首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
In the biosynthesis of corynecins by Corynebacterium hydrocarboclastus, it appeared that shikimic acid was one of the efficient precursors, where shikimic acid-U-14C was incorporated into corynecins in the yield of approximately 15%. Analyses of degradation products of labeled corynecins demonstrated that shikimic acid was incorporated specifically into aromatic ring of corynecins.

The incorporation of shikimic acid was inhibited by several aromatic amines such as p-aminophenylserinol-N-propionamide, although the uptake of shikimic acid was not affected, suggesting that biosynthesis of corynecins might be regulated by p-aminophenyl intermediates. Furthermore, p-ammophenylethylalcohol was found to be a potent inhibitor of biosynthesis of corynecins. In contrast, corynecins and other p-nitro-phenyl derivatives, aromatic amino acids and vitamins related to shikimic acid pathway did not inhibit the biosynthesis of corynecins from shikimic acid.  相似文献   

2.
Labelled shikimic acid was efficiently incorporated into the aniline moiety of N-(γ-L-glutamyl)-4-hydroxyaniline, a characteristic aromatic compound of the common mushroom, Agaricus bisporus. Incubations with [3-3H]- and [1,6-14C]shikimic acid clearly proved that the amination of shikimic acid occurs at its 4-position during the biosynthesis of N-(γ-L-glutamyl)-4-hydroxyaniline.  相似文献   

3.
The biosynthesis of fukinolic acid, which had been isolated from the Japanese fuki vegetable, Petasites japonicus, was investigated by feeding selected 13C-labeled compounds to axenic cultures of P. japonicus. [1,2-13C2] sodium acetate and [1-13C] L-tyrosine were incorporated into the fukiic acid sub group, while [3-13C] L-phenylalanine was incorporated into the caffeic acid moiety.  相似文献   

4.
Cell cultures of Linum album Kotschy ex Boiss. (Linaceae) showing high accumulation of the lignan podophyllotoxin (PTOX) were established. Enzymological studies revealed highest activities of phenylalanine ammonia-lyase, cinnamyl alcohol dehydrogenase, 4-hydroxycinnamate:CoA ligase and cinnamoyl-CoA:NADP oxidoreductase immediately prior to PTOX accumulation. To investigate PTOX biosynthesis, feeding experiments were performed with [2-13C]3′,4′-dimethoxycinnamic acid, [2-13C]3′,4′-methylenedioxycinnamic acid (MDCA), [2-13C]3′,4′,5′-trimethoxycinnamic acid, [2-13C]sinapic acid, [2-13C]- and [2,3-13C2]ferulic acid. Analysis of the metabolites by HPLC coupled to tandem mass spectrometry revealed incorporation of label from ferulic acid into PTOX and deoxypodophyllotoxin (DOP). In addition, MDCA was also unambiguously incorporated intact into PTOX. These observations suggest that in L. album both ferulic acid and methylenedioxy-substituted cinnamic acid can be incorporated into lignans. Furthermore, it appears that, in this species, the hydroxylation of DOP is a rate-limiting point in the pathway leading to PTOX. Electronic supplementary material to this article is available at and is accessible for authorized users. Electronic Publication  相似文献   

5.
The 13C-nuclear magnetic resonance (NMR) spectra of chlorophyll a formed in dark-grown Scenedesmus obliquus (Turp.) Kützing in the presence of [1-13C]glutamate, [2-13C]- and [1-13C]glycineshowed that the 13C of glutamate was specifically incorporated into the eight-carbon atoms in the tetrapyrrole macrocycles derived from C-5 of 5-aminolevulinic acid (ALA), while the C-2 of glycine was only incorporated into the methyl carbon of the methoxycarbonyl group attached to the isocyclic ring of chlorophyll a. No specific enrichment of these nine carbon atoms was observed in the spectrum of chlorophyll a formed in the presence of [1-13C]-glycine. These labeling patterns provide evidence for the operation of the C5-pathway and against the operation of the ALA synthase pathway for chlorophyll formation in darkness.  相似文献   

6.
Summary The activity of 3-dehydroshikimate dehydratase was detected in an extract prepared from cells of mung bean (Vigna mungo) that had been cultured in the presence of shikimate while such activity was not detectable in an extract prepared from cells cultured without shikimate. The enzyme was partially purified and characterized. The maximum activity of the enzyme was observed at pH 7.4. The activity was inhibited to a small extent by EDTA and sulfhydryl inhibitors. The partially purified enzyme was sensitive to thermal denaturation but was stabilized by Mg2+ ions. These results suggest that 3-dehydroshikimate dehydratase might be induced in mung bean cultured cells in the presence of shikimic acid.Abbreviations 2,4-D 2,4-Dichlorophenoxyacetic acid - DHS 3-dehydroshikimic acid - PCA protocatechuic acid - QA quinic acid - SA shikimic acid - SORase shikimate - NAEP oxidoreductase  相似文献   

