首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascorbic acid donates electrons to dopamine beta-monooxygenase during the hydroxylation of dopamine to norepinephrine in vitro. However, the possible role of ascorbic acid in norepinephrine biosynthesis in vivo has not been defined. We therefore investigated the effect of newly accumulated ascorbic acid on catecholamine biosynthesis in cultured bovine adrenal chromaffin cells. Cells supplemented for 3 h with ascorbic acid accumulated 9-fold more ascorbic acid than found in control cells. Under these conditions, the cells loaded with ascorbate were found to double the rate of norepinephrine biosynthesis from [14C]tyrosine compared to control. By contrast, the amounts present of [14C] 3,4-dihydroxyphenylalanine and [14C]dopamine synthesized from [14C]tyrosine were unaffected by the preloading of ascorbic acid. Ascorbate preloaded cells incubated with [3H]dopamine also showed a similar increase in the rate of norepinephrine formation, without any change in dopamine transport into the cells. Thus, these data were consistent with ascorbate action at the dopamine beta-monooxygenase step. In order to determine if ascorbate could interact directly with dopamine beta-monooxygenase localized within chromaffin granules, we studied whether isolated chromaffin granules could accumulate ascorbic acid. Ascorbic acid was not transported into chromaffin granules by an uptake or exchange process, despite coincident [3H]dopamine uptake which was Mg-ATP dependent. These data indicate that ascorbic acid does augment norepinephrine biosynthesis in intact chromaffin cells, but by a mechanism that might enhance the rate of dopamine hydroxylation indirectly.  相似文献   

2.
Ascorbic acid and Mg-ATP were found to regulate norepinephrine biosynthesis in intact secretory vesicles synergistically and specifically, using the model system of isolated bovine chromaffin granules. Dopamine uptake into chromaffin granules was shown to be unrelated to the presence of Mg-ATP and ascorbic acid at external dopamine concentrations of 7.5 and 10 mM. Under these conditions of dopamine uptake, norepinephrine biosynthesis was enhanced 5-6-fold by Mg-ATP and ascorbic acid compared to control experiments with dopamine only. Furthermore, norepinephrine formation was enhanced approximately 3-fold by ascorbic acid and Mg-ATP together compared to norepinephrine formation in granules incubated with either substance alone. The action of Mg-ATP and ascorbic acid together was synergistic and independent of dopamine content of chromaffin granules as well as of dopamine uptake. The apparent Km of norepinephrine formation for external ascorbic acid was 376 microM and for external Mg-ATP was 132 microM, consistent with the larger amounts of cytosolic ascorbic acid and ATP that are available to chromaffin granules. Other physiologic reducing agents were not able to increase norepinephrine biosynthesis in the presence or absence of Mg-ATP. In addition, maximum enhancement of norepinephrine biosynthesis occurred only with the nucleotide ATP and the cation magnesium. The mechanism of the effect of ascorbic acid and Mg-ATP on norepinephrine biosynthesis was investigated and appeared to be independent of a positive membrane potential. The effect was also not mediated by direct action of ADP, ATP, or magnesium on the activity of soluble or particulate dopamine beta-monooxygenase. These data indicate that Mg-ATP and ascorbic acid specifically and synergistically co-regulate dopamine beta-monooxygenase activity in intact chromaffin granules, independent of substrate uptake. Although the mechanism is not known, the data are consistent with the possibility that the chromaffin granule ATPase mediates these effects.  相似文献   

3.
The effect of ascorbic acid on the conversion of dopamine to norepinephrine was investigated in isolated chromaffin granules from bovine adrenal medulla. Ascorbic acid was shown to double the rate of [3H]norepinephrine formation from [3H]dopamine, despite no demonstrable accumulation of ascorbic acid into chromaffin granules. The enhancement of norepinephrine biosynthesis by ascorbic acid was dependent on the external concentrations of dopamine and ascorbate. The apparent Km of the dopamine beta-hydroxylation system for external dopamine was approximately 20 microM in the presence or absence of ascorbic acid. However, the apparent maximum velocity of norepinephrine formation was nearly doubled in the presence of ascorbic acid. By contrast, the apparent Km and Vmax of dopamine uptake into chromaffin granules were not affected by ascorbic acid. Norepinephrine formation was increased by ascorbic acid when the concentration of ascorbate was 200 microM or higher; a concentration of 2 mM appeared to induce the maximal effect under the experimental conditions used here. The effect of ascorbic acid on conversion of dopamine to norepinephrine required Mg-ATP-dependent dopamine uptake into chromaffin granules. In contrast to ascorbic acid, other reducing agents such as NADH, glutathione, and homocysteine were unable to enhance norepinephrine biosynthesis. These data suggest that ascorbic acid provides reducing equivalents for hydroxylation of dopamine despite the lack of ascorbate accumulation into chromaffin granules. These findings imply the functional existence of an electron carrier system in the chromaffin granule which transfers electrons from external ascorbic acid for subsequent intragranular norepinephrine biosynthesis.  相似文献   

