首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eicosapentaenoic acid, which is a major fatty acid in fish oil, previously has been shown to competitively inhibit the cyclooxygenase-catalyzed metabolism of arachidonic acid in platelets. In the present study the effect of eicosapentaenoic acid on the production of leukotriene B via the lipoxygenase pathway in human neutrophils was examined. Eicosapentaenoate was incorporated into complex lipids of neutrophils at the same rate as arachidonate; release of the two homologous fatty acids in response to calcium ionophore A23187 was equivalent and both fatty acids were metabolized to a leukotriene B. The products derived from eicosapentaenoic acid were identified as leukotriene B5 and its stereoisomers. Eicosapentaenoate was a less favorable substrate for leukotriene B5 synthesis (94 ng/10(7) cells/5 min at 20 microM exogenous fatty acid) than arachidonate was for leukotriene B4 (401 ng under the same conditions). However, eicosapentaenoate or an oxygenated product inhibited arachidonate metabolism since at equimolar concentrations of eicosapentaenoate and arachidonate leukotriene B4 production was decreased by 68%. The inhibitory effect occurred at the level of leukotriene A hydrolase. The biological activity of eicosapentaenoate -derived products was tested; leukotriene B5 was found to have only approximately 10% of the potency of leukotriene B4 in inducing the aggregation of neutrophils, and the stereoisomers of leukotriene B5 were inactive. These data suggest that diets enriched in eicosapentaenoic acid affect neutrophils by decreasing the quantity of leukotriene B and by the production of a less potent leukotriene.  相似文献   

2.
Liver fatty acid binding protein (L-FABP) binds avidly the arachidonic acid metabolites, hydroperoxyeicosatetraenoic acids (HPETEs) and hydroxyeicosatetraenoic acids (HETEs). Binding of 15-[3H]HPETE was specific, saturable, reversible, and rapid. Protein specificity was indicated by the following order: L-FABP greater than bovine serum albumin greater than ovalbumin = beta-lactoglobulin greater than ribonuclease. Ligand specificity was evidenced by the following order of apparent competition: 15-HPETE greater than or equal to 5-HETE greater than or equal to 5-HPETE = oleic acid greater than 12-HETE greater than 12-HPETE greater than or equal to 15-HETE greater than prostaglandin E1 much greater than leukotriene C4 greater than prostaglandin E2 much greater than thromboxane B2 = leukotriene B4. Once bound, 15-HPETE was reversibly displaced. Ligand was recovered from the protein complex and confirmed to be 15-[3H]HPETE by TLC. L-FABP bound HPETE with a dissociation constant of 76 nM,5-HETE at 175 nM, and 15-HETE at 1.8 microM, and the reference fatty acids oleic acid at 1.2 microM and arachidonic acid at 1.7 microM. Thus, the affinity was approximately 16-fold greater for 15-HPETE, and 7-fold higher for 5-HETE, than for oleic acid. The need exists for studies of complexes of L-FABP with the HPETEs and HETEs in hepatocytes, especially since L-FABP has previously been associated with mitosis in normal hepatocytes, and shown to be the target protein of two liver carcinogens, and these arachidonic acid metabolites have been found to be able to modulate activities related to cell growth.  相似文献   