7.
Radioactive shikimic acid and l-tyrosine were shown to be efficient precursors of 3,4-dihydroxyphenylalanine (DOPA) in Vicia faba. [1-14C]Acetate and l[U-14C]phenylalanine were not incorporated into tyrosine or DOPA. Thus the synthesis of DOPA occurs via the shikimic acid pathway and tyrosine or a very closely related metabolise. Phenolase was present in etiolated plants in much larger quantities after a brief light exposure whereas DOPA concentration was relatively constant during all stages of plant growth. Partially purified phenolase did not catalyze the conversion of tyrosine to DOPA and does not appear to have a role in DOPA synthesis.  相似文献   

8.
The hyphal walls of three mycobionts, isolated from the lichens Xanthoria parietina, Tornabenia intricata and Sarcogyne sp. were investigated by two techniques: microautoradiography of fungal colonies exposed to radioactive carbohydrate precursors; and binding, in vivo, of fluorescein conjugated lectins to hyphal walls of such colonies.N-[3H] acetylglucosamine was readily incorporated into tips, young hyphal walls and septa of the three mycobionts and the free-living fungus Trichoderma viride, but not into Phytophthora citrophthora, indicating that chitin is a major component of the mycobionts' hyphal walls. All three mycobionts, but neither of the free-living fungi, incorporated [3H] mannose and [3H] mannitol into their hyphal walls.Fluorescein-conjugated wheat germ agglutinin was bound to the hyphal walls of the three mycobionts and T. viride, but not to the walls of P. citrophthora; the binding pattern was similar to the grain pattern obtained in autoradiographs after short N-[3H] acetylglucosamine labelling. As wheat germ agglutinin binds specifically to chitin oligomers, the lectin binding tests further confirmed that chitin is a mycobiont hyphal wall component.Binding characteristics of several fluorescein-conjugated lectins to the three mycobionts indicated that this technique can yield useful information concerning the chemical composition of hyphal wall surfaces.List of abbreviations FITC fluorescein isothiocyanate - WGA wheat germ agglutinin - TCA trichloroacetic acid - PNA peanut agglutinin - LA lotus agglutinin - Glc NAc N-acetylglucosamine - ConA concanavalin A - SBA soybean agglutinin - WBA waxbean agglutinin Part of an M.Sc. thesis submitted by A. Braun to the Department of Botany, Tel Aviv University.  相似文献   

9.
Agaricus bisporus contains the unique aniline derivative, N-(γ-L-glutamyl)-4-hydroxyaniline. 14C-labelled chorismic acid was quantitatively incorporated into the 4-hydroxyaniline moiety of this aniline derivative, whereas 14C-labelled prephenic acid and anthranilic acid were not incorporated into 4-hydroxyaniline. These observations indicate the branch point of the biosynthetic route of 4-hydroxyaniline in the shikimic acid pathway to be chorismic acid. Moreover, 4-aminobenzoic acid proved to be an effective precursor of 4-hydroxyaniline.  相似文献   

10.
Exogenous 5-hydroxy-[2-14C]benzimidazole was transformed by Methanosarcina barkeri into 5-hydroxy-[2-14C]benzimidazolylcobamide. Thereby the endogenous biosynthesis of 5-hydroxybenzimidazole was completely blocked.Benzimidazole and 5,6-dimethylbenzimidazole were used by M. barkeri to form benzimidazolylcobamide respectively 5,6-dimethylbenzimidazolylcobamide (vitamin B12), but in these cases the endogenous biosynthesis of factor III was not completely suppressed.With [2-14C]benzimidazole it was demonstrated that this base as well as the benzimidazolylcobamide formed thereof are no precursors in the biosynthesis of 5-hydroxybenzimidazolylcobamide.Glycine instead was found to be a building block for the biosynthesis of 5-hydroxybenzimidazole, since radioactivity from [1-14C] and [2-14C]glycine was incorporated, into the base moiety of factor III, but not into its corrin moiety. With [1-13C]glycine and 13C-NMR-spectroscopy it was shown that C-1 of glycine gets C-3a of 5-hydroxybenzimidazole.[1-13C]glycine also led to a single prominent signal in the 13C-NMR-spectrum of coenzyme F420, this was assigned to C-10a.Thus C-1 of glycine was incorporated into the hydroxybenzene part of 5-hydroxybenzimidazole, whereas it was not incorporated into this part of coenzyme F420, indicating that the hydroxybenzene part of these two compounds is not formed from a common intermediate. L-[U-14C]glutamate led to the exclusive labeling of the corrin ring of factor III, showing that the corrin precursor 5-aminolevulinic acid is formed by the C-5 pathway in M. barkeri.These experiments indicate that the biosynthesis of factor III in the archaebacterium M. barkeri is similar to the corrinoid biosynthesis in the anaerobic eubacteria Eubacterium limosum, Clostridium barkeri, and Clostridium thermoaceticum.  相似文献   

