首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic diversity and genetic relatedness of mei (Prunus mume; 2n = 16) were studied using amplified fragment length polymorphism (AFLP) markers. Eight EcoRI–PstI AFLP primer combinations were applied to 121 distinct genotypes of mei cultivars and related species. A total of 508 AFLP product bands were produced, of which 382 were polymorphic. The unweighted pair group method with arithmetic averages analysis was carried out based on these AFLP markers. From this analysis, “Qugeng Mei,” “Yan Mei,” “Chaodou Mei,” and mei cultivars were seen to share the same P. mume genetic stem. The AFLP data were able to clearly discriminate P. mume from other species in the genus Prunus, with P. armeniaca aligning as its closest related species. Two major groups and nine subgroups of mei flower were identified, and there was a strong coincidence of these AFLP-based groupings with the respective morphological characters of the accessions. The genetic diversity of mei accessions was greatest in the Yunnan Province and decreased toward Eastern China and Japan, so supporting the hypothesis that the southwest of China represents the genetic diversity center of the species.  相似文献   

2.
Questions often arise concerning the genetic stability of plant materials stored in liquid nitrogen for long time periods. This study examined the genetic stability of cryopreserved shoot tips of Rubus germplasm that were stored in liquid nitrogen for more than 12 yr, then rewarmed and regrown. We analyzed the genetic stability of Rubus grabowskii, two blackberry cultivars (“Hillemeyer” and ‘Silvan’), and one raspberry cultivar (“Mandarin”) as in vitro shoots and as field-grown plants. No morphological differences were observed in greenhouse-grown cryopreserved plants when compared to the control mother plants. In the field, cryopreserved plants appeared similar but were more vigorous than mother plants, with larger leaves, fruit, and seeds. Single sequence repeats (SSR) and amplified fragment length polymorphism (AFLP) analyses were performed on shoots immediately after recovery from cryopreservation and on shoots subcultured for 7 mo before analysis. Ten SSR primers developed from “Marion” and “Meeker” microsatellite-enriched libraries amplified one to 15 alleles per locus, with an average of seven alleles and a total of 70 alleles in the four genotypes tested. No SSR polymorphisms were observed between cryopreserved shoots and the corresponding mother plants regardless of subculture. Although no polymorphisms were detected in shoots analyzed immediately after recovery from cryopreservation, AFLP polymorphisms were detected in three of the four Rubus genotypes after they were subcultured for 7 mo. Field-grown plants from the polymorphic shoot tips of R. grabowskii and ‘Silvan’ displayed the same AFLP fingerprints as their corresponding mother plants. Only long-cultured in vitro shoot tips displayed polymorphisms in vitro, and they were no longer detected when the plants were grown ex vitro. The transitory nature of these polymorphisms should be carefully considered when monitoring for genetic stability.  相似文献   

3.
The genetic diversity and relationship among four morphotypes of Rhinogobius sp. OR, Gobiidae (“Tōshoku,” “Shinjiko,” “Gi-tōshoku,” and “Shimahire”) were investigated with seven microsatellite DNA loci, and amphidromy of these morphotypes was verified by strontium (Sr) and calcium (Ca) deposition in the otolith. Samples of “Tōshoku,” “Shinjiko,” “Gi-tōshoku,” and “Shimahire” were collected from, respectively, three, three, two, and four locations in Japan. Microsatellite analysis detected high genetic diversity (based on the number of alleles, allelic richness, and average observed heterozygosity) in the “Tōshoku” and “Shinjiko” morphotypes relative to the “Shimahire” morphotype; the “Gi-tōshoku” morphotype had an intermediate level of variation. Almost all pairwise F ST values were significantly different from zero (P < 0.001), except between two populations of “Tōshoku.” Clear genetic independence was observed between the “Shinjiko” and “Shimahire” morphotypes in the Maruyama River. A principle component analysis based on microsatellite data indicated that the “Tōshoku,” “Shinjiko,” and “Gi-tōshoku” morphotypes were genetically similar. Furthermore, the three populations of “Tōshoku” were closely related each other, and two of those collected from the Lake Biwa system were a single population. There was, however, a high degree of genetic differentiation between “Shimahire” and the other morphotypes; moreover, there was high genetic divergence among four populations of the “Shimahire” morphotype. Amphidromous migratory histories were indicated by Sr:Ca ratios in two of three populations of the “Shinjiko” morphotype and in one of two “Gi-tōshoku” morphotypes, whereas all populations of the “Shimahire” morphotype were freshwater residents. The large genetic divergence and low genetic diversity in “Shimahire” are likely related to migration history.  相似文献   

