首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two types of glycosylated peroxidases are secreted by the white-rot fungus Phanerochaete chrysosporium, lignin peroxidase (LiP) and manganese peroxidase (MnP). The thermal stabilities of recombinant LiPH2, LiPH8, and MnPH4, which were expressed without glycosylation in Escherichia coli, were lower than those of corresponding native peroxidases isolated from P. chrysosporium. Recovery of thermally inactivated recombinant enzyme activities was higher than with that of the thermally inactivated native peroxidases. Removal of N-linked glycans from native LiPH8 and MnPH4 did not affect enzyme activities or thermal stabilities of the enzymes. Although LiPH2, LiPH8, and MnPH4 contained O-linked glycans, only the O-linked glycans from MnPH4 could be removed by O-glycosidase, and the glycan-depleted MnPH4 exhibited essentially the same activity as nondeglycosylated MnPH4, but thermal stability decreased. Periodate-treated MnPH4 exhibited even lower thermal stability than O-glycosidase treated MnPH4. The role of O-linked glycans in protein stability was also evidenced with LiPH2 and LiPH8. Based on these data, we propose that neither N- nor O-linked glycans are likely to have a direct role in enzyme activity of native LiPH2, LiPH8, and MnPH4 and that only O-linked glycans may play a crucial role in protein stability of native peroxidases.  相似文献   

2.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein has been shown to be extensively modified by N-linked glycosylation; however, the presence of O-linked carbohydrates on the glycoprotein has not been firmly established. We have found that enzymatic deglycosylation of the HIV-1 envelope glycoprotein with neuraminidase and O-glycosidase results in a decrease in the apparent molecular weight of the envelope glycoprotein. This result was observed in both vaccinia virus recombinant-derived envelope glycoproteins and glycoproteins derived from the IIIB, SG3, and HXB2, strains of HIV-1. The decrease in molecular weight was also observed when the envelope glycoprotein had been deglycosylated with N-glycanase F after treatment with neuraminidase and O-glycosidase, indicating that the decrease in apparent molecular weight was not attributable to the removal of N-linked carbohydrate. Treatment with neuraminidase, O-glycosidase, and N-glycanase F was found to be necessary to remove all radiolabel from [3H]glucosamine-labelled envelope glycoprotein, a result seen for both recombinant and HIV-1-derived envelope glycoprotein. [3H]glucosamine-labelled carbohydrates liberated by O-glycosidase treatment were separated by paper chromatography and were found to be of a size consistent with O-linked oligosaccharides. We, therefore, conclude that the HIV-1 envelope glycoprotein is modified by the addition of O-linked carbohydrates.  相似文献   

3.
The N-linked glycans of recombinant leishmanolysin (GP63) expressed as a glycosylphosphatidylinositol (GPI)-anchored membrane protein or modified for secretion in Chinese hamster ovary (CHO) cells were analyzed by fast atom bombardment-mass spectrometry (FAB-MS). The glycans isolated from both membrane and secreted protein were predominantly complex biantennary structures. However other aspects of the glycan profiles showed striking differences. The degree of sialylation of the membrane form was greatly reduced and the core fucosylation of biantennary structures was increased compared to the secreted form. Glycans isolated from membrane expressed protein also contained a higher proportion of lactosamine repeats. Residence times in the secretory pathway were similar for both secreted and membrane protein. Glycosylation differences may therefore be due to differences in protein conformation and accessibility to glycosyltransferases or glycosidases. These differences in glycosylation represent an important factor when considering modifying membrane expressed proteins for secreted production.  相似文献   

4.
Mechref Y  Zidek L  Ma W  Novotny MV 《Glycobiology》2000,10(3):231-235
A minor component of the major urinary protein complex of the house mouse was chromatographically isolated and ascertained to be a previously suspected glycoprotein. Using highly sensitive mass-spectrometric techniques for sequencing and linkage analysis, the N-linked oligosaccharides of this glycoprotein were characterized. They were determined to be of the complex type with a wide heterogeneity. The heterogeneity was due to both the degree of sialylation and the presence of galactose residues in either beta(1-3) or beta(1-4) linkages. The biantennary structures were the most pronounced glycans, while tri- and tetraantennary entities were minor.  相似文献   

5.
Varicella-zoster virus (VZV) specifies the synthesis of at least four families of glycoproteins, which have been designated gpI, gpII, gpIII, and gpIV. In this report we describe the assembly and processing of VZV gpII, a structural protein of an apparent Mr of 140,000, which is the homolog of gB of herpes simplex virus. For these studies, we used two anti-gpII monoclonal antibodies which exhibited both complement-independent neutralization activity and inhibition of virus-induced cell-to-cell fusion. Pulse-chase labeling experiments identified a 124,000-Mr intermediate which was chased to the mature 140,000-Mr product when analyzed in nonreducing gels; in the presence of a reducing agent, the native gp140 was cleaved into two closely migrating species (gp66 and gp68). The biosynthesis of VZV gpII was further analyzed in the presence of the following inhibitors of glycoprotein processing: tunicamycin, monensin, castanospermine, swainsonine, and deoxymannojirimycin. All intermediate and mature forms were digested with endoglycosidases H and F, neuraminidase, and O-glycanase to further define high-mannose, complex, and O-linked glycans. Finally, the addition of sulfate residues was investigated. This characterization of VZV gpII revealed the following results. (i) gp128 and gp124 were early high-mannose forms, (ii) gp126 was an intermediate form with complex N-linked oligosaccharides, (iii) gp130 was a later intermediate with both N-linked and O-linked glycans, and (iv) the mature product gp140 contained a mixture of N-linked and O-linked glycans which were both sialated and sulfated. Further investigations indicated that gpII sulfation was inhibited by tunicamycin and castanospermine but not by deoxymannojirimycin or swainsonine. We also concluded that VZV gpII displayed many biological and biochemical properties similar to those of its herpes simplex virus homolog gB.  相似文献   