4.
The regulatory role of ascorbic acid in norepinephrine biosynthesis was studied using digitonin-permeabilized chromaffin cells. When permeabilized chromaffin cells were incubated with [3H]3,4-dihydroxyphenylethylamine ([3H]dopamine) in calcium-free medium, the amounts of radioactive dopamine and norepinephrine measured in the cell fraction were increased as a function of incubation time and dopamine concentration. Both the accumulation of dopamine and the formation of norepinephrine were shown to require the presence of Mg-ATP in the medium. These results indicate that the permeabilization of chromaffin cells by digitonin treatment does not disrupt the functions of chromaffin granules, including dopamine uptake, norepinephrine formation, and storage of these amines. Using this permeabilized cell system, the effect of ascorbic acid on the rates of dopamine uptake and hydroxylation was investigated. The formation of norepinephrine was stimulated by ascorbic acid at concentrations of 0.5-2 mM in the presence of Mg-ATP. By contrast, dopamine uptake was not affected by the presence or absence of ascorbic acid in the medium. These findings provide evidence that ascorbic acid may stimulate the conversion of dopamine to norepinephrine by increasing dopamine beta monooxygenase activity rather than by increasing the substrate supply of dopamine. These observations also suggest that the rate of norepinephrine biosynthesis in adrenal medullary cells may be regulated by the concentration of ascorbic acid within the cell cytoplasm.  相似文献   

5.
We investigated whether semidehydroascorbic acid was an intermediate in norepinephrine synthesis in chromaffin granules and in electron transfer across the chromaffin granule membrane. Semidehydroascorbic acid was measured in intact granules by electron spin resonance. In the presence of intragranular but not extragranular ascorbic acid, semidehydroascorbic acid was formed within granules in direct relationship to dopamine beta-monooxygenase activity. However, semidehydroascorbic acid was not generated when granules were incubated with epinephrine instead of the substrate dopamine, with dopamine beta-monooxygenase inhibitors, without oxygen, and when intragranular ascorbic acid was depleted. Experiments using the impermeant paramagnetic broadening agents [K3 [Cr(C2O4)3].3H2O] and Ni(en)3(NO3)2 provided further evidence that semidehydroascorbic acid was generated only within granules. We also investigated semidehydroascorbic acid formation in the presence of intragranular and extragranular ascorbic acid. Under these conditions, semidehydroascorbic acid was formed on both sides of the granule membrane, and formation was coupled to dopamine beta-monooxygenase activity. These data indicate that dopamine beta-monooxygenase is reduced by single electron transfer from intragranular ascorbic acid, that transmembrane electron transfer occurs by single electron transfer, and that transmembrane electron transfer is directly coupled to formation of intragranular semidehydroascorbic acid via dopamine beta-monooxygenase activity.  相似文献   

