首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Chinese hamster ovary (CHO) cell cultures used to produce biopharmaceuticals are tested for mycoplasma contamination as part of the ensurance of a safe and pure product. The current U.S. Food and Drug Administration (FDA) regulatory guideline recommends using two procedures: broth/agar cultures and DNA staining of indicator cell cultures. Although these culture methods are relatively sensitive to most species, theoretically capable of detecting as few as 1-10 cfu/ml of most species, the overall procedure is lengthy (28 d), costly and less sensitive to noncultivable species. The detection of mycoplasma using the polymerase chain reaction (PCR) method has been considered an alternative method because it is relatively fast (1-2 d), inexpensive, and independent of culture conditions, however, limitations in sensitivity (limit of detection >/=1000 cfu/ml) and the risk of false positive and false negative results have prevented PCR from replacing the traditional culture methods in the industrial setting. In this report, we describe a new PCR assay for mycoplasma detection that appears to resolve these issues while being sufficiently simple and inexpensive for routine use. This assay applies readily available techniques in DNA extraction together with a modified single-step PCR using a previously characterized primer pair that is homologous to a broad spectrum of mycoplasma species known to infect mammalian cell cultures. Analysis is made easy by the detection of only a single amplification product within a narrow size range, 438-470 bp. A high sensitivity and specificity for mycoplasma detection in CHO cell production cultures is made possible through the combination of three key techniques: 8-methoxypsoralen and UV light treatment to decontaminate PCR reagents of DNA; hot-start Taq DNA polymerase to reduce nonspecific priming events; and touchdown- (TD-) PCR to increase sensitivity while also reducing nonspecific priming events. In extracts of mycoplasma DNA, the limit of detection for eight different mycoplasma species is 10 genomic copies. In CHO cell production cultures containing gentamicin, the limit of detection for a model organism, gentamicin-resistant M. hyorhinis, is 1 cfu/ml. The sensitivity and specificity of this PCR assay for mycoplasma detection in CHO cell production cultures appear similar to the currently used culture methods and thus should be considered as an alternative method by the biopharmaceutical industry.  相似文献   

3.
Mycoplasmas are the most important contaminants of cell cultures throughout the world. They are considered as a major problem in biological studies and biopharmaceutical economic issues. In this study, our aim was to find the best standard technique as a rapid method with high sensitivity, specificity and accuracy for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran. Thirty cell lines suspected to mycoplasma contamination were evaluated by five different techniques including microbial culture, indirect DNA DAPI staining, enzymatic mycoalert® assay, conventional PCR and real-time PCR. Five mycoplasma-contaminated cell lines were assigned as positive controls and five mycoplasma-free cell lines as negative controls. The enzymatic method was performed using the mycoalert® mycoplasma detection kit. Real-time PCR technique was conducted by PromoKine diagnostic kits. In the conventional PCR method, mycoplasma genus-specific primers were designed to analyze the sequences based on a fixed and common region on 16S ribosomal RNA with PCR product size of 425 bp. Mycoplasma contamination was observed in 60, 56.66, 53.33, 46.66 and 33.33 % of 30 different cell cultures by real-time PCR, PCR, enzymatic mycoalert®, indirect DNA DAPI staining and microbial culture methods, respectively. The analysis of the results of the different methods showed that the real-time PCR assay was superior the other methods with the sensitivity, specificity, accuracy, predictive value of positive and negative results of 100 %. These values were 94.44, 100, 96.77, 100 and 92.85 % for the conventional PCR method, respectively. Therefore, this study showed that real-time PCR and PCR assays based on the common sequences in the 16S ribosomal RNA are reliable methods with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products.  相似文献   

4.
PCR技术检测猪肺炎支原体的研究进展   总被引:1,自引:0,他引:1  
猪肺炎支原体(Mycopiasma hyopneumoniae)是引起猪支原体肺炎的重要病原,该病常引起继发感染和混合感染,严重威胁养猪业发展,造成巨大的经济损失.利用PCR技术对猪支原体肺炎早期正确诊断具有非常重要的意义.从猪肺炎支原体的特异性靶基因、临床样品采集方法与样品DNA处理方法、关键技术因素及普通PCR技术、多重PCR技术、套式PCR技术、荧光定量PCR技术、芯片检测和环介导等温扩增技术等在猪肺炎支原体检测中的研究进展、主要优缺点及应用进行综述.  相似文献   