3.
Polymorphonuclear leukocytes (PMN) have been identified as preferred target cells for Escherichia coli hemolysin in human blood (Bhakdi, S., Greulich, S., Muhly, M., Ebersp?cher, B., Becker, H., Thiele, A., and Hugo, F. (1989) J. Exp. Med. 169, 737-754). Leukotriene and 5-hydroxyeicosatetraenoic acid generation was investigated in human PMN challenged with E. coli hemolysin in the absence or presence of free arachidonic acid or eicosapentaenoic acid (EPA). In the absence of exogenous free fatty acids, E. coli hemolysin (0.01-10 hemolytic units/ml) induced moderate generation of leukotriene B4 (LTB4) and its omega-oxidation products. The presence of free arachidonic acid (10 microM) during E. coli hemolysin (0.1 hemolytic unit/ml) challenge evoked the generation of large quantities of these products (greater than 100 pmol/1.5 x 10(7) PMN). In parallel, large amounts of 5-hydroxyeicosatetraenoic acid and nonenzymatic LTA4 hydrolysis products appeared. Product release peaked or plateaued 5-10 min after E. coli hemolysin challenge. The presence of exogenous EPA upon E. coli hemolysin challenge resulted in the exclusive generation of LTB5 and metabolites, LTA5 decay products and 5-hydroxyeicosapentaenoic acid. Dose and time dependences corresponded to those with arachidonic acid provision, and the total of EPA-derived products surpassed that of arachidonic acid metabolites in corresponding experiments approximately 2-fold. Increasing the time between free fatty acid provision and E. coli hemolysin challenge resulted in a rapid decline in the generation of arachidonic acid or EPA metabolites. Thus, subhemolytic doses of E. coli hemolysin evoke marked PMN eicosanoid generation that is dependent on exogenous free fatty acid supply, with total amounts approximating those found in calcium ionophore-stimulated neutrophils.  相似文献   

4.
Resident mouse peritoneal macrophages when exposed to zymosan during the first day of cell culture synthesize and secrete large amounts of prostaglandin E2 (PGE2) and leukotriene C4 (LTC4), the respective products of cyclo-oxygenase- and 5-lipoxygenase-catalysed oxygenations of arachidonic acid. Under these conditions of cell stimulation only small amounts of hydroxyeicosatetraenoic acids (HETEs) are concomitantly produced. However, exogenously added arachidonic acid is metabolized to large amounts of 12- and 15-HETE and only relatively small amounts of PGE2. No LTC4 is formed under these conditions. In contrast, resident mouse peritoneal macrophages in cell culture for 4 days synthesized less PGE2 and LTC4 when exposed to zymosan. However, these macrophage populations continue to synthesize 12-HETE from exogenously added arachidonic acid. Zymosan induced the secretion of a lysosomal enzyme, N-acetyl-beta-glucosaminidase, equally in both 1- and 4-day cultures. Both 12- and 15-hydroperoxyeicosatetraenoic acids (HPETEs), the precursors of 12- and 15-HETE, were found to be irreversible inhibitors of the cyclo-oxygenase pathway and reversible inhibitors of the 5-lipoxygenase pathway in macrophages. 15-HETE were found to be reversible inhibitors of both pathways. Thus the oxidation of arachidonic oxidation of arachidonic acid to both prostaglandins and leukotrienes may be under intracellular regulation by products of 12- and 15-lipoxygenases.  相似文献   

5.
Mouse skin 8-lipoxygenase was expressed in COS-7 cells by transient transfection of its cDNA in pEF-BOS carrying an elongation factor-1alpha promoter. When crude extract of the transfected COS-7 cells was incubated with arachidonic acid, 8-hydroxy-5,9,11, 14-eicosatetraenoic acid was produced as assessed by reverse- and straight-phase high performance liquid chromatographies. The recombinant enzyme also reacted on alpha-linolenic and docosahexaenoic acids at almost the same rate as that with arachidonic acid. Eicosapentaenoic and gamma-linolenic acids were also oxygenated at 43% and 56% reaction rates of arachidonic acid, respectively. In contrast, linoleic acid was a poor substrate for this enzyme. The 8-lipoxygenase reaction with these fatty acids proceeded almost linearly for 40 min. The 8-lipoxygenase was also expressed in an Escherichia coli system using pQE-32 carrying six histidine residues at N-terminal of the enzyme. The expressed enzyme was purified over 380-fold giving a specific activity of approximately 0.2 micromol/45 min per mg protein by nickel-nitrilotriacetate affinity chromatography. The enzymatic properties of the purified 8-lipoxygenase were essentially the same as those of the enzyme expressed in COS-7 cells. When the purified 8-lipoxygenase was incubated with 5-hydroperoxy-6,8,11, 14-eicosatetraenoic acid, two epimers of 6-trans-leukotriene B4, degradation products of unstable leukotriene A4, were observed upon high performance liquid chromatography. Thus, the 8-lipoxygenase catalyzed synthesis of leukotriene A4 from 5-hydroperoxy fatty acid. Reaction rate of the leukotriene A synthase was approximately 7% of arachidonate 8-lipoxygenation. In contrast to the linear time course of 8-lipoxygenase reaction with arachidonic acid, leukotriene A synthase activity leveled off within 10 min, indicating suicide inactivation.  相似文献   