6.
Ascorbic acid requirements for norepinephrine biosynthesis were investigated in intact bovine chromaffin granules using the physiologic substrate dopamine and a novel coulometric electrochemical detection high pressure liquid chromatography system for ascorbic acid. 10 mM external dopamine, 1 mM Mg-ATP, and 1 mM ascorbic acid produced maximal norepinephrine biosynthesis without granule lysis. When external ascorbic acid was omitted, intragranular ascorbic acid was consumed in a 1:1 ratio with respect to norepinephrine biosynthesis. The initial concentration of intragranular ascorbic acid was 10.5 mM, which was depleted in stepwise fashion to 15 lower concentrations over the range of 9.2-0.2 mM. Chromaffin granules containing these varying concentrations of intragranular ascorbic acid were then incubated with 1 mM exogenous ascorbic acid, and norepinephrine biosynthesis from dopamine was determined. The apparent Km of norepinephrine biosynthesis for intragranular ascorbic acid was 0.57 mM by Eadie-Hofstee analysis and 0.68 mM by Lineweaver-Burk analysis. These data indicate that intragranular ascorbic acid is available and required for norepinephrine biosynthesis, that ascorbic acid is a true co-substrate for dopamine beta-monooxygenase, and that intragranular ascorbic acid is maintained by extragranular ascorbic acid. Continued norepinephrine biosynthesis in granules is dependent on both intragranular and extragranular concentrations of the vitamin. Furthermore, in situ kinetics of dopamine beta-monooxygenase for ascorbic acid may be most accurately determined using intact granules and the true physiologic substrate.  相似文献   

7.
The role(s) of ascorbic acid in dopamine beta-hydroxylation was studied in primary cultures of bovine adrenomedullary chromaffin cells and in isolated bovine adrenomedullary chromaffin vesicles. Dopamine beta-hydroxylase activity was assessed by measuring the rate of conversion of tyramine to octopamine. The ascorbic acid content of chromaffin cells declined with time in culture and the dopamine beta-hydroxylase activity of ascorbate-depleted cells was low. Ascorbate additions to ascorbate-depleted cells increased both the intracellular ascorbate concentrations and the rates of dopamine beta-hydroxylation. Ascorbate uptake into the cells was rapid; however, the onset of enhanced octopamine synthesis by added ascorbate was delayed by several hours and closely followed the time course for accumulation of the newly taken up ascorbate into the chromaffin vesicle. The amount of octopamine synthesized by the chromaffin cells exceeded the intracellular ascorbate content and ascorbate levels were maintained during dopamine beta-hydroxylation in the absence of external ascorbate. This suggests an efficient recycling of ascorbate. In contrast to intact cells, ascorbic acid was depleted during octopamine synthesis in isolated chromaffin vesicles. The molar ratio of octopamine formed to ascorbate depleted was close to unity. Thus, the recycling of intravesicular ascorbate depends on an extravesicular factor(s). The depletion of intravesicular ascorbate during dopamine beta-hydroxylation was prevented by the addition of nonpermeant extravesicular electron donors such as ascorbate or glucoascorbate. This suggests that intravesicular ascorbate is maintained in the reduced state by electron transport across the vesicle membrane. These results are compatible with the hypothesis that both intra- and extravesicular ascorbate participate in the regulation of dopamine beta-hydroxylase. Intravesicular ascorbate is the cofactor for the enzyme. Cytosolic ascorbate is most likely the electron donor for the vesicle-membrane electron transport system which maintains the intravesicular cofactor concentration.  相似文献   

8.
The precursor pool of dopamine for norepinephrine synthesis was investigated in cultured bovine adrenomedullary chromaffin cells incubated with [14C]tyrosine. Under conditions where the intracellular [14C]tyrosine specific activity was constant and [14C]dopamine synthesis was maximal, [14C]dopamine and [14C]norepinephrine accumulated over time, and the total intracellular dopamine content more than doubled within 120 min. When [14C]norepinephrine synthesis was calculated at different times based on the specific activity of [14C]dopamine, this rate was approximately equal to the rate of [14C]dopamine synthesis and was, thus, inconsistent with the observed dopamine accumulation. However, the rate of [14C]norepinephrine synthesis based on the [14C]tyrosine specific activity accounted for the dopamine accumulation, an observation suggesting that newly synthesized dopamine, i.e., dopamine with a specific activity equivalent to that of its precursor, [14C]tyrosine, is preferentially utilized for norepinephrine synthesis. Further studies showed that the subcellular distribution of [14C]dopamine was identical to that of norepinephrine and epinephrine and that the accumulated [14C]dopamine could be converted to norepinephrine within the chromaffin vesicle if dopamine uptake was blocked. Taken together, these results suggest that a small intravesicular dopamine pool, rapidly replenished by newly synthesized dopamine, serves as the substrate for dopamine beta-hydroxylase. Several mechanisms to account for this observation are discussed.  相似文献   

