首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
17beta-Estradiol (E2), diethylstilbestrol (DES) and several synthetic (or xenoestrogenic) compounds induced transactivation in MCF-7 or MDA-MB-231 cells transfected with wild-type estrogen receptor alpha (ERalpha) and a construct (pERE(3)) containing three tandem estrogen responsive elements (EREs) linked to a luciferase gene. In contrast, the antiestrogens ICI 182,780 and 4-hydroxytamoxifen (4-OHT) were inactive in this assay. We have investigated the effects of these compounds and several structurally-diverse estrogenic compounds on transactivation in cells transfected with pERE(3) and wild-type ERalpha, mutant ERalpha (1-553), and ERalpha (1-537) containing deletions of amino acids 595-554 and 595-538, respectively. These constructs were used to develop an in vitro assay to distinguish between different structural classes of estrogenic compounds. The results obtained using these constructs were highly cell context- and structure-dependent. Neither E2- nor diethylstilbestrol-induced transactivation in MCF-7 (or MDA-MB-231) cells transfected with pERE(3)/ERalpha (1-537) due to partial deletion of helix 12; however, octylphenol and nonlylphenol, resveratrol (a phytoestrogen), kepone and 2',3',4',5'-tetrachloro-4-biphenylol were "estrogenic" in MCF-7 cells transfected with pERE(3)/ERalpha (1-537). Moreover, the structure-dependent estrogenic activities of several synthetic estrogens (xenoestrogens) in MDA-MB-231 cells were different than those observed in MCF-7 cells. These results demonstrate that the estrogenic activity of many synthetic compounds do not require activation function 2 (AF-2) of ERalpha and are mechanistically different from E2. These data suggest that xenoestrogens are selective ER modulators (SERMs).  相似文献   

2.
We investigated the role of H524 of the human estrogen receptor alpha (ERalpha) for the binding of various estrogens [estradiol (E(2)), 3-deoxyestradiol (3-dE(2)), and 17beta-deoxyestradiol (17beta-dE(2))] and antiestrogens [4-hydroxytamoxifen (OHT), RU 39 411 (RU), and raloxifene (Ral)], which possess the 17beta-hydroxyl or counterpart hydroxyl (designated: 17beta/c-OH), with the exception of 17beta-dE(2) and OHT. The work involved a comparison of the binding affinities of these ligands for wild-type and H524 mutant ERs, modified or not with diethyl pyrocarbonate (DEPC), a selective histidine reagent. Alanine substitution of H524 did not significantly change the association affinity constant (relative to OHT) of 17beta-dE(2), whereas those of RU, Ral, E(2), and 3-dE(2) were decreased 3-fold, 14-fold, 24-fold, and 49-fold, respectively. Values of the two ligands available in radiolabeled form (E(2) and OHT) were correlated with the dissociation rate constants, which were increased 250-fold and 2-fold, respectively. The action of DEPC on wild-type ER led to a homogeneous ER population which still bound antiestrogens and 17beta-dE(2) with practically unchanged affinities (less than 4-fold decreases in relative affinity constants), while E(2) and 3-dE(2) displayed markedly decreased affinities (56-fold decrease for E(2)). Conversely, DEPC treatment of H524A mutant ER did not induce marked decreases in the relative affinities of any of the checked compounds (decreases wild-type ER) and very weakly protected H524A ER. Molecular modeling was tentatively used to interpret the biochemical results.  相似文献   

3.
The estrogen receptor alpha (ERalpha) is understood to play an important role in the progression of breast cancer. Therefore, pure antiestrogens with a preference for this receptor form are of interest as new agents for the treatment of this malignancy. Several chemical structures with selective binding affinity for ERalpha have been identified and might be useful for the synthesis of ERalpha-selective pure antiestrogens. In this study we applied the 2,5-diphenylfuran system which is closely related to the triphenylfurans described by others. Various side chains with amino and/or sulfur functions were linked to C3 to convert the furans to estrogen antagonists without residual estrogenic activity. The degree of alpha-selectivity which ranges from 2.5- to 236-fold is strongly influenced by the alkyl group at C4. Antiestrogenic potency was determined in MCF-7/2a breast cancer cells stably transfected with a luciferase gene under the control of an ERE. The 2,5-bis(4-hydroxyphenyl)furan with an ethyl substituent and a 6-[N-methyl-N-(3-pentylthiopropyl)amino]hexyl side chain exerted the strongest antiestrogenic effect in this series with an IC(50) value of 50 nM in cells stimulated with 1 nM estradiol. The RBA values of this derivative were 18% (ERalpha) and 3.4% (ERbeta) of estradiol, respectively. It inhibited the growth of wild-type MCF-7 cells with an IC(50) value of 22 nM. The data show that the 2,5-diphenylfuran system is appropriate for the development of pure antiestrogens with preference for ERalpha.  相似文献   

