首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
As part of a program of work to understand the interaction of bacterial chaperonins with human leukocytes, we have examined 2 of the 3 chaperonin 60 (Cpn 60) gene products of the nonpathogenic plant symbiotic bacterium, Rhizobium leguminosarum, for their capacity to induce the production of pro- and antiinflammatory cytokines by human cells. Recombinant R. leguminosarum Cpn 60.1 and 60.3 proteins were added to human monocytes at a range of concentrations, and cytokine production was measured by sandwich enzyme-linked immunosorbent assay. In spite of the fact that the 2 R. leguminosarum Cpn 60 proteins share 74.5% amino acid sequence identity, it was found that Cpn 60.3 induced the production of interleukin (IL)-1beta, tumor necrosis factor alpha, IL-6, IL-8, IL-10, and IL-12, but not IL-4, interferon gamma, or GM-CSF (granulocyte-macrophage colony-stimulating factor), whereas the Cpn 60.1 protein failed to demonstrate any cytokine-inducing activity. The use of neutralizing monoclonal antibodies showed that the cytokine-inducing activity of Cpn 60.3 was dependent on its interaction with CD14. This demonstrates that CD14 mediates not only lipopolysaccharide but also R. leguminosarum Cpn 60.3 cell signaling in human monocytes.  相似文献   

3.
Staphylococcal enterotoxin at concentrations of less than 1 pg/ml induces significant TNF activity in human peripheral blood T cells and monocytes. Maximal TNF activity is routinely detected after 48 to 72 h of culture. IL-2 and IL-4 were both growth promoting for human T cells but only IL-2 could efficiently induce TNF production. The production of TNF-alpha and TNF-beta differed greatly in kinetics. An early intracytoplasmatic production of TNF-alpha after 6 h was detected in both monocytes and T cells whereas a late production of TNF-beta (lymphotoxin) after 48 h, occurred in the T cell population. Induction of TNF-alpha and TNF-beta production by Staphylococcal enterotoxin requires the presence of both monocytes and T cells. The CD4+45R- but not CD4+45R+ and CD8+ cells supported TNF-alpha production in monocytes. The main lytic component from Staphylococcal enterotoxin-activated mononuclear cells is TNF-beta. CD4+ and CD8+ T cells produced about equal amounts of biologically active TNF into the culture supernatants but a fourfold higher frequency of TNF-beta producing cells was demonstrated among CD4+ vs CD8+ cells. The CD4+45R- T cell subset was an efficient producer of TNF-beta and IFN-gamma whereas the CD4+45R+ T cell subset produced significant amounts of TNF-beta but only marginal amounts of IFN-gamma.  相似文献   

4.
Macrophage migration inhibitory factor (MIF) has an amazing history of rediscoveries and controversies surroundings its true biological function. It has been classified as a powerful cytokine capable of inducing tumour necrosis factor (TNF)-alpha, IL-1beta, IL-6, IL-8, PGE2 along with its ability to override glucocorticoid activity in relation to TNF-alpha release from monocytes. However, our recent study has failed to reproduce findings on MIF as a factor with cytokine-inducing properties but it has confirmed that MIF is capable of inducing glucocorticoid-counter regulating activity and amplifying LPS-driven cytokine responses. The aim of this review is to analyse the plethora of data surrounding MIF not just as a cytokine, but also as a hormone-like molecule, enzyme with atypical properties and as a thioredoxin-like protein to address fundamental questions about MIF functionality.  相似文献   

5.
Preoperative or perioperative ischemic injury of allografts predisposes to graft arteriosclerosis, the major cause of late graft failure. We hypothesize that injured tissues release mediators that increase the production of pathogenic cytokines by alloreactive T cells. We find that freeze-thaw lysates of human endothelial cells (EC) increase both IFN-gamma and IL-17 production by human CD4(+) T cells activated by HLA-DR(+) allogeneic EC. Immunoadsorption of high-mobility group box 1 protein (HMGB1) reduces this activity in the lysates by about one-third, and recombinant HMGB1 increases T cell cytokine production. HMGB1 acts by inducing IL-1beta secretion from contaminating monocytes via TLR4 and CD14. Upon removal of contaminating monocytes, the remaining stimulatory activity of EC lysates is largely attributable to IL-1alpha. Recombinant IL-1 directly augments IFN-gamma and IL-17 production by activated memory CD4(+) T cells, which express IL-1R1. Furthermore, IL-1 increases the frequency of alloreactive memory CD4(+) T cells that produce IL-17, but not those that produce IFN-gamma, in secondary cultures. Our results suggest that IL-1, released by injured EC or by HMGB1-stimulated monocytes, is a key link between injury and enhanced alloimmunity, offering a new therapeutic target for preventing late graft failure.  相似文献   