5.
The rapid and accurate detection and identification of food-borne pathogenic bacteria is critical for food safety. In this paper, we describe a rapid (<4 h) high-throughput detection and identification system that uses universal polymerase chain reaction (PCR) primers to amplify a variable region of bacterial the 16S rRNA gene, followed by reverse hybridization of the products to species-specific oligonucleotide probes on a chip. This procedure was successful in discriminating 204 strains of bacteria from pure culture belonging to 13 genera of bacteria. When this method was applied directly to 115 strains of bacteria isolated from foods, 112/115 (97.4%) were correctly identified; two strains were indistinguishable due to weak signal, while one failed to produce a PCR product. The array was used to detect and successfully identify two strains of bacteria from food poisoning outbreak samples, giving results through hybridization that were identical to those obtained by traditional methods. The sensitivity of the microarray assay was 102 CFU of bacteria. Thus, the oligonucleotide microarray is a powerful tool for the detection and identification of pathogens from foods. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The use of animal and plant derived raw materials in mammalian cell culture processes may provide a possible route of entry for adventitious contaminants such as mycoplasma. Mycoplasma contaminations of cell culture represent a serious challenge to the production of biotechnology derived therapeutics. The slow growing nature of mycoplasma can disguise their infection of cultures since cells may continue to proliferate, though at reduced levels and with lesser output of engineered protein. Rapid identification of mycoplasma contaminated cell cultures and materials enables a faster response time to prevent the spread of the contamination. We describe here the comparison of different mycoplasma detection methods: two nucleic acid-based technologies, the standard mycoplasma culture procedure, and a hybrid culture-quantitative PCR assay. In this study, a cell line infected with two species of mycoplasma was used to compare the different detection methods. Our data demonstrates that the two nucleic acid-based techniques are robust methods for detection of mycoplasma and have similar detection capability. In contrast, no mycoplasma was detected in the standard culture assay or in a hybrid culture-quantitative PCR assay. This shows a potential limitation of the culture assay that relies on the ability of mycoplasma to grow in broth media.  相似文献   

7.
Nucleic acid amplification technique (NAT)-based assays (referred to here as NAT assays) are increasingly used as an alternative to culture-based approaches for the detection of mycoplasma contamination of cell cultures. Assay features, like the limit of detection or quantification, vary widely between different mycoplasma NAT assays. Biological reference materials may be useful for harmonization of mycoplasma NAT assays. An international feasibility study included lyophilized preparations of four distantly related mycoplasma species (Acholeplasma laidlawii, Mycoplasma fermentans, M. orale, M. pneumoniae) at different concentrations which were analyzed by 21 laboratories using 26 NAT assays with a qualitative, semiquantitative, or quantitative design. An M. fermentans preparation was shown to decrease the interassay variation when used as a common reference material. The preparation was remanufactured and characterized in a comparability study, and its potency (in NAT-detectable units) across different NATs was determined. The World Health Organization (WHO) Expert Committee on Biological Standardization (ECBS) established this preparation to be the “1st World Health Organization international standard for mycoplasma DNA for nucleic acid amplification technique-based assays designed for generic mycoplasma detection” (WHO Tech Rep Ser 987:42, 2014) with a potency of 200,000 IU/ml. This WHO international standard is now available as a reference preparation for characterization of NAT assays, e.g., for determination of analytic sensitivity, for calibration of quantitative assays in a common unitage, and for defining regulatory requirements in the field of mycoplasma testing.  相似文献   

8.
Summary A nested polymerase chain reaction (PCR) was used to detect and identify mycoplasma contaminants in viral stocks. The results of the PCR assay proved to be a sensitive and accurate indicator of the true status of the stock tested. Those samples positive by agar culture or Hoechst stain were also positive by PCR. Those samples that were inconclusive by Hoechst stain (10.05%) could be clearly determined to be mycoplasma positive or negative by PCR. The PCR assay also detected those fastidious species of mycoplasma that gave false negative results by the direct culture method. In many respects the PCR-based mycoplasma detection method described is superior to the agar culture and Hoechst staining detection methods. In this study, the PCR assay detected substantially more mycoplasma-positive viral stocks than did the agar culture assay. Due to its speed, sensitivity, and reliability, the PCR assay is of particular value in monitoring the process of removing mycoplasma from contaminated stocks. Furthermore, the PCR amplification products can be analyzed by restriction analysis to rapidly identify the species of the mycoplasma contaminating the stock tested.  相似文献   