4.
The action of diethylpyrocarbonate on lamb uterine estrogen receptor produced an homogeneous population of the receptor (approximately 55%) which still bound triarylethylene antiestrogens such as 4-hydroxytamoxifen with a high affinity but bound classical potent estrogens such as estradiol or diethylstilbestrol with a very low affinity. To specify the structural features of the ligands involved in the decrease of ligand affinity upon modification of the estrogen receptor, we determined the relative affinity constants of 17 steroidal estrogens or antiestrogens (deriving from estradiol by a 7 alpha- or 11 beta-substitution) and 14 nonsteroidal estrogens or antiestrogens (all including the 1,2-trans-diphenylethylene structure of diethylstilbestrol) for native and diethylpyrocarbonate-modified estrogen receptors. Then the ratio of the relative affinity constant for the native receptor to that for the modified receptor (rho) was calculated for each ligand, to compare the variation in the affinity of the ligand upon modification of the receptor to that of 4-hydroxytamoxifen (rho = 1). The results showed that the strong decrease of ligand affinity upon modification of the receptor displayed by classical estrogens (rho greater than or equal to 200) is strictly dependent on the presence of the 17 beta-hydroxyl group in steroidal compounds or its alpha-4- and beta-4-counterparts in diethylstilbestrol-related compounds. However, for the 7 alpha- or 11 beta-derivatives of estradiol displaying potent antiestrogenic properties, the relative decrease in affinity was much more limited (rho less than or equal to 19). For 11 beta-derivatives displaying a relative estrogenic activity weaker than that of estradiol itself, an average decrease in affinity was observed (23 less than or equal to rho less than or equal to 62). With the diethylstilbestrol-related compounds, bearing or not the alpha-4-hydroxyl and/or the beta-4-hydroxy functions and showing either weak relative estrogenic or antiestrogenic properties, the relative variation in affinity was weak (0.6 less than or equal to rho less than or equal to 24). These results indicate that the interaction of 7 alpha- or 11 beta-substituted steroidal antiestrogens and of 1,2-trans-diphenylethylene or triphenylethylene derivatives, displaying either weak relative estrogenic or antiestrogenic properties with the receptor, differs at the 17 beta-hydroxy or at the alpha-4-/beta-4-hydroxy functions from that of potent estrogens. They suggest that the strong decrease in the relative affinity of ligands upon receptor modification may reflect the high efficiency of the ligands to activate the receptor properly.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Prolactin (PRL) and estrogen act synergistically to increase mammary gland growth, development, and differentiation. Based on their roles in the normal gland, these hormones have been studied to determine their interactions in the development and progression of breast cancer. However, most studies have evaluated only endocrine PRL and did not take into account the recent discovery that PRL is synthesized by human mammary cells, permitting autocrine/paracrine activity. To examine the effects of this endogenous PRL, we engineered MCF7 cells to inducibly overexpress human prolactin (hPRL). Using this Tet-On MCF7hPRL cell line, we studied effects on cell growth, PRLR, ER alpha, and PgR levels, and estrogen target genes. Induced endogenous hPRL, but not exogenous hPRL, increased ER alpha levels as well as estrogen responsiveness in these cells, suggesting that effects on breast cancer development and progression by estrogen may be amplified by cross-regulation of ER alpha levels by endogenous hPRL. The long PRLR isoform was also upregulated by endogenous, but not exogenous PRL. This model will allow investigation of endogenous hPRL in mammary epithelial cells and will enable further dissection of PRL effects on other hormone signaling pathways to determine the role of PRL in breast cancer.  相似文献   

6.
This study investigated the effects of E2, diethylstilbestrol (DES), antiestrogens, the phytoestrogen resveratrol, and the xenoestrogens octylphenol (OP), nonylphenol (NP), endosulfan, kepone, 2,3,4,5-tetrachlorobiphenyl-4-ol (HO-PCB-Cl(4)), bisphenol-A (BPA), and 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE) on induction of luciferase activity in breast cancer cells transfected with a construct (pSp1(3)) containing three tandem GC-rich Sp binding sites linked to luciferase and wild-type or variant ERalpha. The results showed that induction of luciferase activity was highly structure-dependent in both MCF-7 and MDA-MB-231 cells. Moreover, RNA interference assays using small inhibitory RNAs for Sp1, Sp3 and Sp4 also demonstrated structure-dependent differences in activation of ERalpha/Sp1, ERalpha/Sp3 and ERalpha/Sp4. These results demonstrate for the first time that various structural classes of ER ligands differentially activate wild-type and variant ERalpha/Sp-dependent transactivation, selectively use different Sp proteins, and exhibit selective ER modulator (SERM)-like activity.  相似文献   

