首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A DNA piezoelectric sensor has been developed for the detection of genetically modified organisms (GMOs). Single stranded DNA (ssDNA) probes were immobilised on the sensor surface of a quartz crystal microbalance (QCM) device and the hybridisation between the immobilised probe and the target complementary sequence in solution was monitored. The probe sequences were internal to the sequence of the 35S promoter (P) and Nos terminator (T), which are inserted sequences in the genome of GMOs regulating the transgene expression. Two different probe immobilisation procedures were applied: (a) a thiol-dextran procedure and (b) a thiol-derivatised probe and blocking thiol procedure. The system has been optimised using synthetic oligonucleotides, which were then applied to samples of plasmidic and genomic DNA isolated from the pBI121 plasmid, certified reference materials (CRM), and real samples amplified by the polymerase chain reaction (PCR). The analytical parameters of the sensor have been investigated (sensitivity, reproducibility, lifetime etc.). The results obtained showed that both immobilisation procedures enabled sensitive and specific detection of GMOs, providing a useful tool for screening analysis in food samples.  相似文献   

2.
This paper deals with the use of an electrochemical genosensor array for the rapid and simultaneous detection of different food-contaminating pathogenic bacteria. The method includes PCR amplification followed by analysis of the amplicons by hybridisation with toxin-specific oligonucleotide probes. A screen-printed array of four gold electrodes, modified using thiol-tethered oligonucleotide probes, was used. Unmodified PCR products were captured at the sensor interface via sandwich hybridisation with surface-tethered probes and biotinylated signaling probes. The resulting biotinylated hybrids were coupled with a streptavidin-alkaline phosphatase conjugate and then exposed to an alpha-naphthyl phosphate solution. Differential pulse voltammetry was finally used to detect the alpha-naphthol oxidation signal. Mixtures of DNA samples from different bacteria were detected at the nanomolar level without any cross-interference. The selectivity of the assay was also confirmed by the analysis of PCR products unrelated to the immobilised probes.  相似文献   

3.
An immobilisation procedure based on the direct coupling of thiol-derivatised oligonucleotide probes to bare gold sensor surfaces has been used for DNA sensing applications. The instrumentation used relies on surface plasmon resonance (SPR) transduction; in particular the commercially available instruments BIACORE X and SPREETA, have been employed in this study. The performances of the SPR-based DNA sensors resulting from direct coupling of thiol-derivatised DNA probes onto gold chips, have been studied in terms of the main analytical parameters, i.e. selectivity, sensitivity, reproducibility, analysis time, etc. A comparison between the thiol-derivatised immobilisation approach and a reference immobilisation method, based on the coupling of biotinylated oligonucleotide probes onto a streptavidin coated dextran sensor surface, using synthetic complementary oligonucleotides has been discussed. Finally, a denaturation method to obtain ssDNA ready for hybridisation analysis has been applied to polymerase chain reaction (PCR) amplified samples, for the detection of genetically modified organisms (GMOs).  相似文献   

4.
The high sensitivity and specificity of DNA hybridisation techniques makes them powerful tools for environmental or clinical analysis. This work describes the development of a DNA piezoelectric biosensor for the detection of the hybridisation reaction. Attention was focused on the choice of the coating chemistry that could be used for the immobilisation of oligonucleotides onto the gold surface of the quartz crystal. Four immobilisation procedures were tested and compared considering the amount of immobilised probe, the extent of the hybridisation reaction, the possibility of regeneration and the absence of non-specific adsorption. All the experiments were performed with oligonucleotides of 25 bases (probe, target and non-complementary oligonucleotide). The four coating methods were all based on the use of self-assembled monolayers (SAM). Three of them employed the interaction between streptavidin and biotin for the immobilisation of a biotinylated probe. Results indicated that immobilisation of a biotinylated probe on streptavidin linked to a layer of carboxylated dextran provides higher sensitivity for the detection of the hybridisation reaction, absence of non-specific adsorption and a higher stability with respect to the regeneration step.  相似文献   

