首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many birds could expend substantially less energy at night by using hypothermia, but generally do not. This suggests that the potential savings are offset by costs; one of these costs is presumed to be the risk of predation at night. If this assumption is correct, a bird will face one of two tradeoffs: (1) it can avoid the cost of hypothermia by gaining fat to decrease the risk of starvation, but this increases energetic costs of fat maintenance and risk of diurnal predation, or (2) it can maintain lower fat reserves and use hypothermia at night, but this option increases the risk of nocturnal predation. We used a dynamic model to investigate these trade-offs and how the use of nocturnal hypothermia changes energy management tactics in food-caching birds. Our model predicted that: (i) optimal daily routines of fat reserves, feeding rate, food caching, and cache retrieval should be similar in hypothermic and non-hypothermic birds; (ii) low fat reserves, small cache size, low ambient temperature, and high variability in foraging success favor increased use of hypothermia; (iii) the effect of ambient temperature on the use of hypothermia is especially important at higher levels of variance in foraging success; (iv) hypothermic birds are predicted to have lower mass at dusk than non-hypothermic individuals while their morning mass should be more similar. Many of these predictions have been supported by empirical data. Also, survival rates are predicted to be higher for birds using hypothermia, especially in the most severe environmental conditions. This is the first attempt to evaluate the role of cache maintenance and variance in foraging success in the use of hypothermia. This is also the first discussion of the relationship between behavior hypothermia and diurnal patterns of energy management.  相似文献   

2.
禁食导致一些啮齿动物的贮食量增加,但禁食处理后雄性长爪沙鼠贮食行为的变化则不一致。每天禁食22 h,长爪沙鼠的一些个体表现出高水平的贮食行为(禁食贮食组),而另一些个体则没有表现出贮食行为(禁食无贮食组)。延长禁食(22 h)持续的时间(连续重复3 d 和20 d)和增加禁食时间(禁食48 h),都没有使禁食无贮食组的动物表现出贮食行为。同样在自由取食条件下,长爪沙鼠的贮食行为也表现为二型性。在自由取食和禁食条件下,贮食量与体重、体脂含量和瘦素的浓度之间无明显相关关系。研究结果表明,禁食是诱导雄性长爪沙鼠贮食行为发生的一个重要条件,但增加禁食的程度并不改变其贮食行为的表现。  相似文献   

3.
Food availability and predation risk can have drastic impacts on animal behaviour and populations. The tradeoff between foraging and predator avoidance is crucial for animal survival and will strongly affect individual body mass, since large fat reserves are beneficial to reduce starvation but may increase predation risk. However, two‐factor experiments simultaneously investigating the interactive effects of food and predation risk, are still rare. We studied the effects of food supplementation and natural predation risk imposed by pygmy owls Glaucidium passerinum on the abundance and fat reserves of tit species in boreal forests of north Europe, from January to March in 2012 and in 2013. Food supplementation increased the number of individuals present in a given forest patch, whereas the level of predation risk had no clear impact on the abundance of tit species. The stronger impact of food supply respect to predation risk could be the consequence of the harsh winter conditions in north Europe, with constant below‐zero temperatures and only few (5–7 h) daylight hours available for foraging. Predation risk did not have obvious effects on tit abundance but influenced food consumption and, together with food supplementation, affected the deposition of subcutaneous fat in great tits Parus major. High owl predation risk had detrimental effects on body fat reserves, which may reduce over‐winter survival, but the costs imposed by pygmy owl risk were compensated when food was supplemented. The starvation–predation tradeoff faced by great tits in winter may thus be mediated through variation in body fat reserves. In small species living in harsh environment, this tradeoff appeared thus to be biased towards avoidance of starvation, at the cost of increasing predation risk.  相似文献   

4.
Thomas RJ 《Animal behaviour》2000,59(4):787-791
Stochastic dynamic programming (SDP) is a computational technique that has been used to model daily routines of foraging in small birds. A diurnal bird must build up its fat reserves towards dusk in order to avoid starvation during the night, when it cannot feed. However, as well as the benefits of avoiding starvation, storing fat imposes costs such as an increased predation risk and higher flight and metabolic costs. There is therefore an optimal level of fat reserves for a bird to reach at dusk in order to survive overnight without being left with excessive fat reserves at dawn. I tested a prediction common to all SDP models of daily foraging routines, that a bird will attempt to reach this level at dusk, regardless of its fat reserves the previous dawn. I provided supplementary food to manipulate the fat reserves at dawn of free-living European robins, Erithacus rubecula. Diurnal changes in body mass (a reliable estimate of fat reserves) were then monitored remotely. Robins provided with an ad libitum food supply reached almost exactly the same body mass at dusk, regardless of their body mass at dawn, supporting the prediction that birds attempt to reach a target level of reserves at dusk. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