7.
8.
The discovery of the first nonsteroidal antiestrogen ethamoxytriphetol (MER25) in 1958, opened the door to a wide range of clinical applications. However, the finding that ethamoxytriphetol was a “morning after” pill in laboratory animals, energized the pharmaceutical industry to discover more potent derivatives. In the wake of the enormous impact of the introduction of the oral contraceptive worldwide, contraceptive research was a central focus in the early 1960’s. Numerous compounds were discovered e.g., clomiphene, nafoxidine, and tamoxifen, but the fact that clinical studies showed no contraceptive actions, but, in fact, induced ovulation, dampened enthusiasm for clinical development. Only clomiphene moved forward to pioneer an application to induce ovulation in subfertile women. The fact that all the compounds were antiestrogenic made an application in patients to treat estrogen responsive breast cancer, an obvious choice. However, toxicities and poor projected commercial returns severely retarded clinical development for two decades. In the 1970’s a paradigm shift in the laboratory to advocate long term adjuvant tamoxifen treatment for early (non-metastatic) breast cancer changed medical care and dramatically increased survivorship. Tamoxifen pioneered that paradigm shift but it became the medicine of choice in a second paradigm shift for preventing breast cancer during the 1980’s and 1990’s. This was not surprising as it was the only medicine available and there was laboratory and clinical evidence for the eventual success of this application. Tamoxifen is the first medicine to be approved by the Food and Drug Administration (FDA) to reduce the risk of breast cancer in women at high risk. But it was the re-evaluation of the toxicology of tamoxifen in the 1980’s and the finding that there was both carcinogenic potential and a significant, but small, risk of endometrial cancer in postmenopausal women that led to a third paradigm shift to identify applications for selective estrogen receptor (ER) modulation. This idea was to establish a new group of medicines now called selective ER modulators (SERMs). Today there are 5 SERMs FDA approved (one other in Europe) for applications ranging from the reduction of breast cancer risk and osteoporosis to the reduction of menopausal hot flashes and improvements in dyspareunia and vaginal lubrication. This article charts the origins of the current path for progress in women’s health with SERMs.  相似文献   

9.
10.
Estrogen receptor alpha (ERalpha)/Sp1 activation of GC-rich gene promoters in breast cancer cells is dependent, in part, on activation function 1 (AF1) of ERalpha, and this study investigates contributions of the DNA binding domain (C) and AF2 (DEF) regions of ERalpha on activation of ERalpha/Sp1. 17Beta-estradiol (E2) and the antiestrogens 4-hydroxytamoxifen and ICI 182,780 induced reporter gene activity in MCF-7 and MDA-MB-231 cells cotransfected with human or mouse ERalpha (hERalpha or MOR), but not ERbeta and GC-rich constructs containing three tandem Sp1 binding sites (pSp13) or other E2-responsive GC-rich promoters. Estrogen and antiestrogen activation of hERalpha/Sp1 was dependent on overlapping and different regions of the C, D, E, and F domains of ERalpha. Antiestrogen-induced activation of hERalpha/Sp1 was lost using hERalpha mutants deleted in zinc finger 1 [amino acids (aa) 185-205], zinc finger 2 (aa 218-245), and the hinge/helix 1 (aa 265-330) domains. In contrast with antiestrogens, E2-dependent activation of hERalpha/Sp1 required the C-terminal F domain (aa 579-595), which contains a beta-strand structural motif. Moreover, in peptide competition experiments overexpression of a C-terminal (aa 575-595) F domain peptide specifically blocked E2-dependent activation of hERalpha/Sp1, suggesting that F domain interactions with nuclear cofactors are required for ERalpha/Sp1 action.  相似文献   

