The production of viral middle T antigen and its association with pp60c-src, increased membrane-associated protein kinase C activity, and morphological transformation were unaffected by the downregulation of c-ras gene expression. On the other hand, stimulated proliferation, focus formation on confluent monolayers of normal cells, and colony formation in soft agar were all greatly reduced in cells containing reduced p21ras levels. It is concluded that ras gene activity is needed for full cell transformation by polyomavirus.  相似文献   

2.
It has been shown previously in T cells that stimulation of protein kinase C or the T cell antigen receptor leads to a rapid and persistent activation of p21ras as measured by a dramatic increase in the amount of bound GTP. These stimuli are also known to induce the expression of the T lymphocyte growth factor, interleukin-2 (IL-2), an essential growth factor for the immune system. Receptor induced activation of p21ras has been demonstrated in several cell types but involvement of protein kinase C as an upstream activator of p21ras appears to be unique to T cells. In this study we show that p21ras acts as a component of the protein kinase C and T cell antigen receptor downstream signalling pathway controlling IL-2 gene expression. In the murine T cell line EL4, constitutively active p21ras greatly potentiates the phorbol ester and T cell receptor agonist induced production of IL-2 as measured both by biological assay for the cytokine and by the use of a reporter construct. Active p21ras also partially replaces the requirement for protein kinase C activation in synergizing with a calcium ionophore to induce production of IL-2. Furthermore, using a dominant negative mutant of ras, Ha-rasN17, we show that endogenous ras function is essential for induction of IL-2 expression in response to protein kinase C or T cell receptor stimulation. Activation of ras proteins is thus a necessary but not sufficient event in the induction of IL-2 synthesis. Ras proteins are therefore pivotal signalling molecules in T cell activation.  相似文献   

3.
The GTPase-activating protein RasGAP functions as both a negative regulator and an effector of Ras proteins. In tumor cells, RasGAP is no longer able to deactivate oncogenic Ras proteins, and its effector function becomes predominant. As RasGAP itself has no obvious enzymatic function that may explain this effector function, we looked for downstream RasGAP effectors that could fulfill this role. We looked for the existence of RasGAP Src homology 3 (SH3) domain partners as this domain is involved in the regulation of cell proliferation and has an anti-apoptotic effect. We report here the identification of a new RasGAP SH3 domain-binding protein, named Aurora. This Drosophila melanogaster Ser/Thr kinase has three human orthologs called Aurora/Ipl1-related kinase or HsAIRK-1, -2, and -3. Coimmunoprecipitation experiments in COS cells confirmed that HsAIRK-1 and HsAIRK-2 both interact with RasGAP. RasGAP pull-down experiments showed that it interacts with HsAIRK-1 in G(2)/M HeLa cells. We also demonstrated that RasGAP binds to the kinase domain of Aurora and that this interaction inhibits the kinase activity of HsAIRK-1 and HsAIRK-2. Finally we showed that RasGAP forms a ternary complex with HsAIRK and survivin. This complex may be involved in the regulation of the balance between cell division and apoptosis.  相似文献   

4.
甲胎蛋白对HeLa细胞增殖的促进作用   总被引:10,自引:0,他引:10  
为探讨甲胎蛋白 (alpha fetoprotein ,AFP)对肿瘤细胞增殖的促进作用。用从人脐带血中提取的AFP作用于体外培养的HeLa细胞 ,通过MTT计数、[3 H] TdR参入法、流式细胞仪等研究细胞增殖 ,并用放射免疫法测定细胞内cAMP、共聚焦显微镜扫描细胞内Ca2 浓度等观察细胞内第二信使物质的改变及测定3 2 P转移反映细胞内蛋白激酶A(PKA)活性 ;用Western印迹分析法分析突变型 p5 3、p2 1ras蛋白表达。结果显示AFP(浓度大于 10mg/L)对HeLa细胞增殖有明显的促进作用。在AFP(2 0mg/L)作用下 ,HeLa细胞cAMP浓度升高 30 0 % ;Ca2 浓度最大升高 15 4 .9%、PKA活性最大升高 10 0 %。突变型 p5 3和 p2 1ras分别增高 81.1% (2 4h)和 96 .2 % (2 4h)。抗甲胎蛋白单克隆抗体能有效地阻断AFP促HeLa细胞增殖作用。以上表明 ,(1)AFP具促HeLa细胞增殖的生理功能 ;(2 )AFP促进HeLa细胞增殖的作用是通过影响细胞内cAMP和Ca2 浓度以及PKA活性进而促进一些原癌基因的表达来实现的。  相似文献   