9.
Bacteria and viruses may be transmitted to laboratory rodents by contaminated biological materials such as transplantable tumours, cell lines, sera or other biological materials. Biological materials are currently being screened using the mouse or rat antibody production (MAP/RAP) test (serological testing). We decided to test and validate an alternative assay using polymerase chain reaction (PCR/realtime PCR) technology to detect viral contamination directly in biological material. The aim of this study therefore is the validation of our new PCR assays and the comparison of PCR and the MAP test. For 8/14 viruses, conventional PCR was more sensitive and more specific than the MAP test in detecting murine viruses. For 12/14 viruses, the realtime PCR was more sensitive than the MAP test. In 2/14 cases, all three detection methods had the same sensitivity. Furthermore, PCR screening clearly conforms to the principles of the 3Rs as a replacement technique because it eliminates the need for using animals to screen for murine viruses in biological material.  相似文献   

10.
目的通过常用的三种不同方法对支原体的检测,了解实验用小型猪支原体感染情况,为今后实验用小型猪支原体检测方法国家标准的制定提供参考。方法采用培养法、PCR和ELISA方法分别对20头小型猪的气管、肺和血清进行检测。结果三种检测方法中,PCR方法支原体阳性检出率为15%,ELISA方法为20%,而培养法结果均为阴性。结论目前在普通级小型猪中存在支原体的感染。检测方法中PCR和ELISA方法较培养法更省时,敏感性更高。  相似文献   

11.
Mycoplasma contamination of cell lines is one of the major problems in cell culturing. About 15-35% of all cell lines are infected with a limited number of mycoplasma species of predominantly human, swine, or bovine origin. We examined the mycoplasma contamination status in 495 cell cultures by polymerase chain reaction (PCR) assay, microbiological culture method, and deoxyribonucleic acid-ribonucleic acid (DNA-RNA) hybridization, and in 103 cell cultures by PCR and DNA-RNA hybridization, in order to determine the sensitivity and specificity of the PCR assay in routine cell culture. For those two cohorts, results for the three or two assays were concordant in 92 and 91% of the cases, respectively. The sensitivity (detection of true positives) of this PCR detection assay was 86%, and the specificity (detection of true negatives) was 93%, with positive and negative predictive values (probability of correct results) of 73 and 97%, respectively. PCR defined the mycoplasma status with 92% accuracy (detection of true positives and true negatives). The mycoplasma contaminants were speciated by analyzing the PCR amplification fragment using several restriction enzymes. Most of the cultures (47%) were infected with Mycoplasma fermentans, followed by M. hyorhinis (19%), M. orale (10%), M. arginini (9%), Acholeplasma laidlawii (6%), and M. hominis (3%). To sum up, PCR represents a sensitive, specific, accurate, inexpensive, and quick mycoplasma detection assay that is suitable for the routine screening of cell cultures.  相似文献   

12.
The main goal of this collaborative study was to evaluate the experimental panel of cryopreserved mycoplasma reference strains recently prepared by the American Type Culture Collection (ATCC®) in order to assess the viability and dispersion of cells in the mycoplasma stocks by measuring the ratio between the number of genomic copies (GC) and the number of colony forming units (CFU) in the reference preparations. The employment of microbial reference cultures with low GC/CFU ratios is critical for unbiased and reliable comparison of mycoplasma testing methods based on different methodological approaches, i.e., Nucleic Acid Testing (NAT) and compendial culture-based techniques. The experimental panel included ten different mycoplasma species known to represent potential human and animal pathogens as well as common contaminants of mammalian and avian cell substrates used in research, development, and manufacture of biological products. Fifteen laboratories with expertise in field of mycoplasma titration and quantification of mycoplasmal genomic DNA participated in the study conducted from February to October of 2012. The results of this study demonstrated the feasibility of preparing highly viable and dispersed (possessing low GC/CFU ratios) frozen stocks of mycoplasma reference materials, required for reliable comparison of NAT-based and conventional mycoplasma detection methods.  相似文献   