5.
In winter, small birds should be fat to avoid starvation andlean and agile to escape predators. This means that they facea trade-off between the costs and benefits of carrying fat reserves.Every day they must gain enough fat to survive the coming night.Food-hoarding species can afford to carry less fat than nonhoardersbecause they can store energy outside the body. Furthermore, hoardersshould avoid carrying excessive fat during the day because theycan gain fat fast by retrieving food late in the afternoon.With no stored supplies, nonhoarders face more unpredictableaccess to food, and they should start gaining fat earlier inthe day. The predicted pattern is then that nonhoarders gainfat early and that hoarders gain fat late in the day. Recent fielddata show the opposite pattern: hoarders gain relatively morefat reserves in the morning than nonhoarders do. Using a dynamicmodel that mimics the conditions in a boreal winter forest,I investigated under which conditions this pattern will arise.The only assumption of those investigated that produced thispattern was to relax the effect of mass-dependent predation risk.I did this by introducing a limit under which fat reserves didnot affect predation risk. Hoarders then started the day bygaining fat in the morning. Later, when they had reached a safer(but still not risky) level, they switched to hoarding. Thepattern I searched would only occur if either not all food waspossible to store, or if retrieval gave less energy than foragingin good weather conditions. If I assumed that low levels ofbody fat also increased predation risk, hoarders would cachein the morning when they carried least fat. I discuss empiricalevidence for how body fat affects predation risk. In summary,the factors that produced the pattern I searched were a changein the predation-mortality function combined with restrictions onhoarding.  相似文献   

6.
We studied the effects of dominance rank on fat deposition and hoarding behaviour in Willow Tits Parus montanus . Dominant individuals can displace subordinates which gives them priority to new food sources; they can also pilfer stored food from subordinates. This gives subordinates less certain access than dominants both to their own caches and to new food sources. Theory predicts that subordinates should invest more than dominants both in body fat reserves and stored food. Empirical evidence is equivocal; some studies have shown that subordinates built up larger reserves than dominants, whereas others show the opposite. In an earlier indoor experiment, Pravosudov and Lucas found no effect of rank on either hoarding rate or fat reserves, but the experimental design was such that the results were ambiguous. This paper reports on a similar, but improved, experiment in outdoor aviaries. However, our results agree with the earlier experiment, since we found no effect of rank on either food storing or fat deposition. The reasons for this are explored.  相似文献   

7.
House sparrow (Passer domesticus) numbers have declined rapidly in both rural and urban habitats across Western Europe over the last 30 years, leading to their inclusion on the UK conservation red list. The decline in farmland has been linked to a reduction in winter survival caused by reduced food supply. This reduction in food supply is associated with agricultural intensification that has led to the loss of seed-rich winter stubble and access to spilt grain. However, urban house sparrows have also declined, suggesting that reduced food supply in farmland is not the sole reason for the decline. Here, we show that changes in house sparrow mass and thus fat reserves are not regulated to minimize starvation risk, as would be expected if limited winter food were the only cause of population decline. Instead, the species appears to be responding to mass-dependent predation risk, with starvation risk and predation risk traded-off such that house sparrows may be particularly vulnerable to environmental change that reduces the predictability of the food supply.  相似文献   