6.
We used highly purified human monocytes to study the regulation of cell surface and secretion of the low affinity FcR for IgE (Fc epsilon RIIb). IL-4 induces Fc epsilon RIIb expression and soluble Fc epsilon RIIb release in a dose-dependent manner. Significant levels of Fc epsilon RIIb expression were obtained after 12 h of incubation with IL-4 and maximal expression was observed between 24 to 48 h after which the expression declined. Surface expression was followed by secretion of soluble Fc epsilon RIIb which reached maximal levels after 3 to 4 days of incubation and which remained constant throughout 7 days of culture. Induction of Fc epsilon RIIb expression by IL-4 was completely blocked by anti-IL-4 antibodies. Furthermore, IL-1 alpha, IL-2, IL-5, granulocyte-macrophage-CSF, IFN-alpha, IFN-gamma, low m.w. BCGF and also LPS all failed to induce Fc epsilon RIIb expression, demonstrating the specificity of the induction. Fc epsilon RIIb membrane expression induced by IL-4 was reduced in the presence of IFN-gamma and IFN-alpha. Strong inhibition of IL-4-induced Fc epsilon RIIb expression was observed at IFN-alpha concentrations of 450 U/ml (80%), and 100 U/ml of IFN-gamma reduced IL-4-induced Fc epsilon RIIb expression by 70%. Interestingly, soluble Fc epsilon RIIb release was strongly inhibited by IFN-alpha. In contrast, IFN-gamma did not affect soluble Fc epsilon RIIb release, suggesting that reduced membrane expression of Fc epsilon RIIb observed in the presence of IFN-gamma does not reflect inhibition of Fc epsilon RIIb expression but may represent enhanced cleavage or reduced anchoring in the membrane of Fc epsilon RIIb. Finally, IL-5 that has been shown to enhance IL-4-induced Fc epsilon RII on B cells does not enhance significantly IL-4-induced Fc epsilon RIIb membrane expression or subsequent soluble Fc epsilon RIIb release by monocytes. Taken together these results show that IFN-alpha and IFN-gamma have different regulatory effects on IL-4-induced Fc epsilon RIIb membrane expression and soluble Fc epsilon RIIb release by human monocytes.  相似文献   

7.
The effects of different recombinant human cytokines and cytokine inhibitors were compared in a culture system in which cell contact with mutant EL-4 thymoma cells of murine origin efficiently stimulates human B cell proliferation and Ig secretion in conjunction with human T cell supernatant. IL-1 alpha, IL-1 beta, TNF-alpha, and IL-2 co-stimulated B cell proliferation and IgM, IgG, and IgA secretion, whereas IL-3, IL-4, IL-5, IL-6, IFN-gamma, or GM-CSF had weak or no activity in this regard. In contrast, TGF-beta 1 was strongly inhibitory. A very strict hierarchy of cytokine interactions was found in that IL-1 was necessary to induce TNF-alpha responsiveness, and TNF-alpha the IL-2 responsiveness, of the B cells. Most likely the small number of starting B cells in the present assay (300 FACS-separated B cells/200 microliters) minimized the effects of autocrine B cell factors. IL-4 together with IL-1 induced IgE secretion, and the IgE secretion was further increased by TNF-alpha. IFN-gamma had no modulatory effect on the IL-4 dependent IgE response in this system. Pretreatment of B cells with IL-1R antagonist (IL-1ra, which binds to IL-1R) or addition of soluble TNF receptor type 1 (sTNF-R55, which binds to TNF) completely inhibited the IL-1 or TNF-alpha effects, respectively. This occurred in a specific manner; the inhibition was reversed by a large excess of cytokine. IL-1ra also inhibited a B cell response induced by PMA-preactivated EL-4 cells alone. Because B cells responding to such preactivated EL-4 cells did not acquire TNF-alpha responsiveness, no IL-1 was apparently involved under this assay condition. It appears, therefore, 1) that IL-1ra can act on B cells and 2) that this antagonist may not only block IL-1R, but may provide a direct or indirect inhibitory signal interfering even with IL-1-independent B cell activation.  相似文献   