9.
In chromaffin vesicles, the enzyme dopamine beta-monooxygenase converts dopamine to norepinephrine. It is believed that reducing equivalents for this reaction are supplied by intravesicular ascorbic acid and that the ascorbate is regenerated by importing electrons from the cytosol with cytochrome b-561 functioning as the transmembrane electron carrier. If this is true, then the ascorbate-regenerating system should be capable of providing reducing equivalents to any ascorbate-requiring enzyme, not just dopamine beta-monooxygenase. This may be tested using chromaffin-vesicle ghosts in which an exogenous enzyme, horseradish peroxidase, has been trapped. If ascorbate and peroxidase are trapped together within chromaffin-vesicle ghosts, cytochrome b-561 in the vesicle membrane is found in the reduced form. Subsequent addition of H2O2 causes the cytochrome to become partially oxidized. H2O2 does not cause this oxidation if either peroxidase or ascorbate are absent. This argues that the cytochrome is oxidized by semidehydroascorbate, the oxidation product of ascorbate, rather than by H2O2 or peroxidase directly. The semidehydroascorbate must be internal because the ascorbate from which it is formed is sequestered and inaccessible to external ascorbate oxidase. This shows that cytochrome b-561 can transfer electrons to semidehydroascorbate within the vesicles and that the semidehydroascorbate may be generated by any enzyme, not just dopamine beta-monooxygenase.  相似文献   

10.
Chromaffin granule ghosts from bovine adrenal medullae have been used to examine the ability of membrane-bound dopamine beta-monooxygenase to interact directly with intravesicular ascorbate and to investigate vectorial electron transfer from external ascorbate across the ghost membrane. Ghosts prepared by a modification of published procedures were shown to be fully active in both dopamine uptake and norepinephrine production. Dopamine uptake is dependent on the presence of a magnesium and ATP ionic complex, is abolished by reserpine, and reaches a steady-state level in the presence of dopamine beta-monooxygenase, ascorbate, catalase, and fumarate. Omission of ascorbate either inside or outside the ghosts greatly enhances dopamine accumulation, which reaches levels of approximately 30 nmol/mg under these conditions. Correspondingly, in the presence of all components, norepinephrine production reached approximately 100 nmol/mg in 30 min of incubation. Norepinephrine production was strictly magnesium-ATP-dependent, inhibited by either reserpine or dopamine beta-monooxygenase inactivation, and was markedly reduced when ascorbate was omitted from either inside or outside the ghosts. In the presence of limiting amounts of internal ascorbate, rapid norepinephrine production occurred which corresponded to the amount of initial ascorbate present, followed by a much slower endogenous norepinephrine production observable after complete depletion of internal ascorbate. The endogenous rate of norepinephrine production likely represents epinephrine-supported dopamine beta-monooxygenase turnover. Taken together, the data demonstrate that facile norepinephrine production by membrane-bound dopamine beta-monooxygenase occurs only when internal ascorbate is present, terminates upon depletion of internal ascorbate, and can only be sustained at a significant rate when reducing equivalents from external ascorbate are available.  相似文献   

11.
Membrane ghosts derived from chromaffin vesicles of bovine adrenal medullas have been used to examine the mechanism of reduction of dopamine beta-monooxygenase in its compartmentalized state. The rate of the dopamine beta-monooxygenase-catalyzed conversion of dopamine to norepinephrine is greatly stimulated by the presence of ATP, reflecting substrate hydroxylation on the ghost interior subsequent to the active transport of dopamine. We demonstrate a 2-3-fold increase in the turnover rate for ghosts resealed with 0.2-2 mM potassium ferrocyanide, conditions leading to a slight decrease in the rate of dopamine transport. These data provide the first evidence that an intravesicular pool of reductant can activate dopamine beta-monooxygenase, as required by models in which vesicular ascorbate behaves as enzyme reductant. Although there is sufficient catecholamine (endogenous plus substrate) to keep internal ferrocyanide reduced in these experiments, an additional 2-3-fold increase in turnover occurs in the presence of 0.2-2 mM ascorbate on the ghost exterior. The magnitude of this activation is found to be constant at all concentrations of internal ferrocyanide (both below and above saturation), implying that reductants on opposite sides of the membrane behave independently. Replacement of ascorbate by potassium ferrocyanide as external reductant leads to almost identical results, and we are able to rule out an inward transport of dehydroascorbate as the source of activation by external ascorbate. We conclude that external reductants are capable of reducing membrane-bound dopamine beta-monooxygenase from the exterior face of the vesicle, either by direct reduction or through a membrane-bound mediator. It appears that two viable modes for reduction of dopamine beta-monooxygenase may exist in vivo, involving the reduction of membrane-bound enzyme by cytosolic ascorbate as well as the reduction of soluble enzyme by the pool of intravesicular ascorbate present in chromaffin vesicles.  相似文献   