4.
Apple tree architecture is naturally very diverse, but for fruit production, certain tree habits are more desirable than others. Here we describe the results of a QTL analysis performed to study the genetic control of growth traits in apple. This was carried out on the progeny of a cross between two apple cultivars of contrasting tree architectures. “Telamon” has a columnar tree form and “Braeburn” has a more standard, “normal” growth habit. The growth traits were measured on the F 1 seedlings of the Telamon × Braeburn population for two consecutive years of growth on own roots and for the first year of growth on M9 rootstock. QTL analysis was carried out using either the Kruskal–Wallis method or the Multiple QTL Method. For all but one growth characteristic, significant QTLs were detected. A major cluster of QTLs was located in the Co gene region of “Telamon”, confirming the major influence of the Co gene on tree architecture, although this influence changed as the plant material aged and was generally more pronounced for rootstock-grown plants. Additional QTL results suggest the occurrence of genes with pleiotropic effects on tree architecture. The observed QTL instability over different years and for different root systems indicates that the genetic control of tree architecture is largely influenced by environmental factors and probably changes as the tree matures. Finally, a major influence of the root system on all the traits determining tree architecture was clearly demonstrated.  相似文献   

5.
Tea plant (Camellia sinensis (L.) O. Kuntze) originated from China, where distributed abundant genetic resources. It is of critical importance to well understanding of genetic diversity and population structure for effective collection, conservation, and utilization of tea germplasms. In this study, 96 new polymorphic EST-SSR markers were developed and used to analyze 450 tea accessions collected from 14 tea-producing regions across China. A total of 409 alleles were observed, and the gene diversity (H) and polymorphic information content (PIC) were estimated to be averagely 0.64 and 0.61, respectively, across all the tested samples. The higher level of genetic diversity was observed in original regions like Guangxi, Yunnan, and Guizhou provinces. The allele number, H, and PIC showed decreasing trend when the region was more and more away from origin center of tea plant, which gave us implications on the spreading route of tea plant in China. The clustering of 450 samples both showed a clear separation according to their geographic origin based on either model simulation or genetic distance. The genetic differentiation was further analyzed among five inferred populations represented different eco-geographic regions. The lowest F st and the closest relationship were revealed between proximal populations, which indicated that gene exchanges occurred frequently between nearby regions than distance ones. The majority of genetic variation resulted from differentiation within population (81.36%) rather than among inferred (13.6%) and regional (5.04%) populations based on analysis of molecular variance. Our study also revealed that the lower diversity and simpler population structure were found in improved cultivars than wild teas and landraces, which indicated that genetic base of developed cultivars became narrow because of long-standing domestication and artificial selection. So more attentions should be focused to conserve and utilize the beneficial genes in wild teas and landraces to broaden genetic variation of new cultivars in future breeding of the tea plant.  相似文献   

6.
Several chromosome types have been recognized in Citrus and related genera by chromomycin A3 (CMA) banding patterns and fluorescent in situ hybridization (FISH). They can be used to characterize cultivars and species or as markers in hybridization and backcrossing experiments. In the present work, characterization of six cultivars of P. trifoliata (“Barnes”, “Fawcett”, “Flying Dragon”, “Pomeroy”, “Rubidoux”, “USDA”) and one P. trifoliata × C. limonia hybrid was performed by sequential analyses of CMA banding and FISH using 5S and 45S rDNA as probes. All six cultivars showed a similar CMA+ banding pattern with the karyotype formula 4B + 8D + 6F. The capital letters indicate chromosomal types: B, a chromosome with one telomeric and one proximal band; D, with only one telomeric band; F, without bands. In situ hybridization labeling was also similar among cultivars. Three chromosome pairs displayed a closely linked set of 5S and 45S rDNA sites, two of them co-located with the proximal band of the B type chromosomes (B/5S-45S) and the third one co-located with the terminal band of a D pair (D/5S-45S). The B/5S-45S chromosome has never been found in any citrus accessions investigated so far. Therefore, this B chromosome can be used as a marker to recognize the intergeneric Poncirus × Citrus hybrids. The intergeneric hybrid analyzed here displayed the karyotype formula 4B + 8D + 6F, with two chromosome types B/5S-45S and two D/5S-45S. The karyotype formula and the presence of two B/5S-45S chromosomes clearly indicate that the plant investigated is a symmetric hybrid. It also demonstrates the suitability of karyotype analyses to differentiate zygotic embryos or somatic cell fusions involving trifoliate orange germplasm. During the submission of this paper, we analyzed 25 other citrus cultivars with the same methodology and we found that the chromosome marker reported here can indeed distinguish Poncirus trifoliata from grapefruits, pummelos, and one variegated access of Citrus, besides the previously reported access of limes, limons, citrons, and sweet-oranges. However, among 14 mandarin cultivars, two of them displayed a single B/5S-45S chromosome, whereas in Citrus hystrix D.C., a far related species belonging to the Papeda subgenus, this chromosome type was found in homozygosis. Since these two mandarin cultivars are probably of hybrid origin, we assume that for almost all commercial cultivars and species of the subgenus Citrus this B type chromosome is a useful genetic marker.  相似文献   