8.
Many animals hoard food, including humans, but despite its pervasiveness, little is known about the physiological mechanisms underlying this appetitive behavior. We summarize studies of food hoarding in humans and rodents with an emphasis on mechanistic laboratory studies of species where this behavior importantly impacts their energy balance (hamsters), but include laboratory rat studies although their wild counterparts do not hoard food. The photoperiod and cold can affect food hoarding, but food availability is the most significant environmental factor affecting food hoarding. Food-deprived/restricted hamsters and humans exhibit large increases in food hoarding compared with their fed counterparts, both doing so without overeating. Some of the peripheral and central peptides involved in food intake also affect food hoarding, although many have not been tested. Ad libitum-fed hamsters given systemic injections of ghrelin, the peripheral orexigenic hormone that increases with fasting, mimics food deprivation-induced increases in food hoarding. Neuropeptide Y or agouti-related protein, brain peptides stimulated by ghrelin, given centrally to ad libitum-fed hamsters, duplicates the early and prolonged postfood deprivation increases in food hoarding, whereas central melanocortin receptor agonism tends to inhibit food deprivation and ghrelin stimulation of hoarding. Central or peripheral leptin injection or peripheral cholecystokinin-33, known satiety peptides, inhibit food hoarding. Food hoarding markedly increases with pregnancy and lactation. Because fasted and/or obese humans hoard more food in general, and more high-density/high-fat foods specifically, than nonfasted and/or nonobese humans, understanding the mechanisms underlying food hoarding could provide another target for behavioral/pharmacological approaches to curb obesity.  相似文献   

9.
Foragers can put on fat as an energy reserve to reduce the riskof starvation. Reserves are necessary to survive periods whenenergy intake is impossible, and additional reserves can serveas a buffer against periods of little success when foragingis unpredictable; however, maintaining the maximum possiblebody reserves may be detrimental when measured against a costof carrying fat. Experiments with greenfinches (Carduelis ChlorisL) showed that the birds maintained reserves below the levelpermitted by food availability. Greenfinches reduced body reserveswhen exposed to lower metabolic requirements and predictableforaging success; reserves were increased when ambient temperaturewas lowered or foraging success was made more unpredictable.The response to unpredictability was statedependent. Fatterbirds increased their reserves less. The adjustments of energyreserves according to requirements and environmental predictabilitysuggest that it is costly to carry fat and that this cost isbalanced against the benefits of carrying body reserves as aninsurance against starvation.  相似文献   

10.
In a dominance-structured flock, social status may determinepriority of access to food. Birds of low social status mayperceive present and future access to food as less predictable,and so have a higher risk of starvation, than birds of highsocial rank. Theoretical models predict that subordinate birdsshould carry larger fat reserves and incur higher mass-dependentcosts than dominants. However, empirical tests of the assumptionsof these models are still scarce and controversial. We investigatedthe effect of dominance rank on daily mass gain under conditionsof fluctuating food availability in a laboratory experimentusing four flocks of four coal tits (Parus ater) each. Thesame amount of food was delivered in two treatments, but inone treatment the food was offered at a constant rate betweendays (fixed treatment), while in the other treatment the dailyfood supply varied in an unpredictable sequence between days(variable treatment). All birds showed greater variance inbody mass in the variable treatment than in the fixed treatment.Body mass within birds showed the same variability at dawn thanat dusk in the fixed treatment, but less variability at dawnthan at dusk in the variable treatment. This may be a mechanismto reduce the immediate risk of starvation at the beginningof the day, when fat reserves are at their lowest and the aggressionbetween flock members when feeding highest. Subordinate birdswere excluded from the feeders by dominants more often in theearly morning than in the rest of the day, and they showedmore variability in daily mass gain and body mass at dawn thandominant birds. These results support the hypothesis that subordinatebirds have a reduced probability of surviving when food availabilitychanges unexpectedly compared to dominants.  相似文献   

11.
Feeding and fat storage entail both costs and benefits. Benefitsinclude minimizing the risk of starvation; costs include mass-dependentcosts of locomotion and predation risk. An understanding ofthese costs and benefits is relevant not only to explanationsof foraging patterns and fat storage, but to hoarding decisions,migration strategies, and population dynamics. Despite predictionsfrom theoretical models, empirical tests of the assumptionsand predictions of models have been tested only recently. However,published experiments on the effects of unpredictability haveoften confounded manipulations of mean, variability, and predictabilityof the food supply, all of which are predicted to affect foragingintensity and fat storage. In experiments on European starlings,Sturnus vulgaris, we manipulated the predictability of thefood supply while holding the mean and average variabilityconstant. We did this in conjunction with manipulation of overnightenergy expenditure via simulated nocturnal wind exposure. Both greater unpredictability of food availability and higher overnightenergy expenditure increased daily mass gain and dusk (leanand fat) mass, but in a purely additive fashion. Dawn massonly changed in response to predictability, not overnight energyexpenditure. By introducing a probe day, with identical feedingexperience for all treatments, we ascertained that the responseto predictability was based on experience integrated over morethan a single day.  相似文献   

