首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytosterol supplements lower low-density lipoprotein (LDL) cholesterol, but accumulate in vascular lesions of patients and limit the anti-atherosclerotic effects of LDL lowering in apolipoprotein E (Apo E)-deficient mice, suggesting that the cholesterol-lowering benefit of phytosterol supplementation may not be fully realized. Individual phytosterols have cell-type specific effects that may be either beneficial or deleterious with respect to atherosclerosis, but little is known concerning their effects on macrophage function. The effects of phytosterols on ABCA1 and ABCG1 abundance, cholesterol efflux and inflammatory cytokine secretion were determined in cultured macrophage foam cells. Among the commonly consumed phytosterols, stigmasterol increased expression of ABCA1 and ABCG1 and increased efflux of cholesterol to apolipoprotein (Apo) AI and high-density lipoprotein (HDL). Campesterol and sitosterol had no effect on ABCA1 or ABCG1 levels. Sitosterol had no effect on cholesterol efflux to Apo AI or HDL, whereas campesterol had a modest but significant reduction in cholesterol efflux to HDL in THP-1 macrophages. Whereas stigmasterol blunted aggregated LDL (agLDL) induced increases in tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β secretion, sitosterol exacerbated these effects. The presence of campesterol had no effect on agLDL-induced inflammatory cytokine secretion from THP-1 macrophages. In conclusion, the presence of stigmasterol in modified lipoproteins promoted cholesterol efflux and suppressed inflammatory cytokine secretion in response to lipid loading in macrophage foam cells. While campesterol was largely inert, the presence of sitosterol increased the proinflammatory cytokine secretion.  相似文献   

2.
Unstable lipid-rich plaques in atherosclerosis are characterized by the accumulation of macrophage foam cells loaded with cholesterol ester (CE). Although hormone-sensitive lipase and cholesteryl ester hydrolase (CEH) have been proposed to mediate the hydrolysis of CE in macrophages, circumstantial evidence suggests the presence of other enzymes with neutral cholesterol ester hydrolase (nCEH) activity. Here we show that the murine orthologue of KIAA1363, designated as neutral cholesterol ester hydrolase (NCEH), is a microsomal nCEH with high expression in murine and human macrophages. The effect of various concentrations of NaCl on its nCEH activity resembles that on endogenous nCEH activity of macrophages. RNA silencing of NCEH decreases nCEH activity at least by 50%; conversely, its overexpression inhibits the CE formation in macrophages. Immunohistochemistry reveals that NCEH is expressed in macrophage foam cells in atherosclerotic lesions. These data indicate that NCEH is responsible for a major part of nCEH activity in macrophages and may be a potential therapeutic target for the prevention of atherosclerosis.  相似文献   

3.
Exposure to Chlamydia pneumoniae is correlated with atherosclerosis in a variety of clinical and epidemiological studies, but how the organism may initiate and promote the disease is poorly understood. One pathogenic mechanism could involve modulation of macrophage function by C. pneumoniae. We recently demonstrated that C. pneumoniae induces macrophages to accumulate excess cholesterol and develop into foam cells, the hallmark of early atherosclerotic lesions. To determine if C. pneumoniae-induced foam cell formation involved increased uptake of low-density lipoprotein (LDL), the current study examined macrophage association of a fluorescent carbocyanine (DiI)-labeled LDL following infection. C. pneumoniae enhanced the association of DiI-LDL with macrophages in a dose-dependent manner with respect to both C. pneumoniae and DiI-LDL. Interestingly, increased association was inhibited by native LDL and occurred in the absence of oxidation byproducts and in the presence of antioxidants. However, enhanced DiI-LDL association occurred without the participation of the classical Apo B/E native LDL receptor, since C. pneumoniae increased DiI-LDL association and induced foam cell formation in macrophages isolated from LDL-receptor-deficient mice. Surprisingly, DiI-LDL association was inhibited not only by unlabeled native LDL but also by high-density lipoprotein, very low density lipoprotein, and oxidized LDL. These data indicate that exposure of macrophages to C. pneumoniae increases the uptake of LDL and foam cell formation by an LDL-receptor-independent mechanism.  相似文献   