13.
Mycoplasmas comprise a conglomerate of pathogens and commensals occurring in humans and animals. The genus Mycoplasma alone contains more than 120 species at present, and new members are continuously being discovered. Therefore, it seems promising to use a single highly parallel detection assay rather than develop separate tests for each individual species. In this study, we have designed a DNA microarray carrying 70 oligonucleotide probes derived from the 23S rRNA gene and 86 probes from the tuf gene target regions. Following a PCR amplification and biotinylation step, hybridization on the array was shown to specifically identify 31 Mycoplasma spp., as well as 3 Acholeplasma spp. and 3 Ureaplasma spp. Members of the Mycoplasma mycoides cluster can be recognized at subgroup level. This procedure enables parallel detection of Mollicutes spp. occurring in humans, animals or cell culture, from mono- and multiple infections, in a single run. The main advantages of the microarray assay include ease of operation, rapidity, high information content, and affordability. The new test's analytical sensitivity is equivalent to that of real-time PCR and allows examination of field samples without the need for culture. When 60 field samples from ruminants and birds previously analyzed by denaturing-gradient gel electrophoresis (DGGE) were tested by the microarray assay both tests identified the same agent in 98.3% of the cases. Notably, microarray testing revealed an unexpectedly high proportion (35%) of multiple mycoplasma infections, i.e., substantially more than DGGE (15%). Two of the samples were found to contain four different Mycoplasma spp. This phenomenon deserves more attention, particularly its implications for epidemiology and treatment.  相似文献   

14.
Mycoplasma contamination in cell culture is considered as serious problem in the manufacturing of biological products. Our goal in this research is to find the best standard and rapid method with high sensitivity, specificity, accuracy and predictive values of positive and negative results for detection of mycoplasma contamination in cell cultures of the National Cell Bank of Iran. In this study, 40 cell lines suspected to mycoplasma contamination were evaluated by three different methods: microbial culture, enzymatic mycoalert® and molecular. Enzymatic evaluation was performed using the mycoalert® kit while in the molecular technique, a universal primer pair was designed based on the common and fixed 16SrRNA ribosomal sequences used. Mycoplasma contaminations in cell cultures with molecular, enzymatic and microbial culture methods were determined as 57.5, 52.5 and 40 %, respectively. These results confirmed the higher rate of sensitivity, specificity and accuracy for the molecular method in comparison with enzymatic and microbial methods. Polymerase chain reaction (PCR) assay based on fixed and common sequences in the 16SrRNA, is a useful valuable and reliable technique with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products. The enzymatic mycoalert® method can be considered as a substitution for conventional microbial culture and DNA staining fluorochrome methods due to its higher sensitivity, specificity and speed of detection (<20 min).  相似文献   

15.
Aims: To optimize growth conditions for preparation of stocks of mycoplasma reference strains to obtain highly viable and disperse samples with low ratios of genomic copy (GC) number to that of colony forming units (CFU). These stocks are required for assessment of relative limits of detection (LOD) of alternative nucleic acid testing (NAT)‐based methods in comparison to the conventional microbiological methods. Methods and Results: A kinetics study was used to assess the changes in ratios between the numbers of GC and CFU at different growth phases of six different mycoplasma cultures Acholeplasma laidlawii, Mycoplasma gallisepticum, Mycoplasma arginini, Mycoplasma fermentans, Mycoplasma orale and Mycoplasma pneumoniae. All tested mycoplasmas demonstrated low GC/CFU ratios (≤10) within the log and early stationary growth phases. A significant increase in GC/CFU ratios was observed at the very late stationary and death phases, when the titre of cultures has declined. Similar patterns of GC/CFU profiles were observed for A. laidlawii and Myc. gallisepticum co‐cultured with suspension of Chinese hamster ovary (CHO) cells. Conclusions: Tested mycoplasma strains harvested at the exponential‐early stationary phases of growth demonstrated the lowest GC/CFU ratios and low propensity to form filamentous structures or aggregates under proposed conditions and can be used for the preparation of a mycoplasma reference panel for methods comparability study. Significance and Impact of the Study: This study shows that the preparation and use of viable mycoplasma reference strains with low CG/CFU ratios is the most reliable way to adequately evaluate the LOD of alternative NAT‐based mycoplasma testing methods.  相似文献   

16.
Mycoplasma contamination in cell culture is a serious setback to cell culturists across the world with a very high rate of reported occurrence particularly because of difficult early detection. Out of a variety of detection methods known, the double-step nested polymerase chain reaction (PCR)-based detection of mycoplasma in cell culture has been critically viewed upon because of chances of producing reliable results. A nested PCR technique, described to detect a large range of cell-culture-contaminating mycoplasma species, with greater sensitivity to detect as low a contamination as a few organisms, was compared with the results from two cytological techniques employed in tandem. These are DNA staining using Hoechst, the gold standard, and an immunofluorescent assay using a highly specific monoclonal antibody. The study undertaken on randomly collected cell cultures revealed a false-negative and several false-positive results in comparison to the cytological methods employed. The observations were particularly more unambiguous with the immunofluorescent assay employed in the study while simultaneously employed Hoechst staining serving as an indicator of bacterial contamination. There is a general apprehension that genus-specific PCR approaches could be associated with inaccurate outcome and only species-specific PCRs may be satisfactory in routine screening for mycoplasma contamination in cell cultures. At this juncture, it may be suggested that caution must be exercised while adopting the two-step nested PCR-based detection approaches, and the simultaneous employment of cytological methods used in this investigation could prove to be practicable in the proper interpretation of results.  相似文献   