12.
Thomas RJ 《Animal behaviour》1999,57(2):277-284
Many hypotheses have been put forward to account for the dawn chorus in birds. Few of these, however, are able to account for variation in song output over the whole day, or for differences in daily singing routines between species, individuals, seasons and environmental conditions. One hypothesis that does offer a more general explanation is based on a stochastic dynamic programming (SDP) model of daily singing routines. This model relates the relative costs and benefits of feeding and singing at different times of day to the size of a bird's fat reserves and calculates the optimal daily routines of singing and foraging that will maximize the amount that the bird can sing while avoiding starvation. The use of SDP models in behavioural ecology has become well established, but they remain largely untested empirically. I tested two predictions of the SDP model of daily routines of singing, using free-living European robins Erithacus rubecula. The results supported both predictions: (1) food supplementation causing unpredictable short-term increases in foraging success increased subsequent song output; and (2) changes in ambient temperature were positively associated with changes in subsequent song output. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

13.
Although hoarding has been studied intensively for many decades,few studies have attempted to measure its actual fitness consequences.To fill this gap, we used ptilochronology, the growth of replacementfeathers as a measure of nutritional status, and thus a reflectionof starvation risk, of individual European nuthatches (Sittaeuropaea) during winter. We found that nuthatches are long-termhoarders, retrieving stored food up to at least 98 days afterstoring it. Long-term hoarding enhanced the nutritional statusof individual birds significantly because those individualsexperimentally given an opportunity to store seeds during autumnregrew plucked rectrices faster and larger than did controlbirds. Nuthatches used their stored seeds prudently by adjustingthe amounts they ate to meet their requirements, as determinedby ambient temperatures. Nuthatches refrained from using storedfood during periods of relatively benign conditions so theycould use the food during periods of more severe conditions.  相似文献   

14.
Theoretical models of short‐term avian behaviour suggest that small birds adaptively balance the ecological costs and benefits of winter fat to maximize survival probability. When low starvation risk eliminates benefit but not cost of fat, birds are leaner than when under high starvation risk. Most models focus on single factors affecting starvation risk and subsequent choice of adaptive body mass; however, in complex environments, more than one factor affects starvation risk. To test for multiple interacting factors affecting fat reserves, long‐term geographical data on winter fat in a ground‐feeding finch, the dark‐eyed junco Junco hyemalis were analyzed. Two measures of fat were used: (1) visible subcutaneous fat class, and (2) body mass residuals left after age, sex and wing length effects were factored out. Site means for fat measures were obtained from juncos visiting supplemental feeding sites in midwest and northwest North America. In backward elimination regression of fat class, the temperature‐snowfall interaction term and its constituent variables, proximate temperature (averaged over capture day and the preceding ten days) and snowfall (frequency over the same time interval) were significant explanators of variation. Snowfall frequency is considered to be a surrogate measure of resource deterioration. The interaction term, also found in backward regression of body mass residuals, showed that as temperature declined at low snowfall frequency, less fat was deposited than when temperature declined at high snowfall frequency. Thus, in a recently cold environment suggesting relatively high resource predictability, perceived starvation risk is low, and less costly fat is needed to reduce starvation risk compared to a cold and unpredictable resource environment. The analysis of mass residuals also yielded a significant effect of daylength, suggesting an underlying fattening programme independent of proximate environmental conditions. A longitudinal study of junco fat stores indicated that individual environmental responses contributed significantly to midwinter fat peaks. These results agree with predictions of a synergistic model of adaptive fat regulation in small birds by suggesting that a ground‐feeding bird may maximize winter survival probability by integrating multiple environmental factors affecting starvation risk.  相似文献   