6.
To determine identities of mediators and mechanisms for their release from pulmonary airway epithelial cells, we examined the capacities of epithelial cells from human, dog and sheep airways to incorporate, release and oxygenate arachidonic acid. Purified cell suspensions were incubated with radiolabeled arachidonic acid and/or ionophore A23187; fatty acid esterification and hydrolysis were traced chromatographically, and oxygenated metabolites were identified using high-pressure liquid chromatography and mass-spectrometry. In each species, cellular uptake of 10 nM arachidonic acid was concentrated in the phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine fractions, and subsequent incubation with 5 microM A23187 caused release of 10-12% of the radiolabeled pool selectively from phosphatidylcholine and phosphatidylinositol. By contrast, the products of arachidonic acid oxygenation were species-dependent and in the case of human cells were also novel: A23187-stimulated human epithelial cells converted arachidonic acid predominantly to 15-hydroxyeicosatetraenoic acid (15-HETE) and two distinct 8,15-diols in addition to prostaglandin (PG) E2 and PGF2 alpha. Cell incubation with exogenous arachidonic acid (2.0-300 microM) led to progressively larger amounts of 15-HETE and the dihydroxy, epoxyhydroxy and keto acids characteristic of arachidonate 15-lipoxygenase. Both dog and sheep cells converted exogenous or endogenous arachidonic acid to low levels of 5-lipoxygenase products, including leukotriene B4 without significant 15-lipoxygenase activity. In the cyclooxygenase series, sheep cells selectively released PGE2, while dog cells generated predominantly PGD2. The findings demonstrate that stereotyped esterification and phospholipase activities are expressed at uniform levels among airway epithelial cells from these species, but pathways for oxygenating arachidonic acid allow mediator diversity depending greatly on species and little on arachidonic acid presentation.  相似文献   

7.
Platelet-activating factor (PAF) is a phospholipid mediator of inflammation and allergy that is synthesized by several inflammatory cells including neutrophils. Addition of exogenous arachidonic acid to ionophore A23187-stimulated bovine neutrophils led to the inhibition of PAF biosynthesis assayed by incorporation of [3H]acetate into PAF and by bioassay; under the same conditions, leukotriene B4 (LTB4) formation was not decreased. The activities of the PAF metabolism enzymes indicated that the PAF synthesis inhibition by arachidonic acid is mediated via the acetyltransferase inhibition which is the last enzyme of the PAF formation. Another unsaturated fatty acid, oleic acid, exhibited the same inhibitory effect on [3H]acetate-PAF formation; however, the saturated stearic acid did not lead to any inhibition. These findings suggest that liberation of unsaturated fatty acids from membrane phospholipids, as a consequence of phospholipase A2 activation, would modulate PAF formation via inhibition of the acetyltransferase. In addition, the utilization of arachidonic acid oleic acids in activated neutrophils furnishes an easy means of blocking PAF synthesis in order to understand the role of this mediator in cellular processes.  相似文献   