11.
L-色氨酸作为一种必需氨基酸,广泛应用于食品、饲料和医药等领域。目前,微生物法生产L-色氨酸存在转化率低等问题。为此,本研究通过敲除L-色氨酸操纵子阻遏蛋白(L-tryptophan operon repressor protein, trpR)、替换l-色氨酸弱化子(trpL)、引入抗反馈调节的aroGfbr等,获得可积累11.80 g/L L-色氨酸的底盘菌株大肠杆菌(Escherichia coli)TRP3。在此基础上,将L-色氨酸合成途径分为中心代谢途径模块、莽草酸(shikimic acid, SA)途径至分支酸(chorismic acid, CHA)模块、分支酸至L-色氨酸模块,并借助启动子工程,通过平衡中心代谢途径模块、莽草酸途径至分支酸模块、分支酸至L-色氨酸模块,获得工程菌E.coli TRP9。在5 L发酵罐中,工程菌E.coli TRP9的L-色氨酸产量提升至36.08 g/L,糖酸转化率提升至18.55%,达到理论转化率的81.7%。本研究利用模块工程策略,构建了高产L-色氨酸生产菌株,为l-色氨酸的规模化生产奠定了良好的基础。  相似文献   

12.
14C-labelled shikimic acid and double labelled shikimic acid tritiated stereospecifically at C-6 are incorporated into 3-(3-carboxyphenyl)alanine, 3-(3-carboxyl-4-hydroxyphenyl)alanine, phenylalanine, and tyrosine in Resda lutea L., Reseda odoratta L., Iris x Hollandica cv. Prof. Blauw, and Iris x hollandica cv. Wedgwood. The experiments with 14C-labelled shikimic acid confirm that the aromatic carboxyl groups and rings in 3-(3-carboxyphenyl)-alanine and 3-(3-carboxy-4-hydroxyphenyl)alanine derive from the carboxyl group and ring in shikimic acid whereas the experiments with double labelled shikimic acid demonstrate that the pro-6S-hydrogen atom is retained and the pro-6R-hydrogen atom lost in the biosynthesis of 3-(3-carboxyphenyl)alanine, phenylalanine, and tyrosine in the plants used. 3H was located in the ortho-position in the aromatic rings of phenylalanine and tyrosine but in a position para to the alanine side chain of 3-(3-cabroxyphenyl)alanine. No 3H was found in 3-(3-carboxy-4-hydroxyphenyl)alanine. This supports a derivation of the last two compounds from chorismic acidvia isochorismic acid, isoprephenic acid, and 3′-carboxyphenylpyruvic acid and 3′-carboxy-4′-hydroxyphenylpyruvic acid. The 3H/14 C ratio in 3-(3-carboxyphenyl)alanine was found higher than in the precursor used. This isotope effect must operate by competition between the pathways from isoprephenic acid to 3′-carboxyphenylpyruvic acid and to 3′-carboxy-4′-hydroxyphenylpyruvic acid. The proposed biosynthetic pathways for the two carboxy-substituted amino acids are in agreement with their distribution patterns in the plant kingdom and suggest that they may derive from minor changes of enzymes involved in the general pathways of aromatic biosynthesis.  相似文献   

13.
Acinetobacter calcoaceticus LMD 79.41 produced significant amounts of pyrrolo-quinoline quinone (PQQ) in its culture medium when grown on quinic acid or shikimic acid. Studies with LMD 79.41 and PQQ--mutants of this strain demonstrated that this organism contains an NAD(P)-independent quinate dehydrogenase (QDH) (EC 1.1.99.-), catalyzing the first degradation step of these compounds, and that the enzyme contains PQQ as a cofactor, i.e. is a quinoprotein. Synthesis of QDH was induced by protocatechuate and the enzyme appeared to be particle-bound. Acinetobacter lwoffi RAG-1 produced a quinoprotein QDH apoenzyme since growth on quinic acid only occurred in the presence of PQQ. The results obtained with the PQQ--mutants of strain LMD 79.41 also provided some insight into the regulation of PQQ biosynthesis and assemblage of quinoprotein enzymes in the periplasmic space. Since two species of Pseudomonas also contained a quinoprotein QDH, it is assumed that bacterial NAD(P)-independent quinate dehydrogenase is a quinoprotein.Abbreviations DCPIP 2,6-dichlorophenolindophenol  相似文献   