8.
The addition of the serine protease inhibitor p-toluenesulfonyl-L-arginine methyl ester (TAME) to human peripheral blood mononuclear cells suppressed TNF secretion in a concentration dependent manner. At a concentration 10 mM TAME leukocyte TNF release was completely inhibited without decreasing the secretion of IL-1 alpha. Simultaneously exposing leukocytes to 10 mM TAME and either 1000 U/ml IFN-gamma or 10 micrograms/ml LPS reduced the quantity of TNF secreted by 75% and 47%, respectively, when compared with the effect of either IFN-gamma or LPS alone. TAME was most effective when added to leukocytes at the initiation of culture and the suppressive effects of this protease inhibitor were reversible by washing the cells. TAME suppressed TNF secretion without affecting either the level of TNF mRNA or the expression of cell surface cytokine. These findings suggest that leukocyte TNF secretion is dependent upon the action of one or more serine proteases.  相似文献   

9.
Physiological mechanisms contributing to increased interleukin-1 secretion   总被引:6,自引:0,他引:6  
Interleukin-1 (IL-1) is a monocyte-derived polypeptide that mediates many host defense adaptations to environmental and infectious stresses. This investigation was intended to characterize further IL-1 activity found in human plasma following exercise (3) and to identify physiological initiators of IL-1 secretion. IL-1 activity was measured by the ability of plasma fractions to stimulate lymphocyte proliferation. This activity appeared in plasma several hours after exercise on a cycle ergometer (1 h at 60% of aerobic capacity, n = 8 subjects) and was neutralized with a specific antiserum to human IL-1. The hypothesis that IL-1 release from monocytes was initiated by phagocytosis of material from cells damaged by exercise was tested. The increase in IL-1 activity did not correlate significantly (r = 0.55) with creatine kinase activity, a marker for release of intracellular proteins into the circulation, and IL-1 secretion by monocytes was not stimulated by incubation with red blood cell lysates in vitro. Thus the stimulus for IL-1 secretion did not appear to be related to a scavenging function of monocytes. The possibility that IL-1 secretion may be mediated by stress hormones associated with exercise was examined. IL-1 secretion by monocytes was increased up to 48 +/- 18% (P less than 0.01) by addition of physiological concentrations of epinephrine in vitro. Low concentrations of hydrocortisone (1 ng/ml) also augmented IL-1 secretion by 58 +/- 20%. Higher concentrations in the physiological range had no effect, and combinations of epinephrine and hydrocortisone suppressed IL-1 secretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Highly purified human T cells from peripheral blood fail to produce interferon (IFN)-gamma in the absence of accessory cells. The ability of T cells to produce IFN-gamma upon stimulation with phytohemagglutinin (PHA) or concanavalin A could be restored by the addition of cultured allogeneic human foreskin fibroblasts. Addition of antibodies specific for HLA-DR, DQ, and DP antigens failed to block this accessory function of the fibroblasts. In contrast, antibodies to HLA-DR and DQ antigens inhibited the accessory cell activity of autologous monocytes. Allogeneic fibroblasts failed to exert accessory activity when exogenous interleukin 2 (IL-2) was used as the stimulus for IFN-gamma production. In contrast, autologous monocytes were active as accessory cells for IL-2-stimulated T cells. Addition of recombinant human interleukin 1 alpha (IL-1 alpha) or IL-1 beta to PHA-stimulated T cells co-cultured with fibroblasts stimulated IFN-gamma production. In contrast, preincubation of fibroblasts with IL-1 alpha or IL-1 beta caused a dose-dependent suppression of the ability of fibroblasts to augment PHA- and concanavalin A-induced IFN-gamma production by T cells. Preincubation of fibroblasts with recombinant human tumor necrosis factor (TNF) also reduced their accessory activity. Incubation of fibroblasts with IFN-gamma produced some reduction in their accessory activity and the inhibitory effect of TNF was further enhanced in the presence of IFN-gamma. A 4- to 10-hr incubation of fibroblasts with IL-1 or TNF was sufficient to produce a maximal suppression of accessory activity. Fixation of fibroblasts with formaldehyde decreased their accessory activity, but fixation did not abolish the suppression of accessory function induced by earlier incubation with IL-1. Supernatants of IL-1-treated fibroblast cultures had less suppressive activity than the IL-1-treated fibroblasts per se, and no suppressive activity at all was detected in the supernatants of TNF-treated fibroblasts. Enhanced prostaglandin synthesis may play a role in the IL-1- and TNF-induced suppression of accessory cell function, but other factors are likely to be involved. Our results show that fibroblasts can have a marked effect on T cell function and that IL-1 and TNF can exert immunoregulatory activities indirectly by altering the interactions of fibroblasts with T cells.  相似文献   