5.
Survivin inhibits anti-growth effect of p53 activated by aurora B   总被引:5,自引:0,他引:5  
Genomic instability and apoptosis evasion are hallmarks of cancer, but the molecular mechanisms governing these processes remain elusive. Here, we found that survivin, a member of the apoptosis-inhibiting gene family, and aurora B kinase, a chromosomal passenger protein, were co-overexpressed in the various glioblastoma cell lines and tumors. Notably, exogenous introduction of the aurora B in human BJ cells was shown to decrease cell growth and increase the senescence-associated beta-galactosidase activity by activation of p53 tumor suppressor. However, aurora B overexpression failed to inhibit cell proliferation in BJ and U87MG cells transduced with dominant-negative p53 as well as in p53(-/-) mouse astrocytes. Aurora B was shown to increase centrosome amplification in the p53(-/-) astrocytes. Survivin was shown to induce anchorage-independent growth and inhibit anti-proliferation and drug-sensitive apoptosis caused by aurora B. Overexpression of both survivin and aurora B further accelerated the proliferation of BJ cells. Taken together, the present study indicates that survivin should accelerate tumorigenesis by inhibiting the anti-proliferative effect of p53 tumor suppressor that is activated by aurora B in normal and glioblastoma cells containing intact p53.  相似文献   

6.
The p21ras GTPase-activating protein (GAP) is thought to function as both a negative regulator and a downstream target of p21ras. Here, we have investigated the role of GAP by using a transient expression assay with a fos luciferase reporter plasmid. We used GAP deletion mutants that lack the domain involved in interaction with p21ras and encode essentially only the SH2-SH3 domains. When these GAP deletion mutants were expressed, we observed a marked induction of fos promoter activity similar to induction by activated p21ras. Expression of a full-length GAP construct had no effect on the activity of the fos promoter. Activation of the fos promoter by these GAP SH2-SH3 regions was inhibited by cotransfection of a dominant inhibitory mutant of p21ras, Ras(Asn-17). Thus, the induction of gene expression by GAP SH2-SH3 domains is dependent on p21ras activity. Moreover, induction of fos promoter activity by GAP SH2-SH3 domains is increased severalfold after cotransfection of an activated mutant of p21ras, Ras(Leu-61), or insulin stimulation of A14 cells, both leading to an increase in the levels of GTP-bound p21ras. The combined effect of Ras(Leu-61) and the GAP deletion mutants was not inhibited by Ras(Asn-17), indicating that GAP SH2-SH3 domains do not function to activate endogenous p21ras but cooperate with another signal coming from active p21ras. These data suggest that GAP SH2-SH3 domains serve to induce gene expression by p21ras but that additional signals coming from p21ras are required for them to function.  相似文献   

7.
Proteins of the ras family of oncogenes have been implicated in signal transduction pathways initiated by protein kinase C (PKC) and by tyrosine kinase oncogenes and receptors, but the role that ras plays in these diverse signalling systems is poorly defined. The activity of ras proteins has been shown to be controlled in part by a cellular protein, GAP (GTPase-activating protein), that negatively regulates p21c-ras by enhancing its intrinsic GTPase activity. Thus, overexpression of GAP provides a tool for determining the step(s) in signal transduction dependent on p21c-ras activity. In this paper, we report that overexpression of GAP blocks the phorbol ester (tetradecanoyl phorbol acetate [TPA])-induced activation of p42 mitogen-activated protein kinase (p42mapk), c-fos expression, and DNA synthesis. GAP overexpression did not block responses to serum or fluoroaluminate. Moreover, not all biochemical events elicited by TPA were affected by GAP overexpression, as increased glucose uptake and phosphorylation of MARCKS, a major PKC substrate, occurred normally. Reduction of GAP expression to near normal levels restored the ability of the cells to activate p42mapk in response to TPA. These findings suggest that ras and GAP together play a key role in a PKC-dependent signal transduction pathway which leads to p42mapk activation and cell proliferation.  相似文献   