4.
Triglyceride-rich lipoproteins (TGRLs) and low-density-lipoprotein (LDL) cholesterol are independent risk factors for coronary artery disease. We have previously proposed that the very low-density-lipoprotein (VLDL) receptor is one of the receptors required for foam cell formation by TGRLs in human macrophages. However, the VLDL receptor proteins have not been detected in atherosclerotic lesions of several animal models. Here we showed no VLDL receptor protein was detected in mouse macrophage cell lines (Raw264.7 and J774.2) or in mouse peritoneal macrophages in vitro. Furthermore, no VLDL receptor protein was detected in macrophages in atherosclerotic lesions of chow-fed apolipoprotein E-deficient or cholesterol-fed LDL receptor-deficient mice in vivo. In contrast, macrophage VLDL receptor protein was clearly detected in human macrophages in vitro and in atherosclerotic lesions in myocardial infarction-prone Watanabe-heritable hyperlipidemic (WHHLMI) rabbits in vivo. There are species differences in the localization of VLDL receptor protein in vitro and in vivo. Since VLDL receptor is expressed on macrophages in atheromatous plaques of both rabbit and human but not in mouse models, the mechanisms of atherogenesis and/or growth of atherosclerotic lesions in mouse models may be partly different from those of humans and rabbits.  相似文献   

5.
Atherosclerotic lesions are characterized by lipid-loaded macrophages (foam cells) and hypoxic regions. Although it is well established that foam cells are produced by uptake of cholesterol from oxidized LDL, we previously showed that hypoxia also promotes foam cell formation even in the absence of exogenous lipids. The hypoxia-induced lipid accumulation results from increased triglyceride biosynthesis but the exact mechanism is unknown. Our aim was to investigate the importance of glucose in promoting hypoxia-induced de novo lipid synthesis in human macrophages. In the absence of exogenous lipids, extracellular glucose promoted the accumulation of Oil Red O-stained lipid droplets in human monocyte-derived macrophages in a concentration-dependent manner. Lipid droplet accumulation was higher in macrophages exposed to hypoxia at all assessed concentrations of glucose. Importantly, triglyceride synthesis from glucose was increased in hypoxic macrophages. GLUT3 was highly expressed in macrophage-rich and hypoxic regions of human carotid atherosclerotic plaques and in macrophages isolated from these plaques. In human monocyte-derived macrophages, hypoxia increased expression of both GLUT3 mRNA and protein, and knockdown of GLUT3 with siRNA significantly reduced both glucose uptake and lipid droplet accumulation. In conclusion, we have shown that hypoxia-induced increases in glucose uptake through GLUT3 are important for lipid synthesis in macrophages, and may contribute to foam cell formation in hypoxic regions of atherosclerotic lesions.  相似文献   

6.
The formation of foam cells in macrophages plays an essential role in the progression of early atherosclerotic lesions and therefore its prevention is considered to be a promising target for the treatment of atherosclerosis. We found that an extract of the marine sponge Acanthostrongylophora ingens inhibited the foam cell formation induced by acetylated low-density lipoprotein (AcLDL) in human monocyte-derived macrophages, as measured based on the accumulation of cholesterol ester (CE). Bioassay-guided purification of inhibitors from the extract afforded manzamines. Manzamine A was the most potent inhibitor of foam cell formation, and also suppressed CE formation in Chinese hamster ovary cells overexpressing acyl-CoA:cholesterol acyl-transferase (ACAT)-1 or ACAT-2. In addition, manzamine A inhibited ACAT activity. Next, we orally administered manzamine A to apolipoprotein E (apoE)-deficient mice for 80 days, and found that total cholesterol, free cholesterol, LDL-cholesterol, and triglyceride levels in serum were significantly reduced and the area of atherosclerotic lesions in the aortic sinus was also substantially diminished. These findings clearly suggest that manzamine A suppresses hyperlipidemia and atherosclerosis in apoE-deficient mice by inhibiting ACAT and is therefore a promising lead compound in the prevention or treatment of atherosclerosis. Although manzamine A has been reported to show several biological activities, this is the first report of a suppressive effect of manzamine A on atherosclerosis in vivo.  相似文献   