7.
The relationship between individual genetic diversity and fitness-related traits are poorly understood in the wild. The availability of highly polymorphic molecular markers, such as microsatellites, has made research on this subject more feasible. We used three microsatellite-based measures of genetic diversity, individual heterozygosity H, mean d 2 and mean d 2 outbreeding to test for a relationship between individual genetic diversity and important fitness trait, juvenile survival, in a population of alpine marmots (Marmota marmota), after controlling for the effects of ecological, social and physiological parameters that potentially influence juvenile survival in marmots. Analyses were conducted on 158 juveniles, and revealed a positive association between juvenile survival and genetic diversity measured by mean H. No association was found with mean d 2 and with mean d 2 outbreeding. This suggests a fitness disadvantage to less heterozygous juveniles. The genetic diversity-fitness correlation (GDFC) was somewhat stronger during years with poor environmental conditions (i.e. wet summers). The stressful environmental conditions of this high mountain population might enhance inbreeding depression and make this association between genetic diversity and fitness detectable. Moreover the mating system, allowing extra pair copulation by occasional immigrants, as well as close inbreeding, favours a wide range of individual genetic diversity (mean H ranges from 0.125 to 1), which also may have facilitated the detection of the GDFC. The results further suggest that the observed GDFC is likely to be explained by the “local effect” hypothesis rather than by the “general effect” hypothesis.  相似文献   

8.
Spring orchid (Cymbidium goeringii) is a popular flowering plant species. There have been few molecular studies of the genetic diversity and conservation genetics on this species. An assessment of the level of genetic diversity in cultivated spring orchid would facilitate development of the future germplasm conservation for cultivar improvement. In the present study, DNA markers of intersimple sequence repeats (ISSR) were identified and the ISSR fingerprinting technique was used to evaluate genetic diversity in C. goeringii cultivars. Twenty-five ISSR primers were selected to produce a total of 224 ISSR loci for evaluation of the genetic diversity. A wide genetic variation was found in the 50 tested cultivars with Nei’s gene diversity (H = 0.2241) and 93.75% of polymorphic loci. Fifty cultivars were unequivocally distinguished based on ISSR fingerprinting. Cultivar-specific ISSR markers were identified in seven of 50 tested cultivars. Unweighted pair-group mean analysis (UPGMA) and principal coordinates analysis (PCA) grouped them into two clusters: one composed the cultivars mainly from Japan, and the other contained three major subclusters mainly from China. Two Chinese subclusters were generally consistent with horticultural classification, and the third Chinese subcluster contained cultivars from various horticultural groups. Our results suggest that the ISSR technique provides a powerful tool for cultivar identification and establishment of genetic relationships of cultivars in C. goeringii.  相似文献   