8.
Insulin-induced differentiation of 3T3 L1 cells to adipocytes can be mimicked by the expression of transfected ras oncogenes but not of the tyrosine-kinase oncogenes src and trk. Expression of two different transfected, dominant inhibitory ras mutants resulted in significant inhibition of insulin-induced differentiation, suggesting that endogenous Ras proteins are mediators of insulin signaling in these cells. Exposure of untransfected 3T3 L1 cells to insulin resulted in significant formation of the active Ras.GTP complex, at levels comparable with those resulting from exposure to platelet-derived growth factor. However, whereas exposure of the same cells to platelet-derived growth factor resulted in significant tyrosine phosphorylation of the p21ras GTPase-activating protein (GAP), insulin-treated cells did not show any detectable levels of de novo GAP tyrosine phosphorylation. Interestingly, insulin caused tyrosine phosphorylation of the p62 polypeptide coprecipitated with GAP by anti-GAP antibodies. Insulin-induced activation of cytosolic MAP kinase activity in untransfected 3T3 L1 cells was also mimicked by Ras expression (in the absence of insulin) in the same cells transfected with an inducible ras construct. These results confirm that Ras proteins participate in insulin signaling pathways in these mammalian cells and indicate that activation of cytosolic MAP kinases is an early event occurring downstream from Ras activation. However, tyrosine phosphorylation of GAP appears not to be a significant upstream regulatory event in the activation of Ras by insulin.  相似文献   

9.
HR12 is a novel farnesyltransferase inhibitor (FTI). We have shown previously that HR12 induces phenotypic reversion of H-rasV12-transformed Rat1 (Rat1/ras) fibroblasts. This reversion was characterized by formation of cell-cell contacts, focal adhesions and stress fibers. Here we show that HR12 inhibits anchorage independent and dependent growth of Rat1/ras cells. HR12 also suppresses motility and proliferation of Rat1/ras cells, in a wound healing assay. Rat1 fibroblasts transformed with myristoylated H-rasV12 (Rat1/myr-ras) were resistant to HR12. Thus, the effects of HR12 are due to the inhibition of farnesylation of Ras. Cell growth of Rat1/ras cells was arrested at the G1 phase of the cell cycle. Analysis of cell cycle components showed that HR12 treatment of Rat1/ras cells led to elevated cellular levels of the cyclin-dependent kinase inhibitor p27Kip1 and inhibition of the kinase activity of the cyclin E/Cdk2 complex. This is the first time an FTI has been shown to lead to a rise in p27Kip1 levels in ras-transformed cells. The data suggest a new mechanism for FTI action, whereby in ras-transformed cells, the FTI causes an increase in p27Kip1 levels, which in turn inhibit cyclin E/Cdk2 activity, leading to G1 arrest.  相似文献   

10.
Oncogenic ras and p53 cooperate to induce cellular senescence   总被引:14,自引:0,他引:14       下载免费PDF全文
Oncogenic activation of the mitogen-activated protein (MAP) kinase cascade in murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the ARF/p53 tumor suppressor pathway. To investigate whether p53 is sufficient to induce senescence, we introduced a conditional murine p53 allele (p53(val135)) into p53-null mouse embryonic fibroblasts and examined cell proliferation and senescence in cells expressing p53, oncogenic Ras, or both gene products. Conditional p53 activation efficiently induced a reversible cell cycle arrest but was unable to induce features of senescence. In contrast, coexpression of oncogenic ras or activated mek1 with p53 enhanced both p53 levels and activity relative to that observed for p53 alone and produced an irreversible cell cycle arrest that displayed features of cellular senescence. p19(ARF) was required for this effect, since p53(-/-) ARF(-/-) double-null cells were unable to undergo senescence following coexpression of oncogenic Ras and p53. Although the levels of exogenous p53 achieved in ARF-null cells were relatively low, the stabilizing effects of p19(ARF) on p53 could not explain the cooperation between oncogenic Ras and p53 in promoting senescence. Hence, enforced p53 expression without oncogenic ras in p53(-/-) mdm2(-/-) double-null cells produced extremely high p53 levels but did not induce senescence. Taken together, our results indicate that oncogenic activation of the MAP kinase pathway in murine fibroblasts converts p53 into a senescence inducer through both quantitative and qualitative mechanisms.  相似文献   