15.
Unlike most species, after food deprivation, Siberian hamsters increase foraging and food hoarding, two appetitive ingestive behaviors, but not food intake, a consummatory ingestive behavior. We previously demonstrated (Wood AD, Bartness TJ, Am J Physiol Regul Integr Comp Physiol 272: R783-R792, 1997) that increases in food hoarding are triggered by directly decreasing body fat levels through partial surgical lipectomy; however, we did not test if lipectomy affected foraging, nor if the magnitude of the lipid deficit affected food hoard size. Therefore, we tested whether varying the size of the lipectomy-induced lipid deficit and/or foraging effort affected foraging, food hoarding, or food intake. This was accomplished by housing adult male Siberian hamsters in a foraging/hoarding system and removing (x) both epididymal white adipose tissue (EWATx) pads, both inguinal white adipose tissue (IWATx) pads, or both EWAT and IWAT pads (EWATx + IWATx) and measuring foraging, food hoarding, and food intake for 12 wk. The lipectomy-induced lipid deficit triggered different patterns of white adipose tissue mass compensation that varied with foraging effort. Foraging for food (10 wheel revolutions to earn a food pellet) abolished the EWATx-induced compensation in IWAT pad mass. The magnitude of the lipid deficit did not engender a proportional change in any of the appetitive or consummatory ingestive behaviors. EWATx caused the greatest increase in food hoarding compared with IWATx or EWATx + IWATx, when animals were required to forage for their food. Collectively, it appears that the magnitude of a lipid deficit does not affect appetitive or consummatory behaviors; rather, when energy (foraging) demands are increased, loss of specific (gonadal) fat pads can preferentially stimulate increases in food hoarding.  相似文献   

16.
Food hoard size varies inversely with body fat levels in Siberian hamsters. If food hoarding only increases when body fat decreases, then hamsters foraging for their food should only increase food hoarding when foraging efforts decrease body fat ("lipostatic hypothesis"); however, if food hoarding increases whenever there is an energy flux away from fat storage, then it should increase regardless of significant body fat decreases ("metabolic hypothesis"). Female Siberian hamsters (Phodopus sungorus) earned food pellets after completion of a programmed number of wheel revolutions (Immobilized Wheel [free access to food], Free Wheel [wheel active, free food], and 10, 50, 100, and 200 revolutions/pellet). Hamsters were killed after 19 days and inguinal, retroperitoneal, and parametrial white adipose tissue (WAT) pads (IWAT, RWAT, and PWAT, respectively) were harvested and carcass composition determined. Food hoard size increased fourfold with the availability of running wheels alone (Free Wheel), increased threefold with low foraging levels (10 and 50 revolutions/pellet), but was nearly abolished at the highest foraging level (200 revolutions/pellet). Surplus food (earned, not eaten or hoarded) was significantly greatest at the lowest level of foraging. As foraging effort increased, PWAT mass decreased the most (<10 revolutions/pellet), while RWAT and IWAT mass only were decreased at the highest foraging effort. Carcass lipid content only was significantly decreased at the highest foraging effort, yet food hoarding was nearly abolished at that level. Collectively, these results demonstrate that body fat levels and food hoarding can be uncoupled with increases in foraging effort. J. Exp. Zool. 289:162-171, 2001.  相似文献   

17.
Food deprivation triggers a constellation of physiological and behavioral changes including increases in peripherally-produced ghrelin and centrally-produced agouti-related protein (AgRP). Upon refeeding, food intake is increased in most species, however hamsters primarily increase food hoarding. Food deprivation-induced increases in food hoarding by Siberian hamsters are mimicked by peripheral ghrelin and central AgRP injections. Because food deprivation stimulates ghrelin as well as AgRP synthesis/release, food deprivation-induced increases in hoarding may be mediated by melanocortin 3 or 4 receptor (MC3/4-R) antagonism via AgRP, the MC3/4-R inverse agonist. Therefore, we asked: Can a MC3/4-R agonist block food deprivation- or ghrelin-induced increases in foraging, food hoarding and food intake? This was accomplished by injecting melanotan II (MTII), a synthetic MC3/4-R agonist, into the 3rd ventricle in food deprived, fed or peripheral ghrelin injected hamsters and housed in a running wheel-based food delivery foraging system. Three foraging conditions were used: a) no running wheel access, non-contingent food, b) running wheel access, non-contingent food or c) a foraging requirement for food (10 revolutions/pellet). Food deprivation was a more potent stimulator of foraging and hoarding than ghrelin. Concurrent injections of MTII completely blocked food deprivation- and ghrelin-induced increases in food intake and attenuated, but did not always completely block, food deprivation- and ghrelin-induced increases in food hoarding. Collectively, these data suggest that the MC3/4-R are involved in ghrelin- and food deprivation-induced increases in food intake, but other neurochemical systems, such as previously demonstrated with neuropeptide Y, also are involved in increases in food hoarding as well as foraging.  相似文献   

