首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HDACs (histone deacetylases) are considered to be among the most important enzymes that regulate gene expression in eukaryotic cells acting through deacetylation of epsilon-acetyl-lysine residues within the N-terminal tail of core histones. In addition, both eukaryotic HDACs as well as their bacterial counterparts were reported to also act on non-histone targets. However, we are still far from a comprehensive understanding of the biological activities of this ancient class of enzymes. In the present paper, we studied in more detail the esterase activity of HDACs, focussing on the HDAH (histone deacetylase-like amidohydrolase) from Bordetella/Alcaligenes strain FB188. This enzyme was classified as a class 2 HDAC based on sequence comparison as well as functional data. Using chromogenic and fluorogenic ester substrates we show that HDACs such as FB188 HDAH indeed have esterase activity that is comparable with those of known esterases. Similar results were obtained for human HDAC1, 3 and 8. Standard HDAC inhibitors were able to block both activities with similar IC(50) values. Interestingly, HDAC inhibitors such as suberoylanilide hydroxamic acid (SAHA) also showed inhibitory activity against porcine liver esterase and Pseudomonas fluorescens lipase. The esterase and the amidohydrolase activity of FB188 HDAH both appear to have the same substrate specificity concerning the acyl moiety. Interestingly, a Y312F mutation in the active site of HDAH obstructed amidohydrolase activity but significantly improved esterase activity, indicating subtle differences in the mechanism of both catalytic activities. Our results suggest that, in principle, HDACs may have other biological roles besides acting as protein deacetylases. Furthermore, data on HDAC inhibitors affecting known esterases indicate that these molecules, which are currently among the most promising drug candidates in cancer therapy, may have a broader target profile requiring further exploration.  相似文献   

2.
3.
4.
Class IIa histone deacetylases (HDACs) -4, -5, -7 and -9 undergo signal-dependent nuclear export upon phosphorylation of conserved serine residues that are targets for 14-3-3 binding. Little is known of other mechanisms for regulating the subcellular distribution of class IIa HDACs. Using a biochemical purification strategy, we identified protein kinase C-related kinase-2 (PRK2) as an HDAC5-interacting protein. PRK2 and the related kinase, PRK1, phosphorylate HDAC5 at a threonine residue (Thr-292) positioned within the nuclear localization signal (NLS) of the protein. HDAC7 and HDAC9 contain analogous sites that are phosphorylated by PRK, while HDAC4 harbors a non-phosphorylatable alanine residue at this position. We provide evidence to suggest that the unique phospho-acceptor cooperates with the 14-3-3 target sites to impair HDAC nuclear import.

Structured summary

MINT-7710106:HDAC5 (uniprotkb:Q9UQL6) physically interacts (MI:0915) with PRK2 (uniprotkb:Q16513) by pull down (MI:0096)  相似文献   

5.
Histone deacetylases (HDACs) are important epigenetic factors regulating a variety of vital cellular functions such as cell cycle progression, differentiation, cell migration, and apoptosis. Consequently, HDACs have emerged as promising targets for cancer therapy. The drugability of HDACs has been shown by the discovery of several structural classes of inhibitors (HDACis), particularly by the recent approval of two HDACis, vorinostat (ZOLINZA) and romidepsin (Istodax), for the treatment of cutaneous T-cell lymphoma by the US Food and Drug Administration. The outstanding potential of HDACis, with a defined isoform selectivity profile as drugs against a plurality of diseases, vindicates increased effort in developing high-throughput capable assays for screening campaigns. In this study, a dual-competition assay exploiting changes in fluorescence anisotropy and lifetime was used to screen the LOPAC (Sigma-Aldrich, St Louis, MO) library against the bacterial histone deacetylase homologue HDAH from Bordetella, which shares 35% identity with the second deacetylase domain of HDAC6. The binding assay proved to be highly suitable for high-throughput screening campaigns. Several LOPAC compounds have been identified to inhibit HDAH in the lower micromolar range. Most interestingly, some of the hit compounds turned out to be weak but selective inhibitors of human class IIa and IIb HDACs.  相似文献   

6.
7.
We synthesized biarylalanine-containing hydroxamic acids and tested them on immunoprecipitated HDAC1 and HDAC6 and show a subtype selectivity for HDAC6 that was confirmed in cells by Western blot (tubulin vs histones). We obtained an X-ray structure with a HDAC6-selective inhibitor with the bacterial deacetylase HDAH. Docking studies were carried out using HDAC1 and HDAC6 protein models. Antiproliferative activity was shown on cancer cells for selected compounds.  相似文献   