8.
Mouse skin 8-lipoxygenase was expressed in COS-7 cells by transient transfection of its cDNA in pEF-BOS carrying an elongation factor-1α promoter. When crude extract of the transfected COS-7 cells was incubated with arachidonic acid, 8-hydroxy-5,9,11,14-eicosatetraenoic acid was produced as assessed by reverse- and straight-phase high performance liquid chromatographies. The recombinant enzyme also reacted on α-linolenic and docosahexaenoic acids at almost the same rate as that with arachidonic acid. Eicosapentaenoic and γ-linolenic acids were also oxygenated at 43% and 56% reaction rates of arachidonic acid, respectively. In contrast, linoleic acid was a poor substrate for this enzyme. The 8-lipoxygenase reaction with these fatty acids proceeded almost linearly for 40 min. The 8-lipoxygenase was also expressed in an Escherichia coli system using pQE-32 carrying six histidine residues at N-terminal of the enzyme. The expressed enzyme was purified over 380-fold giving a specific activity of approximately 0.2 μmol/45 min per mg protein by nickel–nitrilotriacetate affinity chromatography. The enzymatic properties of the purified 8-lipoxygenase were essentially the same as those of the enzyme expressed in COS-7 cells. When the purified 8-lipoxygenase was incubated with 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid, two epimers of 6-trans-leukotriene B4, degradation products of unstable leukotriene A4, were observed upon high performance liquid chromatography. Thus, the 8-lipoxygenase catalyzed synthesis of leukotriene A4 from 5-hydroperoxy fatty acid. Reaction rate of the leukotriene A synthase was approximately 7% of arachidonate 8-lipoxygenation. In contrast to the linear time course of 8-lipoxygenase reaction with arachidonic acid, leukotriene A synthase activity leveled off within 10 min, indicating suicide inactivation.  相似文献   

9.
Dietary marine n-3 polyunsaturated fatty acids have demonstrated an antiinflammatory potential in epidemiologic and intervention studies in humans. Proposed mechanisms, involving only leukocytes, fall short of explaining this potential completely. Enriched by dietary means with eicosapentaenoic acid (EPA), stimulated human platelets release substantial amounts of eicosapentaenoic acid and 12S-hydroxyeicosapentaenoic acid (12S-HEPE) in addition to 12S-hydroxyeicosatetraenoic acid (12S-HETE) derived from arachidonic acid. Human neutrophils metabolize 12S-HETE to 5S,12S-DiHETE when stimulated, whereas unstimulated neutrophils produce 12S,20-DiHETE. This study was undertaken to characterize metabolism of 12S-HEPE in human neutrophils. We demonstrate herein for the first time that 12S-HEPE is metabolized by human neutrophils. In unstimulated neutrophils 20-hydroxylation to 12S,20-DiHEPE occurs, whereas in stimulated neurtrophils 5-lipoxygenation to 5S,12S-DiHEPE takes place. The structures of these metabolites were characterized by their relative retention times on reversed-phase high pressure liquid chromatography, by their UV absorbance spectra, and by gas-liquid chromatography-mass spectrometry. With increasing amounts of 12S-HEPE, stimulated neutrophils produced increasing amounts of 5S,12S-DiHEPE, which is virtually inactive biologically. Concomitantly, production of the potent chemokinetic and chemoattractant arachidonic acid derivative leukotriene B4 decreased. Thus, 12S-HEPE can compete with endogenous arachidonic acid for 5-lipoxygenation in stimulated human neutrophils. 12,20-DiHEPE, LTB5, and 5S,12S-DiHEPE were detectable after coincubating EPA-enriched platelets with unenriched neutrophils, and arachidonic acid-derived 5-lipoxygenase products were decreased. We conclude that 12S-HEPE can participate in platelet-neutrophil interactions in a manner similar to 12S-HETE. By providing competing substrates for neutrophil 5-lipoxygenase, platelets might contribute to the antiinflammatory potential of dietary n-3 fatty acids through platelet-neutrophil interaction.  相似文献   

10.
Monosodium urate (MSU) crystals stimulate the production of arachidonic acid metabolites by human neutrophils and platelets. Neutrophils exposed to MSU generated leukotriene B (LTB), 6-trans-LTB4, 12-epi-6-trans-LTB4, and 5S, 12S DHETE from endogenous sources of arachidonate. In addition to these metabolites both monohydroxyeicosatetraenoic acids (i.e., 5-HETE) and omega-oxidation products (i.e., 2O -COOH LTB4) were formed by neutrophils exposed to MSU. Addition of exogenous arachidonic acid led to increased formation of each of these metabolites. When neutrophils were treated with colchicine (10 microM), LTB4 but not 5-HETE formation was impaired. (1-14C)Arachidonate-labeled platelets exposed to MSU released (1-14C)-arachidonate, (14C)-12 HETE, (14C)-HHT and (14C)-thromboxane B2. Results indicate that MSU stimulates arachidonic acid metabolism in both human neutrophils and platelets. Moreover, they suggest not only that metabolites of arachidonate may be considered as possible candidates for mediators of inflammation in crystal-associated diseases, but that colchicine blocks the formation of LTB4.  相似文献   