18.
《Hormones and behavior》2008,53(5):612-620
Food deprivation triggers a constellation of physiological and behavioral changes including increases in peripherally-produced ghrelin and centrally-produced agouti-related protein (AgRP). Upon refeeding, food intake is increased in most species, however hamsters primarily increase food hoarding. Food deprivation-induced increases in food hoarding by Siberian hamsters are mimicked by peripheral ghrelin and central AgRP injections. Because food deprivation stimulates ghrelin as well as AgRP synthesis/release, food deprivation-induced increases in hoarding may be mediated by melanocortin 3 or 4 receptor (MC3/4-R) antagonism via AgRP, the MC3/4-R inverse agonist. Therefore, we asked: Can a MC3/4-R agonist block food deprivation- or ghrelin-induced increases in foraging, food hoarding and food intake? This was accomplished by injecting melanotan II (MTII), a synthetic MC3/4-R agonist, into the 3rd ventricle in food deprived, fed or peripheral ghrelin injected hamsters and housed in a running wheel-based food delivery foraging system. Three foraging conditions were used: a) no running wheel access, non-contingent food, b) running wheel access, non-contingent food or c) a foraging requirement for food (10 revolutions/pellet). Food deprivation was a more potent stimulator of foraging and hoarding than ghrelin. Concurrent injections of MTII completely blocked food deprivation- and ghrelin-induced increases in food intake and attenuated, but did not always completely block, food deprivation- and ghrelin-induced increases in food hoarding. Collectively, these data suggest that the MC3/4-R are involved in ghrelin- and food deprivation-induced increases in food intake, but other neurochemical systems, such as previously demonstrated with neuropeptide Y, also are involved in increases in food hoarding as well as foraging.  相似文献   

19.
Fasting triggers a constellation of physiological and behavioral changes, including increases in peripherally produced ghrelin and centrally produced hypothalamic neuropeptide Y (NPY). Refeeding stimulates food intake in most species; however, hamsters primarily increase foraging and food hoarding with smaller increases in food intake. Fasting-induced increases in foraging and food hoarding in Siberian hamsters are mimicked by peripheral ghrelin, central NPY, and NPY Y1 receptor agonist injections. Because fasting stimulates ghrelin and subsequently NPY synthesis/release, it may be that fasting-induced increased hoarding is mediated by NPY Y1 receptor activation. Therefore, we asked: Can an Y1 receptor antagonist block fasting- or ghrelin-induced increases in foraging, food hoarding, and food intake? This was accomplished by injecting the NPY Y1 receptor antagonist 1229U91 intracerebroventricularly in hamsters fasted, fed, or given peripheral ghrelin injections and housed in a running wheel-based food delivery foraging system coupled with simulated-burrow housing. Three foraging conditions were used: 1) no running wheel access, free food, 2) running wheel access, free food, or 3) foraging requirement (10 revolutions/pellet) for food. Fasting was a more potent stimulator of foraging and food hoarding than ghrelin. Concurrent injections of 1229U91 completely blocked fasting- and ghrelin-induced increased foraging and food intake and attenuated, but did not always completely block, fasting- and ghrelin-induced increases in food hoarding. Collectively, these data suggest that the NPY Y1 receptor is important for the effects of ghrelin- and fasting-induced increases in foraging and food intake, but other NPY receptors and/or other neurochemical systems are involved in increases in food hoarding.  相似文献   

20.
The optimal amount of reserves that a small bird should carry depends upon a number of factors, including the availability of food and environmental predation risk levels. Theory predicts that, if predation risk increases, then a bird should maintain a lower level of reserves. Previous experiments have given mixed results: some have shown reduced reserves and some, increased reserves. However, the birds in these studies may have been interpreting a staged predation event as a period when they were unable to feed rather than a change in predation risk: theory predicts that, if the food supply within the environment is variable, then reserves should be increased. In the present study, we presented blue tits (Parus caeruleus) with a potential predator and compared this response (which could have been potentially confounded by perceived interruption effects) with a response to an actual interruption in the environment during both long and short daytime lengths. During long (but not short) days, the birds responded in line with theoretical predictions by increasing their reserves in response to interruption and reducing them in response to predation. These results are examined in the light of other experimental manipulations and we discuss how well experimental tests have tested the predictions made by theoretical models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号