7.
In late-stage atherosclerosis, much of the cholesterol in macrophage foam cells resides within enlarged lysosomes. Similarly, human macrophages incubated in vitro with modified LDLs contain significant amounts of lysosomal free cholesterol and cholesteryl ester (CE), which disrupts lysosomal function similar to macrophages in atherosclerotic lesions. The lysosomal cholesterol cannot be removed, even in the presence of strong efflux promoters. Thus, efflux of sterol is prevented. In the artery wall, foam cells interact with triglyceride-rich particles (TRPs) in addition to modified LDLs. Little is known about how TRP metabolism affects macrophage cholesterol. Therefore, we explored the effect of TRP on intracellular CE metabolism. Triglyceride (TG), delivered to lysosomes in TRP, reduced CE accumulation by 50%. Increased TG levels within the cell, particularly within lysosomes, correlated with reductions in CE content. The volume of cholesterol-engorged lysosomes decreased after TRP treatment, indicating cholesterol was cleared. Lysosomal TG also reduced the cholesterol-induced inhibition of lysosomal acidification allowing lysosomes to remain active. Enhanced degradation and clearance of CE may be explained by movement of cholesterol out of the lysosome to sites where it is effluxed. Thus, our results show that introduction of TG into CE-laden foam cells influences CE metabolism and, potentially, atherogenesis.—Ullery-Ricewick, J. C., B. E. Cox, E. E. Griffin, and W. G. Jerome. Triglyceride alters lysosomal cholesterol ester metabolism in cholesteryl ester-laden macrophage foam cells.  相似文献   

8.
9.
Apolipoprotein E is a multifunctional protein synthesized by hepatocytes and macrophages. Plasma apoE is largely liver-derived and known to regulate lipoprotein metabolism. Macrophage-derived apoE has been shown to reduce the progression of atherosclerosis in mice. We tested the hypothesis that liver-derived apoE could directly induce regression of pre-existing advanced atherosclerotic lesions without reducing plasma cholesterol levels. Aged low density lipoprotein (LDL) receptor-deficient (LDLR(-/-)) mice were fed a western-type diet for 14 weeks to induce advanced atherosclerotic lesions. One group of mice was sacrificed for evaluation of atherosclerosis at base line, and two other groups were injected with a second generation adenoviruses encoding human apoE3 or a control empty virus. Hepatic apoE gene transfer increased plasma apoE levels by 4-fold at 1 week, and apoE levels remained at least 2-fold higher than controls at 6 weeks. There were no significant changes in plasma total cholesterol levels or lipoprotein composition induced by expression of apoE. The liver-derived human apoE gained access to and was retained in arterial wall. Compared with base-line mice, the control group demonstrated progression of atherosclerosis; in contrast, hepatic apoE expression induced highly significant regression of advanced atherosclerotic lesions. Regression of lesions was accompanied by the loss of macrophage-derived foam cells and a trend toward increase in extracellular matrix of lesions. As an index of in vivo oxidant stress, we quantitated the isoprostane iPF(2 alpha)-VI and found that expression of apoE markedly reduced urinary, LDL-associated, and arterial wall iPF(2 alpha)-VI levels. In summary, these results demonstrate that liver-derived apoE directly induced regression of advanced atherosclerosis and has anti-oxidant properties in vivo that may contribute to its anti-atherogenic effects.  相似文献   