5.
The adsorption processes of oligonucleotides immobilised onto suitable photolithographic patterned gold substrates have been investigated in aqueous buffer solution by using a home made surface plasmon resonance (SPR) imaging equipment. A rapid self-assembled method for the construction of DNA chips to be used in SPR imaging experiments have been followed. The immobilised DNA molecules (probes) adopted in our SPR experiments anchored to a gold surface via thiol group were 5'thiol-modified containing a (CH(2))(15) tail. The hybridisation processes taking place with its complementary sequence have been observed and characterized by monitoring phenomena by a SPR imaging system. The two analysed oligonucleotides (probes and target) are of interest in plant gene biotechnological application and differing for the presence at the 5'-end of a poly T16 spacer. Dynamic investigation of smallest changes in SPR imaging pictures performed in liquid phase in the presence of DNA complementary probes have been performed. Quantitative information in terms of threshold of sensitivity has been extracted by using a specific images treatment.  相似文献   

6.
A DNA-based surface plasmon resonance (SPR) biosensor has been developed for the detection of TP53 mutation using the inexpensive and commercially available instrument, SPREETA SPR-EVM-BT, from Texas Instruments. A direct immobilisation procedure, based on the coupling of thiol-derivatised oligonucleotide probes (Probe-C6-SH) to bare gold sensor surfaces, was optimized using synthetic oligonucleotides. Hybridisation reactions between the immobilised probe and a short sequence (26 mer) complementary, non-complementary and one-point mutation DNA were then investigated. The main analytical parameters of the sensor system were studied in detail including selectivity, sensitivity, reproducibility and analysis time. Finally, the sensor system was successfully applied to polymerase chain reaction (PCR)-amplified real samples, DNA extracted from both normal, wild-type, (Jurkat) and mutated (Molt 4), carrying the mutation at codon 248 of the TP53 cell lines. The results obtained demonstrate that the DNA-based SPR biosensor was able to distinguish sequences present in the various samples that differ only by one base; and hence, it appears to be a strong candidate technique for the detection of gene mutation.  相似文献   

7.
Two different surface chemistries have been studied for the development of surface plasmon resonance imaging (SPRI) based DNA microarray affinity sensors: (1) 11-mercaptoundecanoic acid-poly(ethylenimine) (MUA-PEI) and (2) dextran procedures. The MUA-PEI method consists of assembling a multilayer on the basis of electrostatic interactions formed with: 11-mercaptoundecanoic acid (MUA), poly(ethylenimine) (PEI) and extravidin layers. The dextran procedure involves assembling a multilayer formed with 11-mercaptoundecanol, dextran and streptavidin layers, which are linked by covalent bonds. The oligonucleotide probes are immobilised onto the sensor surface as spots forming a matrix 14x14, which is spotted by a robot, while the target sequences are free in solution. The system allows the interaction (hybridisation) monitoring, in real-time and in parallel, of unlabeled oligonucleotide solution targets to oligonucleotide probes immobilised on a 196 spots matrix. Using oligonucleotides as probes and targets, both functionalised surfaces have been evaluated in view of their application to the diagnosis of gene mutations involved in human diseases. In particular, we demonstrate the ability to detect, in parallel, several mutations causing human cystic fibrosis (CF), which lie within exon 10 of the human cystic fibrosis transmembrane conductance regulator (CFTR) gene. The immobilised probes were complementary to sequences corresponding the mutant or wild type alleles. Two deletions of three bases (DeltaF508 and DeltaI507) and four single nucleotide polymorphisms (M470V, Q493X, V520F and 1716 G>A) were investigated. In both functionalised surfaces, the system showed the capacity to discriminate normal and mutant sequences differing by a single base.  相似文献   

8.
In this paper, a simple and useful approach for DNA sensing based on surface plasmon resonance (SPR) transduction is reported. A new DNA sample pre-treatment has been optimised to allow fast and simple detection of hybridisation reaction between a target sequence in solution and a probe immobilised on the sensing surface. This pre-treatment consisted in a denaturation procedure of double stranded DNA containing the target sequence and was based on an high temperature treatment (95 degrees C, 5 min) followed by a 1 min incubation with small oligonucleotides. The oligonucleotides are designed to prevent the re-hybridising of the denatured strands, while enabling the target sequence to bind the immobilised probe. The important parameters of the procedure, i.e. incubation time, length and concentration of the oligonucleotides, have been studied in detail. The optimised DNA denaturation procedure has been successfully applied to the detection of amplified DNA with a commercially available SPR biosensor (Biacore X). DNA samples extracted from plant and human blood were tested after amplification by polymerase chain reaction (PCR).  相似文献   