11.
Peripheral blood neutrophils from patients with allergic rhinitis and from normal subjects were incubated for 5 min at 37 degrees C with 0.15 microM calcium ionophore A23187 in the absence or presence of exogenous arachidonic acid (2.5 to 10 microM). In neutrophils from allergic patients, the leukotriene B4 (LTB4) level was significantly increased by exogenous arachidonic acid in a concentration-dependent manner (16.2 +/- 4.2 and 38.1 +/- 6.8 pmol/5 min per 2 X 10(6) cells in the absence and presence of 10 microM arachidonic acid, respectively; P less than 0.005; n = 8). The LTB4 level in neutrophils from healthy subjects was only 0.97 +/- 0.17 pmol/5 min per 2 x 10(6) cells (n = 5) and was not enhanced by exogenous arachidonate. When cells from allergic patients were challenged in the presence of exogenous [1-14C]arachidonic acid, released LTB4 was radiolabeled and the incorporated radioactivity increased with the labeled arachidonate concentration. Labeled LTB4 was never detectable after incubating neutrophils from normal donors with exogenous labeled arachidonate. When neutrophils were incubated with [1-14C]arachidonate for 1 h, the different lipid pools of the two cell populations were labeled but both types of neutrophils produced unlabeled LTB4 in response to ionophore stimulation. The hydrolysis of choline and ethanolamine phospholipids into diacyl-, alkenylacyl- and alkylacyl-species revealed that solely the alkylacyl-subclass of phosphatidylcholine was unlabeled. We conclude (i) that neutrophils from allergic patients stimulated by low ionophore concentration produce more LTB4 than neutrophils from healthy subjects and incorporate exogenous arachidonate, (ii) that endogenous arachidonate converted to LTB4 by the 5-lipoxygenase pathway may provide only from 1-O-alkyl-2-arachidonoyl-glycero-3-phosphocholine.  相似文献   

12.
A neoplastic mast cell tumor was grown in mice which had been raised since birth on a diet enriched with eicosapentaenoic acid. Intact harvested mastocytoma cells were stimulated with calcium ionophore A23187 to produce lipoxygenase products from the polyunsaturated fatty acids liberated from the cellular membranes. Leukotriene B4, B5, C4, and C5 were isolated and characterized by HPLC retention time, ultraviolet absorption spectrometry and mass spectrometry. The arachidonic acid content of the mast cell tumor lipids was altered from 9.2 to 3.9 mole % while eicosapentaenoic acid increased from 0.5 to 4.5 mole % in response to the fish oil-supplemented diet. The relative amounts of arachidonic and eicosapentaenoic acids (3.9 and 4.5 mole % respectively) were associated with similar amounts of LTB4 and LTB5 synthesized by the cells. These results suggest that the epoxide leukotriene (LIA) derivative can be made efficiently from either arachidonic or eicosapentaenoic acids when both are present in cellular lipids. In contrast, the ratio of LTC4 to LTC5 (10 to 1) indicates that the reaction of LTA with glutathione may be critically dependent upon the structure of the unsaturated fatty acid with the ratio of LTC4/LTB4 (2.0) more than 10 times greater than that (0.16) for LTC5/LTB5.  相似文献   