14.
Three acid phosphatase (EC 3.1.3.2) allozymes (ACPH1, ACPH2, and ACPH4) ofDrosophila virilis show different activities as measured by electrophoretic techniques. Recently, it was suggested that these differences are attributable to the variable ability of the allozymes to be incorporated into lysosomes (Narise, S.,Genet. Res. Cambr., 45:143, 1985). Immunoelectrophoresis demonstrated that the activity differences between these electrophoretic variants coincided with differences in the amount of the enzyme protein in soluble fractions but not in whole cell-free extracts. These results support the idea that acid phosphatase allozymes inD. virilis are cell-localization variants. We examined the problem by structural analysis of both the protein and the carbohydrate moieties of these allozyme glycoproteins, since lysosomal enzymes are known to become localized in lysosomes through their carbohydrate moieties. The three ACPH allozymes were purified to homogeneity from their respective homozygotes and compared with respect to amino acid composition and carbohydrate content and composition. Amino acid compositions were similar, while content and compositions of neutral sugars were significantly different. The neutral sugar content of ACPH1 was 9.2%; that of ACPH2, 21.0%; and that of ACPH4, 7.3%. A trace of hexosamines, but noN-acetylneuraminic acid, was found in the ACPH allozymes. Isoelectric points varied corresponding to their electrophoretic mobilities, which were not changed by treatment with alkaline phosphatase and neuraminidase.  相似文献   

15.
Arachidonic acid, cellulase, CuSO4, a sonicate of Phytophthora infestans mycelium and a spore suspension of Penicillium chrysogenum all elicited the formation of the sesquiterpenoid phytoalexins lubimin, 3-hydroxylubimin and rishitin in fruit cavities of Datura stramonium. 3-Hydroxylubimin was the predominant phytoalexin formed after treatment of the fruits with arachidonic acid, cellulase and the P. infestans preparation. Copper sulphate was a potent elicitor of lubimin but not 3-hydroxylubimin. The fungus P. chrysogenum metabolized lubimin and 3-hydroxylubimin to 15-dihydrolubimin and 3-hydroxy-15-dihydrolubimin respectively, both in fruit cavities inoculated with spores of this fungus and in pure culture. The 15-dihydrolubimin formed in the fruits by the fungus was further metabolized (by the fruits) to both isolubimin and 3-hydroxy-15-dihydrolubimin. The precursor-product relationships between all of the subject compounds was investigated by feeding experiments with 3H-labelled compounds. 2-Dehydro-[15-3H1]lubimin was rapidly and efficiently incorporated into lubimin and may be the direct precursor of lubimin in planta. 3-Hydroxy[2-3H1]lubimin was incorporated into the nor-eudesmane rishitin but 10-epi-3-hydroxy[2-3H1]lubimin was not. An updated scheme for the biosynthesis and metabolism of lubimin and related compounds in infected tissues of solanaceous plants is presented.We thank Mr Vic Swetez for the provision of plant material, Mrs Margaret Huffee for technical assistance, Dr David Ewing for help with obtaining NMR spectra, and the Agricultural and Food Research Council for financial support.  相似文献   

16.
The advantage of using 13C-labelled glucose in metabolic studies is that it is an important carbon and energy source for almost all biotechnologically and medically important organisms. On the other hand, the disadvantage is its relatively high cost in the labelling experiments. Looking for cheaper alternatives we found that 13C-[2] acetate or 13C-[1,2] acetate is a prospective compound for such experiments. Acetate is well incorporated by many organisms, including mammalian and insect cell cultures as preferred source of acetyl-CoA. Our experimental results using 13C NMR demonstrated that acetate was efficiently incorporated into glutamate and alanine secreted by the insect cell culture. Using D-stat culture of Saccharomyces uvarum on glucose/13C-acetate mineral media we demonstrated that the labelling patterns of proteinogenic amino acids can be well predicted on the basis of specific substrate consumption rates using the modified scheme of yeast metabolism and stoichiometric modelling. According to this scheme aspartate and alanine in S. uvarum under the experimental conditions used is synthesised in the mitochondria. Synthesis of alanine in the mitochondria was also demonstrated for Spodoptera frugiperda. For both organisms malic enzyme was also operative. For S. uvarum it was shown that the activity of malic enzyme is sufficient for supporting the mitochondrial biosynthetic reactions with NADPH.  相似文献   