9.
The work evaluated a series of approaches to optimise detection of polymerase chain reaction (PCR) amplified DNA samples by an optical sensor based on surface plasmon resonance (SPR) (BiacoreX). The optimised procedure was based on an asymmetric PCR amplification system to amplify predominantly one DNA strand, containing the sequence complementary to a specific probe. The study moved into two directions, aiming to improve the analytical performance of SPR detection in PCR amplified products. One approach concerned the application of new strategies at the level of PCR, i.e. asymmetric PCR to obtain ssDNA amplified fragments containing the target capable of hybridisation with the immobilised complementary probe. The other strategy focused on the post-PCR amplification stage. Optimised denaturing conditions were applied to both symmetrically and asymmetrically amplified fragments. The effective combination of the two strategies allowed a rapid and specific hybridisation reaction. The developed method was successfully applied in the detection of genetically modified organisms.  相似文献   

10.
Liu H  Li S  Wang Z  Ji M  Nie L  He N 《Journal of biotechnology》2007,131(3):217-222
Single-nucleotide polymorphisms (SNPs) are one-base variations in DNA sequence that can often be helpful when trying to find genes responsible for inherited diseases. In this paper, a microarray-based method for typing single nucleotide polymorphisms (SNPs) using solid-phase polymerase chain reaction (PCR) on magnetic nanoparticles (MNPs) was developed. One primer with biotin-label was captured by streptavidin coated magnetic nanoparticles (SA-MNPs), and PCR products were directly amplified on the surface of SA-MNPs in a 96-well plate. The samples were interrogated by hybridization with a pair of dual-color probes to determine SNP, and then genotype of each sample can be simultaneously identified by scanning the microarray printed with the denatured fluorescent probes. The C677T polymorphisms of methylenetetrahydrofolate reductase (MTHFR) gene from 126 samples were interrogated using this method. The results showed that three different genotypes were discriminated by three fluorescence patterns on the microarray. Without any purification and reduction procedure, and all reactions can be performed in the same vessel, this approach will be a simple and labor-saving method for SNP genotyping and can be applicable towards the automation system to achieve high-throughput SNP detection.  相似文献   

11.
In this study, we describe a detection system for the indirect detection of vaccinia virus by DNA analysis. The system uses quartz crystal microbalance (QCM) as the detection technique and polymerase chain reaction (PCR) for amplification. Different immobilization strategies for the capture probe on the quartz chip are studied. For the QCM detection of hybridisation, the influence of the structure and length of target DNA is analyzed. For the detection of DNA from an amplification product, an efficient denaturation procedure is developed. On the basis of these investigations, vaccinia virus DNA is detected with only a low number of amplification rounds and a short analysis time. Specificity can be clearly shown. To enhance the signal strength and to have a further proof of specificity, a gold nanoparticle-tagged enhancer sequence can be used.  相似文献   

12.
The supposed repelling mode of scanning electrochemical microscopy (SECM) allows truly label-free electrochemical recognition of the presence and hybridisation of nucleic acids that are immobilised on conducting DNA chips. Basically, the SECM-based detection of single- and double-stranded DNA profits from the electrostatic repulsion between deprotonated phosphate groups at the backbone of the oligonucleotides and a free-diffusing negatively charged redox mediator (e.g. [Fe(CN)(6)](3-/4-)). In electrolytes of proper pH and ionic strength, this coulomb interaction is heavily influencing the diffusion properties of the mediator in the vicinity of the surface-anchored DNA strands. This charge interaction modulates the diffusional mass transport for the charged redox species in the DNA modified regions, and thus locally decreases the positive feedback currents measured with a SECM tip placed within the electrochemical nearfield of the chip surface. This approach was used to study arrays of synthetic 20-base oligonucleotide probes that were immobilised on monolayer-modified gold surfaces. Evidence is provided that the density of probes, the ionic strength of solution and the tip-to-sample distance have a strong impact on the capability of the repelling mode of SECM to visualise probe spots and hybridisation while the concentration of the chosen mediator did not significantly affect detection.  相似文献   