13.
In an isolated rabbit lung model, we tested the hypothesis that platelet-activating factor (PAF)-induced leukotriene (LT) synthesis is critically dependent on the free precursor fatty acid supply and the possible substitution of arachidonic acid (AA) by eicosapentaenoic acid (EPA). To augment the intravascular polymorphonuclear neutrophils (PMNs) in the isolated lung, human PMNs were infused into the pulmonary artery. LTs and hydroxyeicosatetra(penta)enoic acids were quantified with HPLC techniques. Application of PAF (5 microM) or AA (10 microM) provoked the generation of limited quantities of 4-series LTs and 5-hydroxyeicosatetraenoic acid (total sum of 5-lipoxygenase products approximately 7 and approximately 27 pmol/ml in lungs both with and without infused PMNs, respectively). Combined administration amplified 5-lipoxygenase product formation, with a predominance of cysteinyl-LT synthesis in lungs both without (total sum approximately 67 pmol/ml) and, much more strikingly, with (total sum approximately 308 pmol/ml) an infusion of neutrophils. EPA (10 microM) elicited exclusive generation of 5-series LTs and 5-hydroxyeicosapentaenoic acid (total sum approximately 82 pmol/ml). Dual stimulation with PAF and EPA provoked amplification of EPA-derived 5-lipoxygenase product formation, again with predominance of cysteinyl-LTs in lungs without (total sum approximately 224 pmol/ml) and, in particular, with (total sum approximately 545 pmol/ml) preceding microvascular PMN entrapment. Combined application of PAF, AA, and EPA resulted in the synthesis of LTs derived from both fatty acids, with a predominance of 5-series products. We conclude that the PAF-evoked 5-lipoxygenase product formation in the neutrophil-harboring lung capillary bed is critically dependent on intravascular precursor fatty acid supply, with EPA representing the preferred substrate compared with AA. PMN-related transcellular eicosanoid synthesis is suggested to underlie the predominant generation of cysteinyl-LTs. The supply of n-3 versus n-6 precursor fatty acid may thus have a major impact on inflammatory mediator generation.  相似文献   

14.
Recently, we identified the two myeloid related protein-8 (MRP8) (S100A8) and MRP14 (S100A9) as fatty acid-binding proteins (Klempt, M., Melkonyan, H., Nacken, W., Wiesmann, D., Holtkemper, U., and Sorg, C. (1997) FEBS Lett. 408, 81-84). Here we present data that the S100A8/A9 protein complex represents the exclusive arachidonic acid-binding proteins in human neutrophils. Binding and competition studies revealed evidence that (i) fatty acid binding was dependent on the calcium concentration; (ii) fatty acid binding was specific for the protein complex formed by S100A8 and S100A9, whereas the individual components were unable to bind fatty acids; (iii) exclusively polyunsaturated fatty acids were bound by S100A8/A9, whereas saturated (palmitic acid, stearic acid) and monounsaturated fatty acids (oleic acid) as well as arachidonic acid-derived eicosanoids (15-hydroxyeicosatetraenoic acid, prostaglandin E(2), thromboxane B(2), leukotriene B(4)) were poor competitors. Stimulation of neutrophil-like HL-60 cells with phorbol 12-myristate 13-acetate led to the secretion of S100A8/A9 protein complex, which carried the released arachidonic acid. When elevation of intracellular calcium level was induced by A23187, release of arachidonic acid occurred without secretion of S100A8/A9. In view of the unusual abundance in neutrophilic cytosol (approximately 40% of cytosolic protein) our findings assign an important role for S100A8/A9 as mediator between calcium signaling and arachidonic acid effects. Further investigations have to explore the exact function of the S100A8/A9-arachidonic acid complex both inside and outside of neutrophils.  相似文献   