12.
Based on the novel chromophoric electron donors, N,N-dimethyl-1,4-phenylenediamine (DMPD) and 2-amino-2-deoxy-L-ascorbic acid (2-aminoascorbic acid), two sensitive, convenient, and continuous spectrophotometric assays for dopamine beta-monooxygenase (EC 1.14.17.1) are described. Both, DMPD and 2-aminoascorbic acid are kinetically and stoichiometrically well-behaved electron donors for dopamine beta-monooxygenase with kinetic parameters comparable to the most efficient physiological electron donor, ascorbic acid. During dopamine beta-monooxygenase turnover, DMPD is converted to its chromophoric cation radical which is stable under the standard assay conditions. The rate of the enzyme-dependent formation of DMPD cation radical under standard assay conditions could easily be followed at 515 nm with high accuracy and reproducibility. Similarly, dopamine beta-monooxygenase-mediated oxidation of 2-aminoascorbic acid results in the formation of the known, stable chromophoric product, 2,2'-nitrilodi-2(2')-deoxy-L-ascorbic acid (red pigment), which has a very strong absorption maximum at 385 nm. Both the above assays are superior to the existing assays in their convenience, reproducibility, and sensitivity for routine kinetic analysis of dopamine beta-monooxygenase and may be adopted as a simple color test for the enzyme. We propose that the above assays could also be adopted to design continuous and sensitive spectrophotometric assays for ascorbate oxidase, peptidyl alpha-amidating monooxygenase, and the chromaffin granule electron transport protein, cytochrome b561, due to their remarkable similarity to dopamine beta-monooxygenase in the chemistry of catalysis with regard to the electron donor.  相似文献   

13.
Chromaffin granule ghosts from bovine adrenal medullae have been used to investigate the effects of prototypic dopamine beta-monooxygenase substrate analogs of two distinct classes on intravesicular reduced ascorbic acid (AscH2) levels and on norepinephrine synthesis. Phenyl-2-aminoethyl sulfide (PAES), a sulfur-containing substrate, was shown to concentrate within ghosts, a process that was time and ATP dependent, but reserpine insensitive. Dopamine beta-monooxygenase oxygenation of PAES resulted in accumulation of the oxygenation product, PAESO, without affecting intravesicular levels of AscH2. Similarly, incubations of ghosts with phenyl-2-aminoethyl selenide (PAESe) also resulted in rapid, time- and ATP-dependent, but reserpine-insensitive uptake. However, oxygenation of PAESe by dopamine beta-monooxygenase within ghosts was found to cause a marked decrease in intravesicular AscH2, without buildup of the oxygenated product, phenyl 2-aminoethyl selenoxide. These results illustrate two basic differences between the consequences of PAES and PAESe turnover: while PAES accumulation proceeds concomitant with PAESO production and without AscH2 depletion, PAESe accumulation proceeds with a marked lowering of internal AscH2 but without observable product formation. Both PAES and PAESe were capable of competing with dopamine, the physiological substrate, for enzymatic oxygenation and/or vesicular uptake, and were capable of significantly reducing norepinephrine synthesis. In experiments where ghosts were preincubated with either PAES or PAESe with delayed addition of dopamine, it was clear that neither compound nor their oxygenated products interfered with electron transport via cytochrome b561. These results are consistent with the hypothesis that the physiological activity observed with both PAES and PAESe may be related to their ability to gain entrance to adrenergic neurons and decrease norepinephrine synthesis within neurotransmitter storage vesicles.  相似文献   

14.
The effects of flavonoids on L-[14C]tyrosine uptake into cultured adrenal chromaffin cells were examined. Flavone markedly stimulated tyrosine uptake into these cells in a manner dependent on its concentration. Apigenin also caused a moderate stimulatory action, but quercetin had no significant effect on the uptake. Flavone also stimulated the uptake of histidine, but did not affect the uptake of serine, lysine, or glutamic acid. These results are considered to propose the possibility that flavonoids may be able to stimulate the precursor uptake into the cells, resulting in an enhancement of the biogenic amine production.  相似文献   