13.
Using electrochemical impedance spectroscopy (EIS) the sensitive and specific detection of the antibiotic resistance gene mecA has been demonstrated. The gene sequence was obtained from clinical Staphylococcus aureus isolates. Initially a mecA specific probe was selected from hybridisation tests with a 3' and 5' version of a previously published probe sequence. When immobilised on a gold electrode in PNA form it was possible to detect hybridisation of mecA PCR product electrochemically at concentrations as low as 10nM. By incorporating an undecane-thiol and 1.8 nm glycol spacer into the PNA probe it was possible to extend the limit of detection for mecA to 10 pM. Most published studies on EIS and nucleic acid detection report the use of short artificial DNA sequences or novel signal amplification schemes which improve sensitivity whereas this study reports the successful detection of long DNA fragments produced by PCR following extraction from clinical isolates. Finally, using screen printed electrodes the paper demonstrates hybridisation monitoring of mecA in an "on-line" assay format under ambient conditions which paves the way for rapid mecA detection in point of care scenarios.  相似文献   

14.
15.
Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor for the detection of the hybridization of CaMV 35S promoter sequence (P35S) was investigated for the screening of genetically modified organisms (GMOs). Attention was focused on the choice of the coating chemistry that could be used for the immobilization of probe sequences on the gold surface of the quartz crystal. Two immobilization procedures were tested and compared considering the amount of the immobilized P35S probe and the extent of the hybridization reaction with the target oligonucleotide. In wet chemistry procedure, the interaction between the thiol and gold for the immobilization of a thiolated probe was employed. Direct surface functionalization of piezoelectric quartz crystals were achieved in 13.56 MHz plasma polymerization reactor utilising ethylenediamine (EDA) precursors for the immobilization of amined probes. Results indicated that immobilization of a thiolated probe provides better immobilization characteristics and higher sensitivity for the detection of the hybridization reaction. The thiolated probe was used for the detection of P35S sequence in PCR-amplified DNAs and in real samples of pflp (ferrodoxin like protein)-gene inserted tobacco plants. Fragmentation of the genomic DNAs were achieved by digestion with restriction endonucleases and ultrasonication. The results obtained from the fragmented genomic DNAs demonstrated that it is possible to detect the target sequence directly in non-amplified genomic DNAs by using the developed QCM-based DNA biosensor system. The developed QCM-based DNA biosensor represented promising results for a real-time, label-free, direct detection of DNA samples for the screening of GMOs.  相似文献   

16.
A two-step method for the directed immobilization of nucleic acids at ultramicroelectrodes with micron-size dimensions is described. The approach is based on the immobilization of streptavidin at the surface of carbon or noble metal electrodes within a novel electro-deposited polymer, formed by electropolymerization of the natural compound scopoletin (7-hydroxy-6-methoxy-coumarin) at potentials between 0.4 and 0.7 V vs. Ag/AgCl. Biotin-tagged nucleic acids or proteins are immobilized on top of the modified electrodes in a second step. The new method has some advantages compared to classical electropolymerization approaches (e.g. polypyrrole, polyphenol), because the growing polymer is highly hydrophilic, resulting in efficient incorporation of streptavidin and a high biotin binding capacity of 6 pmol cm(-2). The polymer film seems to be non-conductive but shows good swelling properties in aqueous solutions. The feasibility of the method for the electro-directed biochemical modification of individual microelectrodes has been demonstrated by sequential immobilization of two different single strand oligonucleotides onto interdigitated ultramicroelectrodes. The resulting miniature DNA probe was used for single base mutation detection with two synthetic targets (fluorescence-labeled 17-mer oligomers) by evaluating the fluorescence patterns after hybridisation with the immobilised DNA probes. The new method is useful for the production of microelectrode based DNA chips and for the electro-directed immobilisation of biomolecules at microelectrode structures with high spatial resolution and yield.  相似文献   

17.
A hybridisation-based genosensor was designed on a 100 nm sputtered gold film. This material worked as an immobilisation and transduction surface. A 30-mer sequence that encodes a short lysine-rich region, unique to SARS (severe acute respiratory syndrome) virus, was chosen as target. A complementary strand (probe), labelled with a thiol group at the 3'-end, was immobilised on the film. After blocking the surface, hybridisation with the biotin-conjugated SARS strand (at the 3'-end) took place. Interaction with alkaline phosphatase-labelled streptavidin permits amplified indirect electrochemical detection. The analytical signal is constituted by an electrochemical process of indigo carmine, the soluble product of the enzymatic hydrolysis of 3-indoxyl phosphate. The use of a sensitive electrochemical technique such as square wave voltammetry allowed a detection limit of 6 pM to be obtained for this DNA sequence, lower than any other found in the bibliography. The parameters affecting the methodology were studied, with special attention being placed on selectivity. Specificity was clearly enhanced when interaction time and stringency (in the form of formamide percentage) were increased. With 1h of strand interaction and employing 50% of formamide in the hybridisation buffer, a 3-base mismatch strand was perfectly distinguished from the complementary.  相似文献   