15.
Granulocyte-macrophage CSF (GM-CSF) primes human neutrophils for increased functional responsiveness to a variety of inflammatory agonists. In the present report, we have investigated the effect of human GM-CSF on the ability of platelet-activating factor (PAF) to induce the synthesis of 5-lipoxygenase products in human neutrophils. Human neutrophils stimulated with PAF in the range of 10(-5) to 10(-7) M for 15 min released small quantities of leukotriene B4 and its omega-oxidation products, 20-OH- and 20-COOH-leukotriene B4 in amounts that were detectable by enzyme immunoassay. Preincubation of normal peripheral blood neutrophils with human rGM-CSF enhanced the synthesis of the 5-lipoxygenase products in a time- and dose-dependent manner. Treatment with GM-CSF enabled their detection in response to lower concentrations of PAF (greater than or equal to 10(-9) M). The PAF receptor antagonist BN52021 inhibited the synthesis of 5-lipoxygenase products by GM-CSF-treated neutrophils in response to PAF. In addition to its effect on PAF-induced leukotriene synthesis, GM-CSF also augmented intracellular calcium mobilization by PAF. This observation prompted us to examine the effect of GM-CSF on two calcium-dependent events that are essential for leukotriene synthesis, arachidonic acid liberation, and 5-lipoxygenase activation. GM-CSF by itself, did not directly activate either of these two processes, however, it consistently and markedly enhanced the ability of PAF to do so. These results indicate that preincubation of peripheral blood neutrophils with GM-CSF enhances the ability of PAF to stimulate leukotriene synthesis by increasing both arachidonic acid availability and 5-lipoxygenase activation in response to PAF. These observations provide additional evidence of an important role for GM-CSF in the modulation of inflammatory responses to endogenous agonists through enhancement of the production of potent cellular inflammatory mediators such as leukotrienes.  相似文献   

16.
The ability of the major neutrophil-derived lipoxygenase metabolites of arachidonic acid to increase the rate of 45Ca influx in rabbit neutrophils was examined. The results obtained demonstrate that (5S),(12R)-dihydroxy-6,8,11,14-(cis,trans,trans,cis)-eicosatetraenoic acid (leukotriene B4) is the most active of the arachidonic acid metabolites. The activity of leukotriene B4 is highly stereospecific in that its three nonenzymatically derived isomers are essentially inactive. The omega-hydroxylation of leukotriene B4 results in a compound that is nearly as active as leukotriene B4 as far as its ability to stimulate calcium influx and neutrophil aggregation while being a much weaker secretagogue. The further conversion of leukotriene B4 into a dicarboxylic acid removes all detectable biological activity. 5,6-Oxido-7,9,11,14-eicosatetraenoic acid (leukotriene A4) methyl ester was also found to increase the rate of calcium influx, while the degradation products of native leukotriene A4 were essentially inactive. These results demonstrate that a close correlation exists between the ability of the various lipoxygenase products to alter calcium homeostasis in rabbit neutrophils and their biological activities.  相似文献   

17.
5-oxo-(7E,9E,11Z,14Z)-eicosatetraenoic acid (5-oxo-ETE) has been identified as a non-enzymatic hydrolysis product of leukotriene A(4) (LTA(4)) in addition to 5,12-dihydroxy-(6E,8E,10E, 14Z)-eicosatetraenoic acids (5,12-diHETEs) and 5,6-dihydroxy-(7E,9E, 11Z,14Z)-eicosatetraenoic acids (5,6-diHETEs). The amount of 5-oxo-ETE detected in the mixture of the hydrolysis products of LTA(4) was found to be pH-dependent. After incubation of LTA(4) in aqueous medium, the ratio of 5-oxo-ETE to 5,12-diHETE was 1:6 at pH 7.5, and 1:1 at pH 9.5. 5-Oxo-ETE was isolated from the alkaline hydrolysis products of LTA(4) in order to evaluate its effects on human polymorphonuclear (PMN) leukocytes. 5-Oxo-ETE induced a rapid and dose-dependent mobilization of calcium in PMN leukocytes with an EC(50) of 250 nM, as compared to values of 3.5 nM for leukotriene B(4) (LTB(4)500 nM for 5(S)-hydroxy-(6E,8Z,11Z,14Z)-eicosatetraenoic acid (5-HETE). Pretreatment of the cells with LTB(4) totally abolished the calcium response induced by 5-oxo-ETE. In contrast, the preincubation with 5-oxo-ETE did not affect the calcium mobilization induced by LTB(4). The calcium response induced by 5-oxo-ETE was totally inhibited by the specific LTB(4) receptor antagonist LY223982. These data demonstrate that 5-oxo-ETE can induce calcium mobilization in PMN leukocyte via the LTB(4) receptor in contrast to the closely related analog 5-oxo-(6E,8Z,11Z, 14Z)-eicosatetraenoic acid which is known to activate human neutrophils by a mechanism independent of the receptor for LTB(4).  相似文献   