8.
A class of biaryl benzamides was identified and optimized as selective HDAC1&2 inhibitors (SHI-1:2). These agents exhibit selectivity over class II HDACs 4-7, as well as class I HDACs 3 and 8; providing examples of selective HDAC inhibitors for the HDAC isoforms most closely associated with cancer. The hypothesis for the increased selectivity is the binding of a pendant aromatic group in the internal cavity of the HDAC1&2 enzymes. SAR development based on an initial lead led to a series of potent and selective inhibitors with reduced off-target activity and tumor growth inhibition activity in a HCT-116 xenograft model.  相似文献   

9.
We describe herein the synthesis and characterization of a new class of histone deacetylase (HDAC) inhibitors derived from conjugation of a suberoylanilide hydroxamic acid-like aliphatic-hydroxamate pharmacophore to a nuclear localization signal peptide. We found that these conjugates inhibited the histone deacetylase activities of HDACs 1, 2, 6, and 8 in a manner similar to suberoylanilide hydroxamic acid (SAHA). Notably, compound 7b showed a threefold improvement in HDAC 1/2 inhibition, a threefold increase in HDAC 6 selectivity and a twofold increase in HDAC 8 selectivity when compared to SAHA.  相似文献   

10.
11.
Metal-dependent histone deacetylases (HDACs) catalyze the hydrolysis of acetyl-L-lysine side chains in histone and nonhistone proteins to yield l-lysine and acetate. This chemistry plays a critical role in the regulation of numerous biological processes. Aberrant HDAC activity is implicated in various diseases, and HDACs are validated targets for drug design. Two HDAC inhibitors are currently approved for cancer chemotherapy, and other inhibitors are in clinical trials. To date, X-ray crystal structures are available for four human HDACs (2, 4, 7, and 8) and three HDAC-related deacetylases from bacteria (histone deacetylase-like protein (HDLP); histone deacetylase-like amidohydrolase (HDAH); acetylpolyamine amidohydrolase (APAH)). Structural comparisons among these enzymes reveal a conserved constellation of active site residues, suggesting a common mechanism for the metal-dependent hydrolysis of acetylated substrates. Structural analyses of HDACs and HDAC-related deacetylases guide the design of tight-binding inhibitors, and future prospects for developing isozyme-specific inhibitors are quite promising.  相似文献   

12.
Several human diseases are associated with aberrant epigenetic pathways mediated by histone deacetylases (HDACs), especially HDAC6, a class IIb HDACs, which has emerged as an attractive target for neurodegenerative and autoimmune disease therapeutics. In a previous study, we developed the novel HDAC6-selective inhibitor 9a ((E)-N-hydroxy-4-(2-styrylthiazol-4-yl)butanamide) and showed that it has anti-sepsis activity in vivo. In this study, we conducted structure-activity relationship (SAR) studies to optimize the activity and selectivity of HDAC6, synthesizing its derivatives with various aliphatic linker sizes and cap structures. We identified 6u ((E)-N-hydroxy-3-(2-(4-fluorostyryl)thiazol-4-yl)propanamide), which has nanomolar inhibition activity and a 126-fold selectivity for HDAC6 over HDAC1. Through the docking analyses of 6u against HDAC subtypes, we revealed the importance of the optimal aliphatic linker size, as well as the electronic substituent effect and rigidity of the aryl cap group. Thus, we suggest a new rationale for the design of HDAC6-selective inhibitors.  相似文献   

13.
Schultz BE  Misialek S  Wu J  Tang J  Conn MT  Tahilramani R  Wong L 《Biochemistry》2004,43(34):11083-11091
Histone deacetylase (HDAC) enzymes modulate gene expression through the deacetylation of acetylated lysine residues on histone proteins. They operate in biological systems as part of multiprotein corepressor complexes. To understand the reactivity of isolated HDACs and the contribution of cofactor binding to reactivity, the reaction kinetics of isolated, recombinant human HDACs 1, 2, 3, 6, 8, and 10 were measured using a novel, continuous protease-coupled enzyme assay. Values of k(cat) and k(cat)/K(m) and the pH dependence of these values were determined for the reactions of each isozyme with acetyl-Gly-Ala-(N(epsilon)-acetyl-Lys)-AMC. Values of k(cat) spanned the range of 0.006-2.8 s(-1), and k(cat)/K(m) values ranged from 60 to 110000 M(-1) s(-1). The pH profiles for both k(cat) and k(cat)/K(m) were bell-shaped for all of the HDAC isozymes, with pH optima at approximately pH 8. Values of K(i) for the inhibitor trichostatin A were determined for each isozyme. The inhibition constants were generally similar for all HDAC isozymes, except that the value for HDAC8 was significantly higher than that for the other isozymes. The reaction of HDAC8 with an alternative substrate was performed to assess the steric requirements of the HDAC8 active site, and the effect of phosphorylation on HDAC1 activity was examined. The results are discussed in terms of the biological roles of the HDAC enzymes and the proposed reaction mechanism of acetyllysine hydrolysis by these enzymes.  相似文献   