11.
12.
Phytanic acid and pristanic acid are branched-chain fatty acids, present at micromolar concentrations in the plasma of healthy individuals. Here we show that both phytanic acid and pristanic acid activate the peroxisome proliferator-activated receptor alpha (PPARalpha) in a concentration-dependent manner. Activation is observed via the ligand-binding domain of PPARalpha as well as via a PPAR response element (PPRE). Via the PPRE significant induction is found with both phytanic acid and pristanic acid at concentrations of 3 and 1 microM, respectively. The trans-activation of PPARdelta and PPARgamma by these two ligands is negligible. Besides PPARalpha, phytanic acid also trans-activates all three retinoic X receptor subtypes in a concentration-dependent manner. In primary human fibroblasts, deficient in phytanic acid alpha-oxidation, trans-activation through PPARalpha by phytanic acid is observed. This clearly demonstrates that phytanic acid itself, and not only its metabolite, pristanic acid, is a true physiological ligand for PPARalpha. Because induction of PPARalpha occurs at ligand concentrations comparable to the levels found for phytanic acid and pristanic acid in human plasma, these fatty acids should be seen as naturally occurring ligands for PPARalpha.These results demonstrate that both pristanic acid and phytanic acid are naturally occurring ligands for PPARalpha, which are present at physiological concentrations.  相似文献   

13.
The melanocortin-3 receptor (MC3R) is a member of family A rhodopsin-like G protein-coupled receptors. Mouse genetic studies suggested that MC3R and the related MC4R are non-redundant regulators of energy homeostasis. Lack of Mc3r leads to higher feed efficiency and fat mass. However, until now only a few MC3R mutations have been identified in humans and the role of MC3R in the pathogenesis of obesity was unclear. In the present study, we performed detailed functional studies on nine naturally occurring MC3R mutations recently reported. We found that all nine mutants had decreased cell surface expression. A260V, M275T, and L297V had decreased total expression whereas the other six mutants had normal total expression. Mutants S69C and T280S exhibited significant defects in ligand binding and signaling. The dramatic defects of T280S might be partially caused by decreased cell surface expression. In addition, we found mutants M134I and M275T had decreased maximal binding but displayed similar signaling properties as wild-type MC3R. All the other mutants had normal binding and signaling activities. Co-expression studies showed that all mutants except L297V did not affect wild-type MC3R signaling. Multiple mutations at T280 demonstrated the necessity of Thr for cell surface expression, ligand binding, and signaling. In summary, we provided detailed data of these novel human MC3R mutations leading to a better understanding of structure-function relationship of MC3R and the role of MC3R mutation in obesity.  相似文献   

14.
15.
We have developed a transient transfection system using the Cytomegalovirus (CMV) promoter to express the human estrogen receptor (ER) at very high levels in COS-1 cells and have used it to study the interaction of agonist and antagonist receptor complexes with estrogen response element (ERE) DNA. ER can be expressed to levels of 20-40 pmol/mg or 0.2-0.3% of total soluble protein and all of the soluble receptor is capable of binding hormone. The ER binds estradiol with high affinity (Kd 0.2 nM), and is indistinguishable from native ER in that the receptor is capable of recognizing its cognate DNA response element with high affinity, and of transactivating a transgene in an estradiol-dependent manner. Gel mobility shift assays reveal interesting ligand-dependent differences in the binding of receptor complexes to ERE DNA. Receptors occupied by estradiol or the type I antiestrogen transhydroxytamoxifen bind to DNA response elements when exposed to the ligand in vitro or in vivo. Likewise, receptors exposed to the type II antiestrogen ICI 164,384 in vitro bind to ERE DNA. However, when receptor exposure to ICI 164,384 is carried out in vivo, the ER-ICI 164,384 complexes do not bind to ERE DNA, or do so only weakly. This effect is not reversed by subsequent incubation with estradiol in vitro, but is rapidly reversible by in vivo estradiol exposure of intact COS-1 cells. This suggests there may be some cellular process involved in the mechanism of antagonism by the pure antiestrogen ICI 164,384, which is not observed in cell-free extracts.  相似文献   

16.
Relative mitogenic activities of various estrogens and antiestrogens   总被引:1,自引:0,他引:1  
G Stack  K Korach  J Gorski 《Steroids》1989,54(2):227-243
The abilities of a variety of estrogens and antiestrogens to stimulate DNA synthesis in the prepuberal rat uterus were compared. One microgram of each compound was administered in vivo via a single intraperitoneal injection. DNA synthesis was assayed in vitro in isolated nuclei 24 h later. The relative mitogenicities of the steroidal estrogens were: 16 alpha-E2 less than 17 alpha-E2 = E3 = 16-EpiE3 less than 16 beta-E2 = 17 beta-E2. The potencies of several nonsteroidal estrogens were also tested. Indenestrol A was as potent at 17 beta-E2, whereas indanestrol and dimethylstilbestrol had weaker activities. The antiestrogens, nafoxidine and 4-hydroxytamoxifen, were both potent stimulators of DNA synthesis. The abilities of an estrogen to stimulate increases in uterine wet weight, DNA polymerase alpha activities, and DNA synthesis in uterine nuclei 24 h after injection were closely correlated. Because the magnitude of the stimulation of DNA synthesis was greatest, its measurement is the most sensitive of these assays of uterotrophic activity.  相似文献   