11.
The lymphokines IL-2 and IL-4 promoted the growth of human PHA-triggered T cells, but only IL-2 induced the production of IFN-gamma and TNF. The addition of purified monocytes strongly enhanced the production of IFN-gamma in IL-2-stimulated T cell cultures but did not influence the production of TNF or the level of T cell proliferation. The addition of IL-1 to T cells activated by PHA and optimal concentrations of IL-2 resulted in a strong induction of IFN-gamma production but had no influence on TNF production or T cell proliferation. IL-6 did not influence IFN-gamma or TNF production or T cell proliferation induced by PHA-IL-2 and did not modulate IL-1-induced IFN-gamma production. The production of IFN-gamma by CD4+ 45R+ Th cells was strongly enhanced by IL-1, whereas CD8+ T cells were less responsive to IL-1 and CD4+ 45R+ T cells were unresponsive to IL-1. We demonstrate, at the clonal level, that the optimal production of IFN-gamma by human Th cells requires both IL-1 and IL-2, whereas the production of TNF and T cell proliferation are induced by IL-2 alone. We suggest that IL-1 acts as a second signal for IFN-gamma production and that it may have an important function in regulating the pattern of lymphokines produced by T cell subsets during activation.  相似文献   

12.
IL-4 was originally described on the basis of its ability to co-stimulate the proliferation of resting B cells treated with anti-IgM. Recently, this cytokine has been shown to have other effects on mast cells, T cells, B cells, and macrophages. We studied the ability of IL-4 to regulate the production of C2 by human monocytes and monocytic cell lines and compared this with stimulation of HLA-DR expression, another recently described activity of IL-4. Responses to IL-4 were compared to IFN-gamma, a cytokine with both activities. IL-4 up-regulated C2 production by human monocytes and this effect was not inhibited by neutralizing anti-IFN-gamma antibody. IL-4 also stimulated C2 production by HL-60 cells that had been pre-treated with vitamin D3 to induce monocytic differentiation. IL-4 did not stimulate C2 production by U937 cells. IFN-gamma, in contrast to IL-4, stimulates C2 production by all three cell types. Although IL-4 increased C2 production by HL-60 cells we could not detect C2 mRNA by Northern blotting. However, co-stimulation of these cells with IL-4 and low concentrations of IFN-gamma resulted in an additive effect on C2 production and a greater increase in C2 mRNA than was seen with IFN-gamma alone. As reported by others, IL-4-stimulated HLA-DR expression by monocytes. In contrast to our findings regarding C2 production, stimulation of HLA-DR expression was inhibited by neutralizing anti-IFN-gamma mAb and IL-4 did not stimulate HLA-DR expression by U937 or HL-60 cells. IFN-gamma stimulated HLA-DR expression by all three cell types. These results identify IL-4 as an additional cytokine able to directly stimulate C2 production by human monocytes and by a monocytic cell line whereas IL-4 stimulation of HLA-DR expression by monocytes appears to be IFN-gamma dependent.  相似文献   