14.
Xu X  Xie C  Edwards H  Zhou H  Buck SA  Ge Y 《PloS one》2011,6(2):e17138

Background

Pediatric acute myeloid leukemia (AML) remains a challenging disease to treat even with intensified cytarabine-based chemotherapy. Histone deacetylases (HDACs) have been reported to be promising therapeutic targets for treating AML. However, HDAC family members that are involved in chemotherapy sensitivities remain unknown. In this study, we sought to identify members of the HDAC family that are involved in cytarabine sensitivities, and to select the optimal HDACI that is most efficacious when combined with cytarabine for treating children with AML.

Methodology

Expression profiles of classes I, II, and IV HDACs in 4 pediatric AML cell lines were determined by Western blotting. Inhibition of class I HDACs by different HDACIs was measured post immnunoprecipitation. Individual down-regulation of HDACs in pediatric AML cells was performed with lentiviral shRNA. The effects of cytarabine and HDACIs on apoptosis were determined by flow cytometry analysis.

Results

Treatments with structurally diverse HDACIs and HDAC shRNA knockdown experiments revealed that down-regulation of both HDACs 1 and 6 is critical in enhancing cytarabine-induced apoptosis in pediatric AML, at least partly mediated by Bim. However, down-regulation of HDAC2 may negatively impact cytarabine sensitivities in the disease. At clinically achievable concentrations, HDACIs that simultaneously inhibited both HDACs 1 and 6 showed the best anti-leukemic activities and significantly enhanced cytarabine-induced apoptosis.

Conclusion

Our results further confirm that HDACs are bona fide therapeutic targets for treating pediatric AML and suggest that pan-HDACIs may be more beneficial than isoform-specific drugs.  相似文献   

15.
Histone deacetylases (HDACs) are significant enzymes involved in tumor genesis and development. Herein, we report a series of novel N-hydroxyfurylacryl-amide-based HDAC inhibitors, which are marked by introducing branched hydrophobic groups as the capping group. The inhibitory activity of the synthesized compounds against HDACs and several tumor cell lines are firstly determined. Fifteen compounds with promising activities are selected for further evaluation of target selectivity profile against recombinant human HDAC1, HDAC4 and HDAC6. Compounds 10a, 10b, 10d and 16a exhibit outstanding selectivity against HDAC6. Analysis of HDAC4 X-ray structure and HDAC1, HDAC6 homology model indicates that these enzyme differ significantly in the rim near the surface of the active site. Although TSA has been known as a pan-HDAC inhibitor, it exhibits outstanding selectivity for HDAC6 over HDAC4. For further physicochemical properties study, six compounds are chosen for determination of their physicochemical properties including log D7.4 and aqueous solubility. The results suggest that compounds with a smaller framework and with hydrophilicgroups are likely to have better aqueous solubility.  相似文献   

16.
Epigenetic control plays an important role in gene regulation through chemical modifications of DNA and post-translational modifications of histones. An essential post-translational modification is the histone acetylation/deacetylation-process which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). The mammalian zinc dependent HDAC family is subdivided into three classes: class I (HDACs 1-3, 8), class II (IIa: HDACs 4, 5, 7, 9; IIb: HDACs 6, 10) and class IV (HDAC 11). In this review, recent studies on the biological role and regulation of class IIa HDACs as well as their contribution in neurodegenerative diseases, immune disorders and cancer will be presented. Furthermore, the development, synthesis, and future perspectives of selective class IIa inhibitors will be highlighted.  相似文献   

17.
18.
19.
20.
In an effort to identify HDAC isoform selective inhibitors, we designed and synthesized novel, chiral 3,4-dihydroquinoxalin-2(1H)-one and piperazine-2,5-dione aryl hydroxamates showing selectivity (up to 40-fold) for human HDAC6 over other class I/IIa HDACs. The observed selectivity and potency (IC50 values 10–200 nM against HDAC6) is markedly dependent on the absolute configuration of the chiral moiety, and suggests new possibilities for use of chiral compounds in selective HDAC isoform inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号