17.
The effects of various exogenous nucleic acid compounds on the viability and cell composition of Bdellovibrio bacteriovorus starved in buffer were measured. In decreasing order of effectiveness, these compounds were found to decrease the rate of loss of viability and the loss of cell carbon, cell ribonculeic acid, and cell protein: glutamate > ribonucleoside monophosphates > ribonucleosides > deoxyribonucleoside monophosphates. Similar sparing effects were not observed with nucleic acid bases, deoxyribonucleosides, ribose, ribose-5-phosphate, deoxyribose, and deoxyribose-5-phosphate. Appreciable increases in the respiration rate over the endogenous rate did not occur when cell suspensions were incubated with individual or mixtures of nucleic acid compounds. Formation of 14CO2 by cell suspensions incubated with carbon 14-labeled nucleic acid compounds indicated ribonucleosides and ribonucleoside monophosphates were respired and to a small extent, were incorporated into cell material of non-growing cells. The respired 14CO2 was derived mainly from the ribose portion of these molecules. No respired 14CO2 or incorporated carbon 14 was found with bdellovibrios incubated with other nucleic acid compounds tested, including free ribose. During growth of B. bacteriovorus on Escherichia coli in the presence of exogenous UL-14C-ribonucleoside monophosphates, 10–16% of the radioactivity was in the respired CO2 and of the radioactivity incorporated into the bdellovibrios, only 40 to 50% resided in the cell nucleic acids. However, during growth on 14C-adenine,-uracil, or-thymidine labeled E. coli, only trace amounts of 14CO2 were found and 90% or more of the incorporated radioactivity was in the bdellovibrio nucleic acids. It is concluded that bdellovibrio can use ribonucleoside monophosphates during growth and starvation as biosynthetic precursors for synthesis of both nucleic acids and other cell materials as well as catabolizing the ribose portion for energy purposes.Abbreviations HM buffer 5 mM N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid (pH 7.6) containing 0.1 mM CaCl2 and MgCl2 - DNA deoxyribonucleic acid - RNA ribonucleic acid - Ar, Cr, Gr, Ur ribonucleosides of adenine, cytosine, guanine, uracil, respectively - dTr deoxythymidine - AMP, CMP, GMP, UMP ribonucleoside monophosphates of adenine, cytosine, guanine, and uracil, respectively - dTMP deoxythymidine monophosphate - ATP adenosine triphosphate - PFU plaque-forming units  相似文献   

18.
Alois Kretz 《Planta》1973,110(1):1-14
Summary Samples of cambial sap from each of the three coniferous species Pinus sylvestris L., Picea Abies Karst. and Abies alba Mill. were taken at the time the trees were coming into bud and analysed for low molecular weight carbohydrates, cyclitols and organic acids. They all contained the same free sugars and cyclitols, but in markedly different proportions. Quantitative analyses were carried out for glucose, fructose, sucrose, raffinose, myo-inositol, D-inositol, pinitol, sequoyitol and coniferin.The three main components of the organic acid fractions-quinic acid, shikimic acid and malic acid—were determined quantitatively. The amount of quinic acid greatly exceeded the amount of all the other acids in all three species. 14C-labelled quinic acid applied to the cut ends of Pinus sylvestris needles was transported to the twig. There was no conversion of quinic acid to shikimic acid over short periods of time.  相似文献   

19.
It was, using the particulate enzyme from Micrococcus lysodeikticus, revealed that most of 2-14C-mevalonic acid incorporated into the cell of Lactobacillus heterohiochii H-1 was incorporated into the lipid intermediate of cell wall biosynthesis. About 10% of the radioactivities incorporated into the cells was, however, found in nucleic acid fraction which was extracted from lysozyme treated cells with phenol. Most of the radioactivities in the nucleic acid fraction was eluted at the beginning of the elution pattern from Sephadex G-200 or MAK-column. The material is different from tRNA and rRNA.  相似文献   

20.
The activity of the shikimic acid pathway during shoot initiation in tobacco (Nicotiana tabacum L. Wisconsin 38) callus was examined. Enhancement of the activities of 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthase, shikimate kinase, chorismate mutase, and anthranilate synthase was observed during culture of tobacco callus under shootforming conditions in comparison to tissue cultured under non-organforming conditions. Confirmation of these findings was obtained by examining the incorporation of d-[14C]glucose into quinic and shikimic acids and of [14C]shikimic acid into tyrosine, phenylalanine, and tryptophan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号