9.
Mobile genetic elements constitute a substantial part of eukaryotic genome and play an important role in its organization and functioning. Co-evolution of retrotransposons and their hosts resulted in the establishment of control systems employing mechanisms of RNA interference that seem to be impossible to evade. However, “active” copies of endogenous retrovirus gypsy escape cellular control in some cases, while its evolutionary elder “inactive” variants do not. To clarify the evolutionary relationship between “active” and “inactive” gypsy we combined two approaches: the analysis of gypsy sequences, isolated from G32 Drosophila melanogaster strain and from different Drosophila species of the melanogaster subgroup, as well as the study of databases, available on the Internet. No signs of “intermediate” (between “active” and “inactive”) gypsy form were found in GenBank, and four full-size G32 gypsy copies demonstrated a convergence that presumably involves gene conversion. No “active” gypsy were revealed among PCR generated gypsy ORF3 sequences from the various Drosophila species indicating that “active” gypsy appeared in some population of D. melanogaster and then started to spread out. Analysis of sequences flanking gypsy variants in G32 revealed their predominantly heterochromatic location. Discrepancy between the structure of actual gypsy sites in G32 and corresponding sequences in database might indicate significant inter-strain heterochromatin diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
The genetic diversity and relationships of six representative cultivars and six geographically isolated wild populations of Saccharina japonica along the northwest coasts of the Pacific Ocean were investigated using AFLP markers. A total of 547 bands were generated across all samples by ten primer combinations. At the cultivar or population level, the percentage of polymorphic loci (P), gene diversity (H), and Shannon’s information index (I) was highest in Dalian population (P 59.05%; H 0.2057; I 0.3062) and lowest in Lianjiang cultivar (P 9.87%; H 0.0331; I 0.0497). At the species level, P, H, and I were 85.01%, 0.1948, and 0.3096, respectively. Unique bands were detected in all the six wild populations, with Dalian being the most. In comparison, only Yanza cultivar possessed one unique band. The G ST value was 0.6226 and the gene flow (N m ) was 0.1515, indicating strong genetic differentiation among cultivars and populations. Two UMPGA dendrograms were constructed based on the Dice similarity coefficients among individuals and on genetic distances among cultivars and populations, which generally revealed three major clades corresponding to three countries. Analysis of molecular variance revealed that a larger proportion (60.21%) of the total genetic variation was attributable to differences among cultivars and populations. The Mantel test suggested that genetic differentiation was positively correlated with geographic distance (r = 0.7962, P = 0.011) in the six wild populations, agreeing with the isolation by distance model. On the whole, low to moderate genetic diversity within cultivars and populations (except Dalian population) and high genetic differentiation among cultivars and populations were detected.  相似文献   

11.
12.
Residual nutrients from Murashige and Skoog medium were analyzed following a 5-wk multifactor experiment. Plant density, sugar concentration, and plant growth regulators (benzyladenine and ancymidol) were examined using four genotypes of daylily (Hemerocallis) to determine which factors most influenced nutrient use. Active nutrient uptake was observed for 11 nutrients (potassium, sodium, copper, phosphorus, iron, calcium, magnesium, manganese, boron, sulfur, and zinc) with lower concentrations in spent medium than in the tissue water volume (fresh-dry mass expressed as mL H2O). Two patterns of nutrient use were visualized by correlative analysis of nutrient uptake. Greatest growth lowered plant nutrient concentrations of potassium, sodium, phosphorus, iron, and copper in all genotypes, and luxuriant uptake was indicated with least growth. Potassium, sodium, iron, and copper concentrations in plant dry matter were equal to or exceeded what is observed in vigorously growing nursery plants. However, phosphorus concentration in plant dry matter was low enough to be considered deficient when compared to Hemerocallis plants in nursery production. With a second group of nutrients (calcium, magnesium, manganese, and boron), the genotype, “Barbara Mitchell” lacked active uptake and was deficient. Calcium concentration was low in all plants compared to Hemerocallis grown under nursery conditions (“Barbara Mitchell” was the lowest concentration) despite active uptake by the other three genotypes—“Brocaded Gown,” “Mary’s Gold,” and “Heart of a Missionary.” Magnesium concentration in these three genotypes was low enough in vessels with greatest growth to question its adequacy at high densities. Increased sucrose in medium reduced the dry matter concentrations of all tested nutrients. Plant growth regulators had less impact on nutrient use than genotype and plant density. Nutrient uptake may be an important physiological component of genotypic variation.  相似文献   

13.
Berberis buxifolia Lam., known as “Calafate”, is a plant native to Argentina that exhibits antimicrobial activity. This biological activity is attributed to the isoquinoline alkaloid berberine. The aim of this research was to test the antimicrobial properties of different extracts of this species, taking berberine as the reference molecule, and to examine if the expression of bacterial multidrug resistance (MDR) efflux pumps could be responsible for possible resistance mechanisms. To this end, a wild-type and a mutant strain of Staphylococcus aureus with a defective MDR efflux pump were used and the minimum inhibitory concentrations of the extracts were determined. The studies were carried out with infusions of in vivo shoots and “Calafate” commercial tea, as well as with the media derived from shoot cultures incubated with different plant growth regulators (thidiazuron, picloram, and jasmonic acid). As far as antimicrobial activity is concerned, all the extracts tested were significantly more effective than berberine standard. “Calafate” commercial tea and shoot tea had inhibitory concentrations similar to the one observed for ampicillin standard. The media from the shoot cultures, however, were significantly more effective than all the others, particularly the one derived from jasmonic acid, suggesting the presence of compounds that could be acting synergistically with berberine. There were no differences in antimicrobial activity against the wild-type and the mutant S. aureus; no definite conclusions could be drawn concerning the relationship between MDR pumps and possible pathogen resistance to extracts of B. buxifolia.  相似文献   