11.
M Foschi  S Chari  M J Dunn    A Sorokin 《The EMBO journal》1997,16(21):6439-6451
Endothelin-1 (ET-1) induces cell proliferation and differentiation through multiple G-protein-linked signaling systems, including p21ras activation. Whereas p21ras activation and desensitization by receptor tyrosine kinases have been extensively investigated, the kinetics of p21ras activation induced by engagement of G-protein-coupled receptors remains to be fully elucidated. In the present study we show that ET-1 induces a biphasic activation of p21ras in rat glomerular mesangial cells. The first peak of activation of p21ras, at 2-5 min, is mediated by immediate association of phosphorylated Shc with the guanosine exchange factor Sos1 via the adaptor protein Grb2. This initial activation of p21ras results in activation of the extracellular signal-regulated kinase (ERK) cascade. We demonstrate that ET-1 signaling elicits a negative feedback mechanism, modulating p21ras activity through ERK-dependent Sos1 phosphorylation, findings which were confirmed using an adenovirus MEK construct. Subsequent to p21ras and ERK deactivation, Sos1 reverts to the non-phosphorylated condition, enabling it to bind again to the Grb2/Shc complex, which is stabilized by persistent Shc phosphorylation. However, the resulting secondary activation of p21ras at 30 min does not lead to ERK activation, correlating with intensive, ET-1-induced expression of MAP kinase phosphatase-1, but does result in increased p21ras-associated phosphatidylinositol 3-kinase activity. Our data provide evidence that ET-1-induced biphasic p21ras activation causes sequential stimulation of divergent downstream signaling pathways.  相似文献   

12.
By crossing TG.AC v-Ha-ras and K6/ODC transgenic mice, we found previously that an activated ras and follicular ornithine decarboxylase (ODC) overexpression cooperate to generate spontaneous tumors in the skin. Cellular proliferation was dramatically increased in the K6/ODC transgenic skin, as evidenced by elevated proliferating cell nuclear antigen and Ki67 expression compared with nontransgenic littermates. Keratinocytes isolated from transgenic skin also displayed increased clonal growth. Paradoxically, expression of the growth inhibition-associated proteins p53, p21Waf1, p27Klp1, and Bax was increased with ODC overexpression in the skin. ODC overexpression did not affect cyclin D/cyclin-dependent kinase 4 (Cdk4)-dependent phosphorylation of retinoblastoma protein but stimulated cyclin E/Cdk2 and cyclin A/Cdk2-associated kinase activity, with minimal effect on the levels of these proteins. Thus, ODC/polyamine-induced activation of cyclin E/Cdk2 and cyclin A/Cdk2-associated kinase activity may cooperate with the ras induction of cyclin D/Cdk4/6-associated retinoblastoma protein phosphorylation to not only stimulate proliferation but ultimately contribute to tumor development.  相似文献   

13.
p21ras plays an important role in the control of cell proliferation. The molecular mechanisms implicated are unknown. We report that the injection of oncogenic Lys12 Ras into Xenopus laevis oocytes promoted the activation of mitogen-activated protein kinase (MAP kinase) after a lag of about 90 min. MAP kinase activity was 10-fold higher 4 h after injection of oncogenic Lys12 Ras than after injection of nononcogenic Gly12 Ras. The stimulated MAP kinase activity remained at a plateau for at least 18 h. Maximal stimulation was obtained with 5 ng of Lys12 Ras, which is similar to the amount that elicits germinal vesicle breakdown. DEAE-Sephacel chromatography of extracts from Lys12 Ras-injected oocytes showed one peak of MAP kinase. MAP kinase activation by Lys12 Ras was associated with tyrosine phosphorylation of MAP kinase (p42). As previously shown, the S6-kinase II (likely pp90rsk), which is activated in vitro by MAP kinase, was also activated by oncogenic Lys12 Ras. Lys12 Ras with an additional mutation (Glu38) in the effector region that binds GTPase-activating protein (GAP) did not promote MAP kinase or S6 kinase activations. Thus, GAP may be involved downstream to Ras in these activation processes. Our results indicate that the Ras-GAP complex promotes MAP kinase activation in oocytes. This supports the idea that Ras-GAP controls MAP kinase, a kinase implicated in the action of various stimuli.  相似文献   