18.
We have investigated the hybridisation of thiol-modified single-stranded DNA embedded in a polyacrylamide layer through the technique of surface plasmon resonance (SPR). Kinetic studies were carried out by two different immobilisation methods: (a) SH-ssDNA was firstly attached on gold and the remaining free space was filled with polymer and (b) SH-ssDNA and the polymer was attached onto the surface from the same solution. The immobilisation methods were compared for various concentrations of SH-ssDNA. Hybridisation was dependent on both the immobilisation method and the concentration of the components. The highest hybridisation was obtained when SH-ssDNA and the polymer was immobilised from the same solution at low SH-ssDNA concentration or when high concentrations of oligos were spread onto the surface and the surface was post-treated with polymer. The target response corresponded to a surface coverage of 100+/-15 ng/cm2. The same surface coverage on hybridisation was also obtained when low concentration of SH-ssDNA and polymer was attached onto the surface from the same solution. The non-specific binding of sample DNA was very low at optimal concentrations due to the polymer and the hybridisation was linearly dependent on target concentration.  相似文献   

19.
Periprosthetic joint infections present a challenging problem in orthopaedics. Conventional methods for detection of arthroplasty infections rely on bacterial culture of synovial fluid aspirates. During recent years, however, molecular tests that are based on DNA amplification by the polymerase chain reaction (PCR), followed by electrophoretic analysis of the products, have been introduced. We report a simple and inexpensive assay that allows visual detection and confirmation of the PCR-amplified sequences by hybridization within minutes. The assay is performed in a dry reagent dipstick format (strip) and does not require special instrumentation. Universal primers are used for PCR of the 23S ribosomal RNA (rRNA) gene. The biotinylated amplification product is hybridized with dA-tailed probes that are specific for six pathogens commonly involved in periprosthetic joint infections. The mixture is applied to the strip, which is then immersed in the appropriate buffer. The buffer migrates along the strip by capillary action and rehydrates gold nanoparticles with oligo(dT) strands attached to their surface. The nanoparticles bind to the target DNA through hybridization, and the hybrids are captured by immobilized streptavidin at the test zone of the strip, producing a characteristic red line. Unbound nanoparticles are captured by immobilized oligo(dT) strands at the control zone of the strip, generating a second line. The dipstick test was applied to the detection of Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Enterococcus faesium, and Haemophilus influenza. Twelve samples of synovial fluids from patients were analyzed for the detection and identification of the infection caused by the six pathogens. The results were compared with bacterial cultures.  相似文献   

20.
A sensor capable of detecting a specific DNA sequence was designed by bulk modification of a graphite epoxy composite electrode with streptavidin (2% w/w). Streptavidin is used to immobilise a biotinylated capture DNA probe to the surface of the electrode. Simultaneous hybridisation occurs between the biotin DNA capture probe and the target-DNA and between the target-DNA and a digoxigenin modified probe. The rapid binding kinetic of streptavidin-biotin allows a one step immobilisation/hybridisation procedure. Secondly, enzyme labelling of the DNA duplex occurs via an antigen-antibody reaction between the Dig-dsDNA and an anti-Dig-HRP. Finally, electrochemical detection is achieved through a suitable substrate (H2O2) for the enzyme-labelled duplex. Optimisation of the sensor design, the modifier content and the immobilisation and hybridisation times was attained using a simple nucleotide sequence. Regeneration of the surface is achieved with a simple polishing procedure that shows good reproducibility. The generic use of a modified streptavidin carbon-polymer biocomposite electrode capable of surface regeneration and a one step hybridisation/immobilisation procedure are the main advantages of this approach. In DNA analysis, this procedure, if combined with the polymerase chain reaction, would represent certain advantages with respect to classical techniques, which prove to be time consuming in situations where a simple and rapid detection is required. This innovative developed material may be used for the detection of any analyte that can be coupled to the biotin-streptavidin reaction, as is the case of immunoassays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号