14.
Rice (Oryza sativa L.) chromosome segment substitution lines (CSSLs), in which chromosomal segments of the Indian landrace “Kasalath” replace the corresponding endogenous segments in the genome of the Japanese premium rice “Koshihikari”, are available and together cover the entire genome. Chromosome regions affecting a trait (CRATs) can be identified by comparison of phenotypes with genotypes of CSSLs. We detected 99 CRATs for 15 agronomic or morphological traits. “Kasalath” had positively acting alleles in 53 CRATs. Its CRATs increased panicle number per plant by up to 23.3%, grain number per panicle by up to 30.8%, and total grain number by up to 15.1%, relative to “Koshihikari”. CRATs were identified for grain size (grain thickness and width), with positive effects of about 5.0%. A CRAT on chromosome 8 almost doubled the weight of roots in uppermost soil layers compared to “Koshihikari”. Additionally, “Kasalath” possessed CRATs for higher lodging resistance (reduction in plant height and increase in stem diameter). In some cases, multiple CRATs were detected in the same chromosome regions. Therefore, CSSLs with these chromosome segments might be useful breeding materials for the simultaneous improvement of multiple traits. Five CRATs, one for plant height on chromosome 1, one for stem diameter on chromosome 8, and three for heading date on chromosomes 6, 7, and 8 overlapped with the corresponding QTLs that already had been mapped with back-crossed inbred lines of “Nipponbare” and “Kasalath”. In both “Koshihikari” CRATs and “Nipponbare” QTLs, “Kasalath” had similar effects. Both Y. Madoka and T. Kashiwagi have contributed equally to this article.  相似文献   

15.
Sequence-characterized amplified regions markers (SCARs) were developed from six randomly amplified polymorphic DNA (RAPD) markers linked to the major QTL region for powdery mildew (Uncinula necator) resistance in a test population derived from the cross of grapevine cultivars “Regent” (resistant) × “Lemberger”(susceptible). RAPD products were cloned and sequenced. Primer pairs with at least 21 nucleotides primer length were designed. All pairs were tested in the F1 progeny of “Regent” × “Lemberger”. The SCAR primers resulted in the amplification of specific bands of expected sizes and were tested in additional genetic resources of resistant and susceptible germplasm. All SCAR primer pairs resulted in the amplification of specific fragments. Two of the SCAR markers named ScORA7-760 and ScORN3-R produced amplification products predominantly in resistant individuals and were found to correlate to disease resistance. ScORA7-760, in particular, is suitable for marker-assisted selection for powdery mildew resistance and to facilitate pyramiding powdery mildew resistance genes from various sources.  相似文献   

16.
Data on genetic similarity among crop cultivars is of vital importance for the plant breeder. The objectives of this study were to group pepper (Capsicum annuum L.) genotypes into clusters according to their distances as estimated by morphological traits and amplified fragment length polymorphism (AFLP) markers and to assess the relationships between the two. Thirty-nine pepper genotypes obtained from different countries were grown in the greenhouse at University of the Free State, South Africa, during 2001 and 2002 in a randomized complete block design with three replications. A total of 20 different morphological traits were measured and six AFLP primer pairs were used to estimate pairwise genetic distances. Both datasets showed high genetic distances among the different genotypes, indicating high genetic diversity among them. The mean genetic distance among Ethiopian pungent elongated-fruit genotypes, was lower than that between them and the introduced ones. Morphological and AFLP distance estimations generally clustered together genotypes with similar fruit sizes. Significant, positive correlation was observed between morphological and AFLP diversity estimations. The narrow genetic basis among the Ethiopian pungent elongated-fruit cultivars suggests that the pepper breeding program of Ethiopia should focus on enriching its germplasm through local collection and introductions from other parts of the world.  相似文献   