10.
Neutrophil proteinase 3 (PR3) is a multifunctional neutral serine protease involved in the regulation of pro-inflammatory processes, but its potential causal roles in the lipid-driven responses in atherosclerosis have remained unexplored. This study aimed to investigate the presence of PR3 in human atherosclerotic lesions and the ability of this protease to modify the structure and functions of LDL and HDL particles in vitro. Coronary artery segments were collected from autopsied subjects and immunostained for PR3. Atherosclerotic lesions but not normal intima contained PR3. Incubation of LDL particles with the PR3 led to extensive degradation of their apoB-100 component and strongly increased their binding strength to isolated human aortic proteoglycans in vitro. Moreover, cultured human monocyte-derived macrophages avidly ingested the PR3-modified LDL particles and were converted into foam cells. Incubation of HDL particles with PR3 led to proteolysis of their major apolipoproteins (apoA-I, apoA-II, and apoE) and impaired their ability to promote cholesterol efflux from the macrophage foam cells. We conclude that PR3 is present in human atherosclerotic lesions and that this neutral serine protease has proatherogenic properties. Thus, by proteolytically modifying LDL and HDL particles, PR3 may promote cholesterol accumulation both extra- and intracellularly in atherosclerotic lesions, and so contribute to the lipid-driven component of atherogenesis.  相似文献   

11.
Hypercholesterolemia and atherosclerosis were induced in New Zealand White rabbits by cholesterol feeding. Apolipoprotein E mRNA levels in livers were found to be slightly increased, as determined by Northern blots. Apolipoprotein E gene expression was dramatically induced in rabbit atherosclerotic aortas with respect to healthy aortas. However, apolipoprotein E mRNA levels in atherosclerotic aortas were low as compared with the hepatic mRNA levels of the same animals. Interestingly, we also found a significant increase in apolipoprotein E expression in human atheromata with respect to healthy aorta from the same individual. This is the first report on apo E gene induction in human atherosclerotic lesions.  相似文献   

12.
Adipophilin是细胞内脂质聚集和与脂质聚集有关疾病的标志物 ,巨噬细胞源性泡沫细胞的形成是动脉粥样硬化性疾病发生的重要环节 .为了探讨adipophilin在动脉粥样硬化性疾病的作用 ,通过高胆固醇饲料喂养新西兰白兔 12周 ,复制动脉粥样硬化疾病模型 ,同时测定血脂的变化和动脉壁胆固醇 ,使用HE染色、苏丹Ⅳ染色观察动脉粥样硬化病变的形成 ,使用免疫组织化学的方法观察动脉粥样硬化病变处和动物肝脏中adipophilin的表达 .结果发现 ,高胆固醇饲料喂养组血清总胆固醇、低密度脂蛋白胆固醇和动脉壁胆固醇明显增高 ,动脉粥样硬化病变面积增加到 (40 0 6± 7 2 9) % ,动脉粥样硬化病变处adipophilin表达呈阳性 ;而adipophilin在肝脏中的表达无论是高胆固醇饲料喂养组或对照组均为阴性 .使用80mg/L OxLDL与小鼠腹膜巨噬细胞共孵育 ,复制脂质负荷细胞 ,然后把构建的 1mmol/Ladipophilin反义寡核苷酸与该细胞共孵育 .结果发现 ,使用油红O染色观察的细胞内脂滴明显减少 ,生化测定细胞内胆固醇酯显著降低 ,与对照组相比 ,差别有显著性 .说明adipophilin与动脉粥样硬化病变有密切的关系 ,控制adipophilin的表达能够减少巨噬细胞细胞内胆固醇酯的聚集  相似文献   