15.
Abstract: Dopamine β-mdriooxygenase converts dopamine to norepinephrine in intact chromaffin granules using intragranular ascorbic acid as a cosubstrate. Mg-ATP with external ascorbic acid is required for maximal norepinephrine biosynthesis. Mechanisms to explain these requirements were investigated specifically using intact granules. The effect of Mg-ATP was independent of membrane potential (ΔΨ) because norepinephrine biosynthesis was unchanged whether ΔΨ was positive or collapsed. Furthermore, the effect of Mg-ATP was independent of absolute intragranular and extragranular pH as well as the pH difference across the chromaffin granule membrane (ΔpH). Nevertheless, norepinephrine biosynthesis was inhibited by N -ethylmaleimide, 4-chloro-7-nitrobenzofurazane, and N , N -dicyclohexylcarbodiimide, specific inhibitors of the secretory vesicle ATPase that may directly affect proton pumping. Biosynthesis occurred normally with other ATPase inhibitors that do not inhibit the ATPase in secretory vesicles. The data indicate that the effect of Mg-ATP with ascorbic acid is mediated by the granule membrane ATPase but independent of maintaining ΔΨ and ApH. An explanation of these findings is that Mg-ATP, via the granule ATPase, may change the rate at which protons or dopamine are made available to dopamine β-monooxygenase.  相似文献   

16.
Adrenal chromaffin granules must shuttle reducing equivalents from the cytosol inward to reduce ascorbic acid oxidized during norepinephrine biosynthesis by intragranular dopamine-beta-hydroxylase. A transmembrane electron shuttle between the external (cytosolic) and intragranular ascorbate pools was demonstrated in vitro in intact bovine chromaffin granules undergoing tyramine- or dopamine-stimulated dopamine-beta-hydroxylase turnover. Incubation of intact chromaffin granules with tyramine results in a time-dependent decrease in reduced intragranular ascorbate and production of octopamine. The rate of ascorbate oxidation is a function of the extragranular concentrations of tyramine over the range 50 microM to 2 mM and is 95% inhibited by addition of the dopamine-beta-hydroxylase inhibitor disulfiram. The stoichiometry of octopamine synthesized/ascorbate oxidized closely approximates unity. The presence of extragranular dopamine also induces oxidation of intragranular ascorbate which is inhibited by blocking dopamine transport with reserpine. On the other hand, incubation with octopamine, which is also transported by the granules, causes no net decrease in reduced intragranular ascorbate. The presence of 400 microM extragranular ascorbate abolishes the observed tyramine-induced intragranular ascorbate oxidation. The addition of ascorbate extragranularly 30 min after addition of tyramine reverses the oxidation of intragranular ascorbate. The measurement of [14C]ascorbate distribution ratios in granule pellets and supernatants indicates that there is no transmembrane transport of ascorbate. Extravesicular NADH had no significant effect on matrix ascorbate levels during beta-hydroxylation. These data provide new in vitro evidence that chromaffin granules shuttle reducing equivalents inwardly from an extra- to an intravesicular ascorbate pool and that cytosolic ascorbate is the source of the intragranular reducing equivalents required during norepinephrine biosynthesis.  相似文献   

17.
The quantitative ratio of membrane-bound and soluble forms of dopamine beta-monooxygenase from chromaffin granules obtained under different experimental conditions was determined. The amount of the membrane-bound form of dopamine beta-monooxygenase made up to no less than 60% of the total enzyme pool, when the granules were obtained and lyzed in the presence of pepstatin, phenylmethylsulfonyl fluoride, N-ethylmaleimide and catalase. In the absence of protectors practically all the enzyme can be obtained in the soluble form without detergent treatment. The effects of some ionic and nonionic detergents on the enzymatic activity of both forms of dopamine beta-monooxygenase were studied. No inhibition of dopamine beta-monooxygenase by 2% octyl glucoside or 1% Triton X-100 was observed. A comparative analysis of specific activities, subunit compositions, antigenic and physico-chemical properties of membrane-bound and soluble forms of dopamine beta-monooxygenase was carried out.  相似文献   