17.
Over two consecutive years in the North Bank Plain Zone of Assam, India, during the spring growing season (February–June) of- 2006 and 2007 we examined effects of morpho-physiological characteristics of rice (Oryza sativa L.) plants in relation to methane (CH4) emission from paddy fields. Traditional cultivar “Agni” and modern improved cultivar “Ranjit” were grown in light textured loamy soil under irrigation. A higher seasonal integrated methane flux (E sif) was recorded from “Agni” compared to “Ranjit”. Both cultivars exhibited an emission peak during active vegetative growth and a second peak at panicle initiation. Leaf and tiller number, leaf area, length, and volume of root were greater in “Agni”, but grain yield and yield-related parameters such as increased photosynthate partitioning to panicles at the expense of roots were greater in “Ranjit”. “Ranjit” also photosynthesed faster than “Agni” during panicle development but slower than “Agni” at tillering. In both the years, a higher soil organic carbon content was recorded in plots of “Agni”. Our results suggest that in “Agni” enhanced diversion of photosynthate to roots resulted in more substrate being available to methanogenic bacteria in the rhizosphere. Additionally, the more extensive vegetative growth of this cultivar may enhance methane transport from the soil to the above-ground atmosphere.  相似文献   

18.
The systematics and taxonomy of Kappaphycus and Eucheuma (Solieriaceae) is confused and difficult due to morphological plasticity, lack of adequate characters to identify species and commercial names of convenience. These taxa are geographically widely dispersed through cultivation. Commercial, wild and herbarium sources were analysed; molecular markers provided insights into taxonomy and genetic variation, and where sources of genetic variation may be located. The mitochondrial cox2-3 and plastidal RuBisCo spacers were sequenced. There is a clear genetic distinction between K. alvarezii (“cottonii”) and K. striatum (“sacol”) samples. Kappaphycus alvarezii from Hawaii and some samples from Africa are also genetically distinct. Our data also show that all currently cultivated K. alvarezii from all over the world have a similar mitochondrial haplotype. Within Eucheuma denticulatum (“spinosum”) most African samples are again genetically distinct. Our data also suggest that currently cultivated E. denticulatum may have been “domesticated” several times, whereas this is not evident for the cultivated K. alvarezii. The present markers used do not distinguish all the morpho-types known in cultivation (e.g. var. tambalang, “giant” type) but do suggest that these markers may be useful to assess introductions and species identification in samples.  相似文献   

19.
Hybridization of gametophytes, continuous self-crossing and targeted selection were utilized to breed a new Laminaria variety. After five-generation selection breeding, the new variety “Rongfu” was obtained. Its male parent “Yuanza No.10” was the high-yield cultivation variety, and its female parent was variety “Fujian” which could tolerate relatively high seawater temperature. “Yuanza No.10” and “Fujian” were different but complement in their morphological characteristics and biological habits. Variety “Rongfu” was bred through their hybridization which exhibited high-yield potential and high seawater temperature tolerance. The results of traits evaluation in consecutive years showed that “Rongfu” attained higher yields by 24–27% compared to the control (widely used commercial variety) and also contained considerable amounts of iodine, mannitol, and algin. When seawater temperature was 18–21°C, the blade growth of “Rongfu” was maintained and tissue loss by abrasion was significantly lower than the control. Since the adoption of variety “Rongfu” in 2001, its cultivation areas have been extended to Shandong, Fujian and Guangdong province and have reached 14,133 ha currently, i.e., almost one-tenth of the total cultivation areas of Laminaria in China. The results of Random Amplified Polymorphic DNA analysis showed that the relationship between “Rongfu” and other cultivation varieties in China was very close.  相似文献   

20.
The Mediterranean fan mussel Pinna nobilis is an endangered invertebrate due to overexploitation and habitat deterioration. In this species, two distinctive morphs, the “combed” and “straight and wide” forms, have been recorded and it is not known whether this morphometric variability is attributed to genetic or environmental factors. In this study, we used mitochondrial COI sequences to describe the genetic variability of five Pinna nobilis populations sampled along the northern, eastern, and southern Tunisian coastline, and to examine whether there is a genetic differentiation between the two forms of this species. DNA sequences of 675 bp from the mitochondrial COI gene have revealed 10 different haplotypes among 49 examined specimens. Haplotype diversity was high, ranging between 0.40441 and 0.80952, and showed a decreasing North-East gradient, which seems to be explained by the hydrogeography of the study area. The mitochondrial COI marker did not suggest a genetic distinctiveness between the two Pinna nobilis shell forms, “combed” and “straight and wide”. Although the morphometric plasticity of the fan mussel could be due to the influence of environmental factors, further genetic studies using nuclear markers are envisaged to investigate whether this differentiation is associated to gene flow restrictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号