14.
M S Qui  S H Green 《Neuron》1992,9(4):705-717
Expression of oncogenic ras in PC12 cells causes neuronal differentiation and sustained protein tyrosine phosphorylation and activity of extracellular signal-regulated kinases (ERKs), p42erk2 and p44erk1. Oncogenic N-ras-induced neuronal differentiation is inhibited by compounds that block ERK protein tyrosine phosphorylation or ERK activity, indicating that ERKs are not only activated by p21ras but serve as the primary downstream effectors of p21ras. Treatment of PC12 cells with nerve growth factor or fibroblast growth factor results in neuronal differentiation and in a sustained elevation of p21ras activity, of ERK activity, and of ERK tyrosine phosphorylation. Epidermal growth factor, which does not cause neuronal differentiation, stimulates only transient (< 1 hr) activation of p21ras and ERKs. These data indicate that transient activation of p21ras and, consequently, ERKs is not sufficient for induction of neuronal differentiation. Prolonged ERK activity is required: a consequence of sustained activation of p21ras by the growth factor receptor protein tyrosine kinase.  相似文献   

15.
Pregnancy upregulated non-ubiquitous calmodulin kinase (Pnck), a novel calmodulin kinase, is significantly overexpressed in breast and renal cancers. We present evidence that at high cell density, overexpression of Pnck in HEK 293 cells inhibits serum-induced extracellular signal-regulated kinase (ERK1/ERK2) activation. ERK1/2 inhibition is calcium-dependent and Pnck kinase activity is required for ERK1/2 inhibition, since expression of a kinase-dead (K44A) and a catalytic loop phosphorylation mutant (T171A) Pnck protein is unable to inhibit ERK 1/2 activity. Ras is constitutively active at high cell density, and Pnck does not alter Ras activation, suggesting that Pnck inhibition of ERK1/2 activity is independent of Ras activity. Pnck inhibition of serum-induced ERK1/2 activity is lost in cells in which phosphatase and tensin homolog (PTEN) is suppressed, suggesting that Pnck inhibition of ERK1/2 activity is mediated by PTEN. Overexpression of protein phosphatase-active but lipid phosphatase-dead PTEN protein inhibits ERK1/2 activity in control cells and enhances Pnck-mediated ERK1/2 inhibition, suggesting that Pnck increases availability of protein phosphatase active PTEN for ERK1/2 inhibition. Pnck is a stress-responsive kinase; however, serum-induced p38 MAP kinase activity is also downregulated by Pnck in a Pnck kinase- and PTEN-dependent manner, similar to ERK1/2 inhibition. Pnck overexpression increases proliferation, which is inhibited by PTEN knockdown, implying that PTEN acts as a paradoxical promoter of proliferation in ERK1/2 and p38 MAP kinase phosphorylation-inhibited, Pnck-overexpressing cells. Overall, these data reveal a novel function of Pnck in the regulation of ERK1/2 and p38 MAP kinase activity and cell proliferation, which is mediated by paradoxical PTEN functions. The possible biological implications of these data are discussed.  相似文献   

16.
The Krev-1 gene has been shown to suppress ras-mediated transformation in vitro. Both ras and Krev-1 proteins have identical effector domains (ras residues 32 to 40), which are required for biological activity and for the interaction of Ras p21 with Ras GTPase-activating protein (GAP). In this study, five amino acid residues flanking the ras effector domain, which are not conserved with the Krev-1 protein, were shown to be required for normal protein-protein interactions and biological activity. The substitution of Krev-1 p21 residues 26, 27, 30, 31, and 45 with the corresponding amino acid residues from Ras p21 resulted in a Krev-1 protein which had ras function in both mammalian and yeast biological assays. Replacement of these residues in Ras p21 with the corresponding Krev-1 p21 amino acids resulted in ras proteins which were impaired biologically or reduced in their affinity for in vitro GAP binding. Evaluation of these mutant ras proteins have implications for Ras p21-GAP interactions in vivo.  相似文献   