13.
Cholesterol-laden monocyte-derived macrophages are phagocytic cells characteristic of early and advanced atherosclerotic lesions. Interleukin-6 (IL-6) is a macrophage secretory product that is abundantly expressed in atherosclerotic plaques but whose precise role in atherogenesis is unclear. The capacity of macrophages to clear apoptotic cells, through the efferocytosis mechanism, as well as to reduce cellular cholesterol accumulation contributes to prevent plaque progression and instability. By virtue of its capacity to promote cellular cholesterol efflux from phagocyte-macrophages, ABCA1 was reported to reduce atherosclerosis. We demonstrated that lipid loading in human macrophages was accompanied by a strong increase of IL-6 secretion. Interestingly, IL-6 markedly induced ABCA1 expression and enhanced ABCA1-mediated cholesterol efflux from human macrophages to apoAI. Stimulation of ABCA1-mediated cholesterol efflux by IL-6 was, however, abolished by selective inhibition of the Jak-2/Stat3 signaling pathway. In addition, we observed that the expression of molecules described to promote efferocytosis, i.e. c-mer proto-oncogene-tyrosine kinase, thrombospondin-1, and transglutaminase 2, was significantly induced in human macrophages upon treatment with IL-6. Consistent with these findings, IL-6 enhanced the capacity of human macrophages to phagocytose apoptotic cells; moreover, we observed that IL-6 stimulates the ABCA1-mediated efflux of cholesterol derived from the ingestion of free cholesterol-loaded apoptotic macrophages. Finally, the treatment of human macrophages with IL-6 led to the establishment of an anti-inflammatory cytokine profile, characterized by an increased secretion of IL-4 and IL-10 together with a decrease of that of IL-1β. Taken together, our results indicate that IL-6 favors the elimination of excess cholesterol in human macrophages and phagocytes by stimulation of ABCA1-mediated cellular free cholesterol efflux and attenuates the macrophage proinflammatory phenotype. Thus, high amounts of IL-6 secreted by lipid laden human macrophages may constitute a protective response from macrophages to prevent accumulation of cytotoxic-free cholesterol. Such a cellular recycling of free cholesterol may contribute to reduce both foam cell formation and the accumulation of apoptotic bodies as well as intraplaque inflammation in atherosclerotic lesions.  相似文献   

14.
Endothelin-1 (ET-1), a potent proatherogenic vasoconstrictive peptide, is known to promote macrophage foam cell formation via mechanisms that are not fully understood. Excessive lipid accumulation in macrophages is a major hallmark during the early stages of atherosclerotic lesions. Cholesterol homeostasis is tightly regulated by scavenger receptors (SRs) and ATP-binding cassette (ABC) transporters during the transformation of macrophage foam cells. The aim of this study was to investigate the possible mechanisms by which ET-1 affects lipid accumulation in macrophages. Our results demonstrate that oxidized low-density lipoprotein (oxLDL) treatment increases lipid accumulation in rat bone marrow-derived macrophages. Combined treatment with ET-1 and oxLDL significantly exacerbated lipid accumulation in macrophages as compared to treatment with oxLDL alone. The results of Western blotting show that ET-1 markedly decreased the ABCG1 levels via ET type A and B receptors and activation of the phosphatidylinositol 3-kinase pathway; however, ET-1 had no effect on the protein expression of CD36, SR-BI, SR-A, or ABCA1. In addition, real-time PCR analysis showed that ET-1 treatment did not affect ABCG1 mRNA expression. We also found that ET-1 decreases ABCG1 possibly due to the enhancement of the proteosome/calpain pathway-dependent degradation of ABCG1. Moreover, ET-1 significantly reduced the efficiency of the cholesterol efflux in macrophages. Taken together, these findings suggest that ET-1 may impair cholesterol efflux and further exacerbate lipid accumulation during the transformation of macrophage foam cells.  相似文献   