17.
We constructed a 60-mer oligonucleotide microarray on the basis of benzene monooxygenase gene diversity to develop a new technology for simultaneous detection of the functional gene diversity in environmental samples. The diversity of the monooxygenase genes associated with benzene degradation was characterized. A new polymerase chain reaction (PCR) primer set was designed using conserved regions of benzene monooxygenase gene (BO12 primer) and used for PCR-clone library analysis along with a previously designed RDEG primer which targeted the different types of benzene monooxygenase gene. We obtained 20 types of amino acid sequences with the BO12 primer and 40 with the RDEG primer. Phylogenetic analysis of the sequences obtained suggested the large diversity of the benzene monooxygenase genes. A total of 87 60-mer probes specific for each operational taxonomical unit were designed and spotted on a microarray. When genomic DNAs of single strains were used in microarray hybridization assays, corresponding sequences were successfully detected by the microarray without any false-negative signals. Hybridization with soil DNA samples showed that the microarray was able to detect sequences that were not detected in clone libraries. Constructed microarray can be a useful tool for characterizing monooxygenase gene diversity in benzene degradation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
A study was conducted to determine if a gentamicin-resistant strain of mycoplasma could be developed for use in validating current mycoplasma detection methods for biologic product harvest cell culture fluid (CCF) containing gentamicin. A strain of gentamicin-resistant Mycoplasma hyorhinis was isolated and characterized. The study showed that this organism was similar to the wild-type strain in all ways examined except gentamicin resistance. Both strains of mycoplasma (the gentamicin resistant and the wild-type) exhibited comparable growth patterns and showed 100% homology based on DNA sequencing and analysis of a 464-bp PCR product. Also, analysis using species-specific antisera identified both strains as M. hyorhinis. Two commonly used lot release mycoplasma detection methods (culture and DNAF) consistently detected mycoplasmas in spiked biologic product harvest CCF containing gentamicin but not in unspiked samples. This study demonstrates the first isolation and characterization of a gentamicin-resistant M. hyorhinis that can be used to validate mycoplasma detection methods for biologic product harvest CCF containing gentamicin.  相似文献   

19.
为了探讨聚合酶链反应在牛血清支原体检测上的应用价值,以支原体高度保守的rRNA操纵子(支原体基因组中16SrRNA的编码区序列)设计引物,采用碱裂解法提取牛血清中支原体DNA作为模板进行聚合酶链反应。结果表明,阳性、阴性和内控对照都扩增出了预期的条带,聚合酶链反应与支原体培养法比较,有灵敏、快速、特异性高的特点,可用于牛血清中支原体的常规检测。  相似文献   

20.
Uphoff CC  Drexler HG 《Human cell》1999,12(4):229-236
Mycoplasma contamination is still one of the main problems in using cell cultures in biological and medical research and in the production of bioactive substances, because mycoplasma can alter nearly all parameters and products of the cell. They can persist undetected in the culture if no special detection methods are applied. In recent years, the PCR technology has become a commonly used method to analyze genomic DNA and the expression of genes, with both high specificity and sensitivity. This technique can be effectively employed for the detection and even the identification of mycoplasma contaminations in cell cultures applying primers complementary to the 16S rDNA region. Although this technique, once established, is characterized by simplicity and speed, PCR is still a complex process and its sensitivity and specificity can be influenced by a number of different parameters, e.g. inhibiting compounds originating from the preparation process of the DNA, RNA or cDNA, contamination of the solutions with PCR products, and the selection of a primer pair which does not cover all the mycoplasma species occurring in cell cultures. Thus, adequate controls have to be included to obtain reliable results. The present review examines the use of different primers of the 16S rDNA region including their specificity, the sensitivity applying various DNA or RNA preparation procedures, and the methods to detect finally the amplicons. In conclusion, basic nucleic acid preparation and PCR product detection methods offer a simple, fast and reliable technique for the examination of mycoplasma contaminations in cell cultures, provided that the indispensable control assays are implemented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号