18.
1. The fatty acid composition of erythrocytes and leucocytes of the elasmobranch, Scyliorhinus canicula, was determined so as to indicate substrate availability for eicosanoid formation. 2. Leucocytes showed a greater degree of fatty acid unsaturation than the erythrocytes, with particularly high levels of docosahexaenoic acid (22:6,n-3). 3. The major eicosanoid precursors, arachidonic acid (20:4,n-6) and eicosapentaenoic acid (20:5,n-3), represented 13.9% and 5.2% of the total fatty acid, respectively, in erythrocytes compared with 10.7% and 6% in leucocytes. 4. Whole blood and isolated leucocytes were stimulated with calcium ionophore, A23187 and the resulting lipoxygenase products separated by reverse phase high performance liquid chromatography. 5. The main lipoxygenase products formed were 6-trans-leukotriene B4, 6-trans-12-epi-leukotriene B4, 5(S),6(R) dihydroxyeicosatetraenoic acid and 5- and 15-hydroxyeicosatetraenoic acid. 6. No leukotriene B4, leukotriene B5, or lipoxins were detected.  相似文献   

19.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) is an in vitro and in vivo stimulator of human bone marrow myelomonocytic precursor cells and mature granulocyte and macrophage effector cells. We have compared the effect of GM-CSF on the synthesis of 5-lipoxygenase products induced by the chemotactic peptide fMet-Leu-Phe and the calcium ionophore A23187 in human neutrophils. Although GM-CSF alone did not stimulate detectable synthesis of products of the 5-lipoxygenase pathway, pre-incubation of neutrophils with 200 pM GM-CSF for 1 hour at 23 degrees C enhanced synthesis of leukotriene B4, its all-trans isomers and omega-oxidation products, and 5-hydroxyeicosatetraenoic acid in response to both the calcium ionophore A23187 (1.5 microM), and the chemotactic peptide fMet-Leu-Phe (0.1 microM). This priming effect of GM-CSF was maximal after a 60 min incubation at 23 degrees C, or after a 30 min preincubation at 37 degrees C. The effect of GM-CSF was maximal using a concentration of 1 nM. Enhancement of the leukotriene synthesis stimulated by A23187 was only observed when the cells were stimulated by the ionophore for periods of 3 minutes or less. In contrast, the enhancing effect of GM-CSF was still apparent when cells were exposed to fMet-Leu-Phe for as long as 15 minutes. Furthermore, the enhancing effect of GM-CSF was ablated when neutrophils were stimulated with A23187 and exogenous arachidonic acid. However, co-addition of exogenous arachidonic acid with fMet-Leu-Phe did not entirely mask the effect of GM-CSF. Possible mechanisms of action of GM-CSF are discussed.  相似文献   

20.
Docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) was facilely incorporated into phospholipids of mouse peritoneal macrophages following incubation with pure fatty acids complexed to bovine serum albumin. Following stimulation with calcium ionophore A23187, the DHA-enriched cells synthesized significantly smaller amounts of leukotriene C4 and leukotriene B4 compared to control or EPA-enriched cells. The EPA-enriched cells synthesized lower amounts of leukotriene C4 and leukotriene B4 compared to control cells. The stimulated macrophages utilized endogenously released arachidonic acid for leukotriene B4 and leukotriene C4 synthesis. Exogenous arachidonic acid increased the formation of 12-hydroxyeicosatetraenoic acid (12-HETE) and 15-HETE and macrophages enriched with DHA or EPA produced similar amounts of 12-HETE and 15-HETE compared to control cells. These studies demonstrated that the synthesis of leukotriene C4, leukotriene B4 and HETE in macrophages is differentially affected by DHA and EPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号