15.
Macrophages synthesize and secrete apolipoprotein E (apoE) constitutively. This process is upregulated under conditions of cholesterol loading. The response to cholesterol is antiatherogenic as it is believed to promote cholesterol efflux from the artery wall. The concentration of lactosyl ceramide (LacCer), a glycosphingolipid recently discovered to regulate cellular signaling, proliferation, and expression of adhesion molecules, is also increased in atherosclerotic tissues. Here we have investigated the effect of exogenous LacCer on macrophage apoE levels. We show that increasing macrophage LacCer levels sevenfold led to reductions in cellular and secreted apoE (15 and 30%, respectively, over a 24-h period) as determined by enzyme-linked immunosorbent assay. A similar effect was also induced by glucosyl ceramide (GlcCer) but not by ganglioside species. When macrophages were converted to cholesterol-loaded foam cells by incubation with acetylated LDL, the resulting increase in cellular apoE levels was inhibited by 26% when the cells were subsequently enriched with LacCer. After metabolic labeling of cellular glycosphingolipids with [14C]palmitate, we also discovered that high-density lipoprotein (HDL) stimulates the efflux of glycosphingolipids from foam cells. These data imply that LacCer and GlcCer may be proatherogenic due to the suppression of macrophage apoE production. Furthermore, the efflux of glycosphingolipids from macrophage foam cells to HDL could indicate a potential pathway for their removal from the artery wall and subsequent delivery to the liver.  相似文献   

16.
17.
CD226 is a costimulatory molecule that regulates immune cell functions in T cells, natural killer cells, and macrophages. Because macrophage-derived foam cell formation is a crucial factor contributing to the development of atherosclerosis, we aimed to evaluate the potential roles of CD226 in the pathogenesis of atherosclerosis. The effects of CD226 on atherosclerosis were investigated in CD226 and apolipoprotein E double-knockout (CD226?/? ApoE?/?) mice fed with a high-cholesterol atherogenic diet. CD226 expression in macrophages was evaluated using flow cytometry. Histopathological analysis was performed to evaluate the atherosclerotic lesions. Inflammatory cell infiltration was detected using immunofluorescence staining. Bone marrow-derived macrophages (BMDMs) and peritoneal macrophages (PEMs) were isolated from the mice and used to explore the mechanism in vitro. The in vivo results indicated that CD226 knockdown protected against atherosclerosis in ApoE?/? mice, evidenced by reduced plaque accumulation in the brachiocephalic artery, aortic roots, and main aortic tree. CD226 gene-deficient macrophages showed reduced foam cell formation under ox-low density lipoprotein stimulation compared with wild-type (WT) cells. CD226 deficiency also decreased the expression of CD36 and scavenger receptor (SR)-A (responsible for lipoprotein uptake) but increased the expression of ATP-binding cassette transporter A1 and G1 (two transporters for cholesterol efflux). Therefore, loss of CD226 hinders foam cell formation and atherosclerosis progression, suggesting that CD226 is a promising new therapeutic target for atherosclerosis.  相似文献   

18.
The extent to which cholesterol synthesis is modulated in macrophage foam cells by changes in cholesterol influx and efflux was determined using thioglycollate-elicited peritoneal macrophages from normal and cholesterol-fed White Carneau (WC) and Show Racer (SR) pigeons. In peritoneal macrophages from normocholesterolemic pigeons, sterol synthesis from [(14)C]-acetate was down-regulated by more than 90% following incubation in vitro with beta-VLDL. Sterol synthesis was increased when the cellular free cholesterol concentration was decreased in response to stimulation of cholesterol efflux with apoHDL/phosphatidylcholine vesicles and cyclodextrin. Peritoneal macrophages isolated from hypercholesterolemic pigeons were loaded with cholesterol to levels similar to foam cells from atherosclerotic plaques (375-614 microg/mg cell protein), and had an extremely low rate of sterol synthesis. When cholesterol efflux was stimulated in these cells, sterol synthesis increased 8 to 10-fold, even though the cells remained grossly loaded with cholesterol. Cholesterol efflux also stimulated HMG-CoA reductase activity and LDL receptor expression. This suggests that only a small portion of the total cholesterol pool in macrophage foam cells was responsible for regulation of sterol synthesis, and that cholesterol generated by hydrolysis of cholesteryl esters was directed away from the regulatory pool by efflux from the cells. When the increase in sterol synthesis was blocked with the HMG-CoA reductase inhibitor mevinolin, there was no difference in the cholesterol content of the cells, or in the mass efflux of cholesterol into the culture medium.Thus, under these conditions, the increase in cholesterol synthesis during stimulation of cholesterol efflux does not appear to contribute significantly to the mass of cholesterol in these macrophage foam cells. Whether a similar situation exists in vivo is unknown.  相似文献   