17.
Binding of (3H)-estradiol labeled estrogen receptor from uterine cytosol to calmodulin was demonstrated by both affinity chromatography and sucrose gradient sedimentation. Triphenylethylene antiestrogens (tamoxifen family) with strong antagonistic activity against the calmodulin-dependent c-AMP phosphodiesterase largely reduced the binding of the receptor. Relevance of this observation with regard to the major antiproliferative activity (cytotoxicity) of these drugs is discussed.  相似文献   

18.
This study aimed at a better understanding of estrogen receptor alpha (ER) up regulation induced by partial estrogen antagonists. Effect of treatment with hydroxytamoxifen (OH-Tam) on ER level in MCF-7 cells was investigated by an approach combining ER measurement (enzyme immunoassay) and morphological demonstration (immunofluorescence). Furthermore, the influence of drug exposure on the rates of ER synthesis and degradation was assessed by determining [35S]methionine incorporated into the receptor in different experimental conditions (measurement of synthesis or pulse-chase experiments). ER up regulation was already induced by a 1-h pulse treatment with OH-Tam, thus a continuous exposure was not required. This process appeared reversible (i.e. ER accumulation due to OH-Tam rapidly vanished upon subsequent exposure to 17beta-estradiol (E2) or the pure antiestrogen RU 58668). While OH-Tam did not affect the rate of [35S]methionine incorporation into ER, it clearly caused an impairment of ER degradation (pulse-chase experiments) indicating that up regulation results from a stabilization of the receptor associated with the maintenance of its synthesis. Various tamoxifen derivatives, as well as a few related partial antiestrogens, were compared on the basis of binding ability and propensity to induce ER up regulation. A close relationship was found between both properties. Structure-activity analysis revealed that the capacity of these compounds to induce ER up regulation is associated with characteristics of their aminoalkyle side-chain, similar to those required for antiestrogenicity.  相似文献   

19.
In the years since we last reviewed the use of mutants to study tomato fruit ripening ( Grierson et al. 1987 ), considerable information has been gained by the cloning, sequencing and identification of many mRNAs implicated in this developmental process. Genes involved in cell wall degradation, colour change and ethylene synthesis have been cloned, and antisense techniques have been developed and used to produce genetically engineered mutant fruit deficient in these aspects of ripening (see Gray et al. 1992 ). Recently, a previously cloned ripening gene has been used to complement a naturally occurring fruit colour mutant, yellow flesh ( Fray & Grierson 1993a ), and a ripening impaired mutant, ripening inhibitor, has been used to identify several new ripening-related mRNAs ( Picton et al. 1993b ). The chromosomal region bearing the ripening inhibitor mutation has been subjected to high-resolution mapping ( Churchill, Giovannoni & Tanksley 1993 ) and chromosome walking experiments are in progress to identify this gene.  相似文献   

20.
Twenty N-terminal point mutations of the human estrogen receptor (hER) were constructed as ubiquitin fusion products and expressed under the control of the copper regulated promoter CUP1 in Saccharomyces cerevisiae. The objective of these studies was to overexpress hER in yeast and also to evaluate the functional properties of the N-terminal variants of hER. Fusion of the C-terminus of ubiquitin to the N-terminus of other proteins has been shown to increase the level of protein expression in yeast. Ubiquitin C-terminal hydrolases (UCHs) in yeast efficiently and precisely cleave at the junction with ubiquitin and render free hER with desired amino termini. The variant hER proteins, that were generated by mutating the N-terminus of hER, showed enormous differences in receptor protein levels and transactivation potential. All variant hER proteins were synthesized as 66 kDa species as identified by Western blotting with the exception of the proline-containing variant (Pro-ER). The UB-Pro-ER variant was cleaved inefficiently by UCHs in yeast. The UB-Pro-hEr variant also exhibited a different DNA band-shift profile compared to those of the other receptor variants and the wild-type. Val-, Thr-, and Lys-ER did not express, as measured by enzyme-immunoassay and Western blotting; nor did they transactivate a β-galactosidase reporter gene in yeast. However, the Glu-ER was 50% more active in transactivation as compared to the wild-type. The results of the receptor content, DNA binding properties and transactivation analysis in yeast demonstrate that the N-terminal residue plays an important role in the structure and function of hER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号