13.
We studied the effects of the gp120 glycoprotein of human immunodeficiency virus type 1 on the expression of interleukin-12 (IL-12) in human monocytes and in monocyte-derived macrophages. Induction of the mRNA for both the p35 and p40 subunits of IL-12 was observed in both cell types after gp120 treatment. We then evaluated cytokine secretion by using an enzyme-linked immunosorbent assay which recognizes only the IL-12 heterodimer. No IL-12 was detected in monocytes/macrophages treated with gp120 alone. A consistent IL-12 secretion was found in macrophages primed with gamma interferon (IFN-gamma) and subsequently treated with gp120. Low levels of IL-12 were occasionally observed in IFN-gamma-primed monocytes stimulated with gp120. The greater response of macrophages than of monocytes to the priming effect of IFN-gamma was consistent with the finding that IFN-gamma induced a much stronger antiviral state to vesicular stomatitis virus in macrophages than in monocytes. These data indicate that gp120 is an inducer of IL-12 expression in monocytes/macrophages and that IFN-gamma is an essential cofactor for IL-12 secretion, especially in differentiated macrophages.  相似文献   

14.
The processing and regulated secretion of IL-1β are critical points of control of the biological activity of this important pro-inflammatory cytokine. IL-1β is produced by both monocytes and macrophages, but the rate and mechanism of release differ according to the differentiation status and the origin of these cells. We aimed to study the control of processing and release in human blood monocytes and human monocyte-derived macrophages. Toll-like receptor (TLR)-induced IL-1β production and release were investigated for dependence upon caspase-1, P2X7 receptor activation, and loss of membrane asymmetry associated with microvesicle shedding. TLR agonists induced P2X7 receptor-dependent IL-1β release in both monocytes and macrophages; however, only monocytes also showed P2X7 receptor-independent release of mature IL-1β. Furthermore, in monocytes ATP-mediated PS exposure could be activated independently of IL-1β production. Release of IL-1β from monocytes showed selectivity for specific TLR agonists and was accelerated by P2X7 receptor activation. Human monocytes released more IL-1β/cell than macrophages. These data have important implications for inflammatory diseases that involve monocyte activation and IL-1 release.  相似文献   

15.
IFN-kappa is a recently identified type I IFN that exhibits both structural and functional homology with the other type I IFN subclasses. In this study, we have investigated the effect of IFN-kappa on cells of the innate immune system by comparing cytokine release following treatment of human cells with either IFN-kappa or two recombinant IFN subtypes, IFN-beta and IFN-alpha2a. Although IFN-alpha2a failed to stimulate monocyte cytokine secretion, IFN-kappa, like IFN-beta, induced the release of several cytokines from both monocytes and dendritic cells, without the requirement of a costimulatory signal. IFN-kappa was particularly effective in inhibiting inducible IL-12 release from monocytes. Unlike IFN-beta, IFN-kappa did not induce release of IFN-gamma by PBL. Expression of the IFN-kappa mRNA was observed in resting dendritic cells and monocytes, and it was up-regulated by IFN-gamma stimulation in monocytes, while IFN-beta mRNA was minimally detectable under the same conditions. Monocyte and dendritic cell expression of IFN-kappa was also confirmed in vivo in chronic lesions of psoriasis vulgaris and atopic dermatitis. Finally, biosensor-based binding kinetic analysis revealed that IFN-kappa, like IFN-beta, binds strongly to heparin (K(d): 2.1 nM), suggesting that the cytokine can be retained close to the local site of production. The pattern of cytokines induced by IFN-kappa in monocytes, coupled with the unique induction of IFN-kappa mRNA by IFN-gamma, indicates a potential role for IFN-kappa in the regulation of immune cell functions.  相似文献   