17.
18.
The pleiotropic effects of the Kit receptor system are mediated by Kit-Ligand (KL) induced receptor autophosphorylation and its association with and activation of distinct second messengers, including phosphatidylinositol 3'-kinase (PI3-kinase), p21ras and mitogen-activated protein kinase (MAPK). To define the role of PI3-kinase, p21ras and MAPK in Kit-mediated cell proliferation, survival and adhesion in bone marrow-derived mast cells (BMMC), mutant Kit receptors were expressed in Wsh/Wsh BMMC lacking endogenous c-kit expression. The introduction of both murine Kit(S) and KitL (isoform containing a four amino acid insert) into Wsh/Wsh BMMC restored KL-induced proliferation, survival and adhesion to fibronectin, as well as activation of PI3-kinase, p21ras and MAPK, and induced expression of c-fos, junB, c-myc and c-myb mRNA. Substitution of tyrosine 719 in the kinase insert with phenylalanine (Y719F) abolished PI3-kinase activation, diminished c-fos and junB induction, and impaired KL-induced adhesion of BMMC to fibronectin. In addition, the Y719F mutation had partial effects on p21ras activation, cell proliferation and survival, while MAP kinase activation was not affected. On the other hand, Y821F substitution impaired proliferation and survival without affecting PI3-kinase, p21ras and MAPK activation, and induction of c-myc, c-myb, c-fos and c-jun mRNA, while KL-induced cell adhesion to fibronectin remained intact. In agreement with a role for PI3-kinase in Kit-mediated cell adhesion, wortmannin blocked Kit-mediated cell adhesion at concentrations known to specifically inhibit PI3-kinase. We conclude, that association of Kit with p85PI3-K, and thus with PI3-kinase activity, is necessary for a full mitogenic as well as adhesive response in mast cells. In contrast, tyrosine 821 is essential for Kit-mediated mitogenesis and survival, but not cell adhesion.  相似文献   

19.
Mitogen-activated protein kinases (MAPKs) are activated upon a variety of extracellular stimuli in different cells. In macrophages, colony-stimulating factor 1 (CSF-1) stimulates proliferation, while bacterial lipopolysaccharide (LPS) inhibits cell growth and causes differentiation and activation. Both CSF-1 and LPS rapidly activate the MAPK network and induce the phosphorylation of two distinct ternary complex factors (TCFs), TCF/Elk and TCF/SAP. CSF-1, but not LPS, stimulated the formation of p21ras. GTP complexes. Expression of a dominant negative ras mutant reduced, but did not abolish, CSF-1-mediated stimulation of MEK and MAPK. In contrast, activation of the MEK kinase Raf-1 was Ras independent. Treatment with the phosphatidylcholine-specific phospholipase C inhibitor D609 suppressed LPS-mediated, but not CSF-1-mediated, activation of Raf-1, MEK, and MAPK. Similarly, down-regulation or inhibition of protein kinase C blocked MEK and MAPK induction by LPS but not that by CSF-1. Phorbol 12-myristate 13-acetate pretreatment led to the sustained activation of the Raf-1 kinase but not that of MEK and MAPK. Thus, activated Raf-1 alone does not support MEK/MAPK activation in macrophages. Phosphorylation of TCF/Elk but not that of TCF/SAP was blocked by all treatments that interfered with MAPK activation, implying that TCF/SAP was targeted by a MAPK-independent pathway. Therefore, CSF-1 and LPS target the MAPK network by two alternative pathways, both of which induce Raf-1 activation. The mitogenic pathway depends on Ras activity, while the differentiation signal relies on protein kinase C and phosphatidylcholine-specific phospholipase C activation.  相似文献   

20.
M S Qiu  S H Green 《Neuron》1991,7(6):937-946
Activation of p21ras, demonstrated directly as an increase in p21ras-associated GTP, was induced rapidly but transiently by both nerve growth factor (NGF) and epidermal growth factor (EGF) in PC12 cells. The factors activate p21ras to equal extents and with virtually identical time courses. Growth factor-induced p21ras activation and tyrosine phosphorylation have similar time courses and sensitivities to genistein inhibition, indicating that p21ras activation is a result of tyrosine kinase activity. Furthermore, PC12 mutants lacking the Trk NGF receptor tyrosine kinase also lack NGF-inducible p21ras activation. The protein kinase inhibitor K252a and the methyltransferase inhibitor MTA abolish NGF-induced, but not EGF-induced, p21ras activation--effects correlated with inhibition only of NGF-induced tyrosine phosphorylation. In spite of differences in sensitivity to genistein, MTA, and K252a, EGF- and NGF-stimulated p21ras activation are not additive, implying that they do share at least one step in common.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号