18.
H J Choi  S Y Park  O Hwang 《Peptides》1999,20(7):817-822
Roles of protein kinase A (PKA) and protein kinase C (PKC) in regulation of tyrosine hydroxylase, dopamine beta-hydroxylase, and phenylethanolamine N-methyltransferase expression by pituitary adenylate cyclase-activating polypeptide (PACAP) were determined in primary cultured bovine chromaffin cells. DBH up-regulation by PACAP was reduced by H-89 and not further increased by forskolin showing involvement of cAMP/PKA. It was not mediated by PKC, as 12-O-tetradecanoylphorbol-13-acetate and sphingosine exerted no effect. Tyrosine hydroxylase induction by PACAP was mediated by both kinases. The PACAP-activated PKA up-regulated phenylethanolamine N-methyltransferase expression whereas PKC caused down-regulation. PACAP increased tyrosine hydroxylase and dopamine beta-hydroxylase activities, but slightly lowered phenylethanolamine N-methyltransferase activity, resulting in a preferential rise in norepinephrine over epinephrine.  相似文献   

19.
Abstract: Glucocorticoids, cholera toxin and high plating density all increase the activity of tyrosine 3-monooxygenase (TH) in cultured PC12 pheochromocytoma cells. Glucocorticoids increase enzyme activity in cells treated with cholera toxin and in cells grown at high plating density. Glucocorticoids also increase the content of stored catecholamines in the cells. In cells cultured under routine conditions, glucocorticoids primarily increase the stores of dopamine. The addition of ascorbate to the culture medium increases the storage of norepinephrine in both steroid-treated and untreated cells. Incubation of the cells in media containing 56 n M K+ causes the release of the same percentage of stored dopamine from steroid-treated as from untreated cells. Steroid-treated cells contain more dopamine than do untreated cells and therefore, in response to high K+, the steroid-treated cells secrete more dopamine than do untreated cells. We conclude that the activity of tyrosine 3-monooxygenase in PC12 cells can be regulated by several distinct mechanisms; that glucocorticoids cause a coordinate increase in TH activity and in catecholamine storage; that steroids increase the storage of catecholamines in a releasable pool; and that the steroid-induced increase in catecholamine storage may result in increased secretion of catecholamines from steroid-treated cells.  相似文献   

20.
In previous studies we have demonstrated a secretory granule-associated peptide alpha-amidation activity in rat anterior, intermediate, and posterior pituitary. This activity is capable of converting 125I-labeled synthetic D-Tyr-Val-Gly to labeled D-Tyr-Val-NH2, and requires ascorbic acid, CuSO4, and molecular oxygen for optimal activity. Because of the requirement for peptides with COOH-terminal glycine residues, and cofactor requirements similar to monooxygenases such as dopamine beta-monooxygenase, we have proposed that the alpha-amidating enzyme be named peptidylglycine alpha-amidating monooxygenase, or PAM. The present study focused on (i) verifying that PAM could utilize a physiologically relevant peptide substrate, and (ii) demonstrating the retention of the cofactor requirements with purification of PAM. PAM (Mr = 50,000) was partially purified from rat anterior pituitary secretory granules and was shown to be capable of converting alpha-N-acetyl-ACTH(1-14) to alpha-N-acetyl-ACTH(1-13)NH2 (alpha-melanocyte stimulating hormone) and ACTH(9-14) to ACTH(9-13)NH2. The optimal rates for these conversions were dependent on ascorbic acid and CuSO4. Kinetic analyses, using the model compound D-Tyr-Val-Gly as the peptide substrate, demonstrated that, compared to the crude granule extract, the partially purified enzyme displayed increased apparent affinities for both the peptide substrate and ascorbate. These analyses also showed that the Km for D-Tyr-Val-Gly was dependent on the concentration of ascorbate, while the Km for ascorbate was constant over a wide range of D-Tyr-Val-Gly concentrations. The results presented here indicate that PAM can alpha-amidate physiologically relevant peptides related to alpha MSH, and performs the reaction in an ascorbate-dependent fashion. Retention of the ascorbate and copper requirements with purification further support the hypothesis that these cofactors are important requirements for the COOH-terminal alpha-amidation of neuro and endocrine peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号