16.
Purified recombinant human B cell growth factor-1/IL-4 was evaluated, alone and in combination, with purified preparations of recombinant human (rhu) CSF or erythropoietin (Epo) for effects on colony formation by human bone marrow CFU-GM progenitor cells (GM) and burst forming unit-E progenitor cells. rhu IL-4 synergized with rhu G-CSF to enhance granulocyte colony formation, but had no effect on CFU-GM colony formation stimulated by rhu GM-CSF, rhu IL-3, or rhu CSF-1. Rhu IL-4 synergized with Epo to enhance BFU-E colony formation equal to that of Epo plus either rhu IL-3, rhu GM-CSF, or rhu G-CSF. Removal of adherent cells and T lymphocytes did not influence the synergistic activities of rhu IL-4. Rmu IL-4, synergized with rhu G-CSF, but not with rmu GM-CSF, rmu IL-3, or natural mu CSF-1, to enhance CFU-GM (mainly granulocyte) colony numbers by a greater than 90% pure preparation of murine CFU-GM. Also, rhu IL-4 at low concentrations enhanced release of CSF and at higher concentrations the release also of suppressor molecules from human monocytes and PHA-stimulated human T lymphocytes. Use of specific CSF antibodies suggested that rhu IL-4 was enhancing the release of G-CSF and CSF-1 from monocytes and the release of GM-CSF and possibly G-CSF from PHA-stimulated T lymphocytes. Use of antibodies for TNF-alpha, IFN-gamma, or TNF-beta as well as measurement of TNF and IFN titers suggested that the suppressor molecule(s) released from monocytes were acting with TNF-alpha and those released from PHA-stimulated T lymphocytes were acting with IFN-gamma. These results implicate B cell growth factor-1/IL-4 as a synergistic activity for hematopoietic progenitors and suggest that the actions can be on both progenitor and accessory cells.  相似文献   

17.
IL-2 is a potent activator of effector and secretory activities of human monocytes. Since monocytes are an important source of IL-6, we investigated whether IL-2 can induce IL-6 production and whether regulatory circuits can modulate this process. We found that stimulation of monocytes with IL-2 induced expression of IL-6 mRNA and bioactivity in a dose-dependent manner. Production of IL-6 in monocytes can be induced by other cytokines such as IL-1 beta. By using mAb alpha-IL-1 beta we showed that IL-2-induced IL-6 production is not mediated by the autocrine stimulation of IL-1 beta elicited by IL-2. IL-6 induction by monocytes is not a common response to activating signals because IFN-gamma did not induce IL-6 expression under conditions in which it elicits tumoricidal activity. In contrast, IFN-gamma could completely abrogate the induction of IL-6 expression by IL-1 beta but did not affect the levels of mRNA and the secretion of IL-2-elicited IL-6. We have previously reported that transforming growth factor-beta inhibits IL-6 production in response to IL-1 beta. Studies on the inhibitory activity of transforming growth factor-beta demonstrated that this cytokine differs from IFN-gamma because it inhibited both IL-1- and IL-2-induced IL-6 expression. These data demonstrate that, in human monocytes, both IL-1 and IL-2 stimulate IL-6 expression by independent mechanisms that can be dissociated by the susceptibility to the inhibitory effect of IFN-gamma. IL-6 production is also down-regulated by TGF-beta, whose inhibitory activity is stimulus-unrelated.  相似文献   

18.
Caspase-1, the IL-1beta converting enzyme (ICE), is required for intracellular processing/maturation of IL-1beta and IL-18. NO releasing nonsteroidal antiinflammatory drugs (NSAIDs) are a new class of NSAID derivatives that spare the gastric mucosa. Here, we tested the hypothesis that NCX-4016, a NO-aspirin derivative, inhibits proinflammatory cytokine release from endotoxin (LPS)-challenged monocytes. Our results demonstrated that exposing LPS-stimulated human monocytes to NCX-4016 resulted in a 40-80% inhibition of IL-1beta, IL-8, IL-12, IL-18, IFN-gamma, and TNF-alpha release with an EC(50) of 10-20 microM for IL-1beta and IL-18. Incubating LPS-primed monocytes with NCX-4016 resulted in intracellular NO formation as assessed by measuring nitrite/nitrate, intracellular cGMP concentration, and intracellular NO formation. Exposing LPS-stimulated monocytes to aspirin or celecoxib caused a 90% inhibition of prostaglandin E(2) generation but had no effect on cytokine release. NCX-4016, similar to the NO donor S-nitroso-N-acetyl-D-L-penicillamine, inhibited caspase-1 activity with an EC(50) of approximately 20 microM. The inhibition of caspase-1 by NCX-4016 was reversible by the addition of DTT, which is consistent with S-nitrosylation as the mechanism of caspase-1 inhibition. NCX-4016, but not aspirin, prevented ICE activation as measured by assessing the release of ICE p20 subunit. IL-18 immunoneutralization resulted in a 60-80% reduction of IL-1beta, IL-8, IFN-gamma, and TNF-alpha release from LPS-stimulated monocytes. Taken together, these data indicate that incubating human monocytes with NCX-4016 causes intracellular NO formation and suppresses IL-1beta and IL-18 processing by inhibiting caspase-1 activity. Caspase-1 inhibition is a new, cycloxygenase-independent antiinflammatory mechanism of NO-aspirin.  相似文献   