19.
Cholesterol- and cholesteryl ester-rich macrophage foam cells, characteristic of atherosclerotic lesions, are often generated in vitro using oxidized low density lipoprotein (OxLDL). However, relatively little is known of the nature and extent of sterol deposition in these cells or of its relationship to the foam cells formed in atherosclerotic lesions. The purpose of this study was to examine the content and cellular processing of sterols in OxLDL-loaded macrophages, and to compare this with macrophages loaded with acetylated LDL (AcLDL; cholesteryl ester-loaded cells containing no oxidized lipids) or 7-ketocholesterol-enriched acetylated LDL (7KCAcLDL; cholesteryl ester-loaded cells selectively supplemented with 7-ketocholesterol (7KC), the major oxysterol present in OxLDL). Both cholesterol and 7KC and their esters were measured in macrophages after uptake of these modified lipoproteins. Oxysterols comprised up to 50% of total sterol content of OxLDL-loaded cells. Unesterified 7KC and cholesterol partitioned into cell membranes, with no evidence of retention of either free sterol within lysosomes. The cells also contained cytosolic, ACAT-derived, cholesteryl and 7-ketocholesteryl esters. The proportion of free cholesterol and 7KC esterified by ACAT was 10-fold less in OxLDL-loaded cells than in AcLDL or 7KCAcLDL-loaded cells. This poor esterification rate in OxLDL-loaded cells was partly caused by fatty acid limitation. OxLDL-loaded macrophages also contained large (approximately 40-50% total cell sterol content) pools of oxidized esters, containing cholesterol or 7KC esterified to oxidized fatty acids. These were insensitive to ACAT inhibition, very stable and located in lysosomes, indicating resistance to lysosomal esterases. Macrophages loaded with OxLDL do not accumulate free sterols in their lysosomal compartment, but do accumulate lysosomal deposits of OxLDL-derived cholesterol and 7-ketocholesterol esterified to oxidized fatty acids. The presence of similar deposits in lesion foam cells would represent a pool of sterols that is particularly resistant to removal.  相似文献   

20.
Urotensin II (UII) is a vasoactive peptide composed of 11 amino acids that has been implicated to contribute to the development of cardiovascular disease. The purpose of this study was to investigate whether UII affects the development of atherosclerosis in cholesterol-fed rabbits. UII was infused for 16 weeks through an osmotic mini-pump into male Japanese White rabbits fed on a high-cholesterol diet. Plasma lipids and body weight were measured every 4 weeks. Aortic atherosclerotic lesions along with cellular components, collagen fibers, matrix metalloproteinase-1 and -9 were examined. Moreover, vulnerability index of atherosclerotic plaques was evaluated. UII infusion significantly increased atherosclerotic lesions within the entire aorta by 21% over the control (P = 0.013). Atherosclerotic lesions were increased by 24% in the aortic arch (P = 0.005), 11% in the thoracic aorta (P = 0.054) and 18% in the abdominal aorta (P = 0.035). These increases occurred without changes in plasma levels of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides or body weight. Immunohistochemical staining revealed that macrophages and matrix metalloproteinase-9 were significantly enhanced by 2.2-fold and 1.6-fold in UII group. In vitro studies demonstrated that UII up-regulated the expression of vascular cell adhesion protein-1 and intercellular adhesion molecule-1 in human umbilical vein endothelial cells, which was inhibited by the UII receptor antagonist urantide. In conclusion, our results showed that UII promotes the development of atherosclerotic lesions and destabilizes atherosclerotic plaques in cholesterol-fed rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号