19.
Enhancement of human monocyte tumoricidal activity by recombinant M-CSF   总被引:8,自引:0,他引:8  
Activated monocytes are an important component of immunologic defense against neoplastic disease. A variety of agents capable of inducing tumoricidal activity have been described, including bacterial LPS, IFN-gamma, IL-1, IL-2, TNF, and GM-CSF. We now show that pretreatment of monocytes with recombinant human macrophage-specific colony stimulating factor (M-CSF) augments the tumoricidal activity of human peripheral blood monocytes induced by other activating agents. Monocytes were preincubated for three days with M-CSF at 10(3) U/ml, washed, and treated for an additional two days with secondary activators. Tumoricidal activity was measured in a 6-h 51Cr-release assay using NK-resistant WEHI 164 cells that had been treated with actinomycin D. Pretreatment of monocytes with M-CSF significantly increased tumoricidal activity induced by LPS, IFN gamma, LPS plus IFN gamma, and LPS plus PMA. Pretreatment with IL-1, IL-2, IL-3, IL-4, or GM-CSF was not as effective as M-CSF in increasing tumoricidal activity. Enhanced tumoricidal activity was directly correlated to the increased TNF production resulting from M-CSF pretreatment. TNF antiserum completely blocked tumoricidal activity, demonstrating that TNF was responsible for the M-CSF-mediated increase in tumor cell lysis. M-CSF pretreatment also enhanced non-TNF mediated tumoricidal activity by monocytes, as seen by increased killing of the TNF-resistant target P815. This study demonstrated that in addition to the role of M-CSF in the proliferation and differentiation of monocyte/macrophage precursors, M-CSF also augments an effector function of mature blood monocytes.  相似文献   

20.
The objectives of these studies were to study the effects of bacterial lipopolysaccharide (LPS) on interferon-gamma (IFN-gamma)-induced Fc receptor expression on human monocytes and to examine whether these effects were mediated through stimulation of interleukin 1 (IL-1) production. Fc receptor expression was determined by binding of monomeric monoclonal murine immunoglobulin (Ig)G2a and cytofluorographic analysis. IL-1 activity in monocyte supernatants and lysates was assayed by augmentation of mitogen-induced murine thymocyte proliferation. IFN-gamma induced the expression of Fc receptors on human monocytes that were specific for murine IgG2a. This induction was inhibited by the addition of LPS in amounts as low as 2 to 8 pg/ml. LPS inhibition of IFN-gamma-induced Fc receptor expression was paralleled by the appearance of IL-1 in monocyte lysates and supernatants. The addition of purified human or recombinant IL-1 beta at the initiation of culture similarly inhibited the expression of IFN-gamma-induced Fc receptors on the monocytes. LPS also inhibited Fc receptor expression on the human myelomonocytic cell line THP-1 after induction with IFN-gamma or phorbol myristate acetate alone or with both agents together. This inhibition also was paralleled by the production of IL-1 but the addition of exogenous IL-1 to the THP-1 cells had no effect on IFN-gamma-induced Fc receptor expression. Tumor necrosis factor (TNF) inhibited IFN-gamma-induced Fc receptor expression on human monocytes but was much less potent than comparable amounts of IL-1. TNF also did not inhibit Fc receptor expression on THP-1 cells. In fact, IL-1 or TNF led to an enhancement in IFN-gamma-induced Fc receptor expression on THP-1 cells. These results indicate that LPS can inhibit IFN-gamma-induced Fc receptor expression on human monocytes and that IL-1 and TNF may mediate these effects of LPS. Thus, an autocrine or paracrine role is suggested for these cytokines. The possibility exists that intracellular IL-1 resulting from LPS stimulation may be at least in part responsible for inhibition of Fc receptor expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号