6.
D D Carson  J P Tang 《Biochemistry》1989,28(20):8116-8123
Characterization of complex glycoconjugates and the effects of estrogen on their expression in immature mouse uterine epithelial cells are reported. The secreted fraction contained nonanionic, O-linked lactosaminoglycan (LAG)-bearing proteins of Mr 30,000-40,000 as well as anionic, O-linked, LAG-bearing glycoproteins with very high apparent molecular weight (greater than 670K). Heparan sulfate (HS) proteoglycans and HS linked to little or no protein were found in the secreted fraction as well. A very similar array of glycoconjugates was found in the nonhydrophobic fraction of cell-associated macromolecules. In addition, the hydrophobic cell-associated fraction contained nonanionic, LAG-bearing glycoproteins of approximately 250K, anionic LAG-bearing glycoproteins distributing over a wide range of molecular weights, and HS proteoglycans with median molecular weights of approximately 250K. In contrast to the glycoproteins produced by their mature counterparts, virtually all glycoproteins produced by immature cells were O-linked. Estrogen treatment of immature mice caused uterine epithelial cells to secrete anionic, high molecular weight (greater than 670K) N-linked glycoproteins as a major product. These estrogen-responsive glycoproteins did not appear to contain LAGs. Estrogen treatment also markedly decreased the proportion of all hydrophobic glycoconjugates in the cell-associated fraction. Collectively, these observations indicate that one aspect of the estrogen-induced maturation of uterine epithelial cells is the stimulation of N-linked glycoprotein synthesis and secretion. Furthermore, stimulation of N-linked glycoprotein synthesis by itself is insufficient to support N-linked LAG glycoprotein production.  相似文献   

7.
A robust method has been developed that allows analysis of both N- and O-linked oligosaccharides released from glycoproteins separated using 2D-PAGE and then electroblotted to PVDF membrane. This analysis provides efficient oligosaccharide profiling applicable to glycoproteomic analysis. The method involves the enzymatic release of N-linked oligosaccharides using PNGase F followed by the chemical release of O-linked oligosaccharides using reductive beta-elimination and analysis using LC-ESI-MS. Oligosaccharides from the major plasma glycoproteins with a pI between 4 and 7 were characterized from the glycoforms of haptoglobin, alpha2-HS-glycoprotein, serotransferrin, alpha1-antitrypsin, and alpha1-antichymotrypsin. It was shown that the separation of protein glycoforms evident in 2D-PAGE is partially due to the combined sialylation of the O-linked and N-linked oligosaccharides. Bi-, tri- and tetra-antennary N-linked structures, which had differing levels of sialylation and fucosylation, were found to be present on the glycoproteins analyzed, together with O-linked oligosaccharides such as mono-, and disialylated T-antigen and a disialylated core type 2 hexasaccharide. In addition, N-linked site-specific information was obtained by MALDI-MS analysis using tryptic digestion after PNGase F release of the oligosaccharides.  相似文献   

8.
Killer lectin-like receptors on natural killer cells mediate cytotoxicity through glycans on target cells including the sialyl Lewis X antigen (sLeX). We investigated whether NK group 2D (NKG2D) and CD94 can bind to sialylated N-linked glycans, using recombinant glutathione S-transferase-fused extracellular lectin-like domains of NKG2D (rNKG2Dlec) and CD94 (rCD94lec). Both rNKG2Dlec and rCD94lec bound to plates coated with high-sLeX-expressing transferrin secreted by HepG2 cells (HepTF). The binding of rNKG2Dlec and rCD94lec to HepTF was markedly suppressed by treatment of HepTF with neuraminidase and in the presence of N-acetylneuraminic acid. Moreover, rNKG2Dlec and rCD94lec bound to α2,3-sialylated human α1-acid glycoprotein (AGP) but not to α2,6-sialylated AGP. Mutagenesis revealed that 152Y of NKG2D and 144F and 160N of CD94 were critical for HepTF binding. This is the first report that NKG2D and CD94 bind to α2,3-sialylated but not to α2,6-sialylated multi-antennary N-glycans.  相似文献   

9.
The methylotrophic yeast Pichia pastoris is an attractive expression system for heterologous protein production due to its ability to perform posttranslational modifications, such as glycosylation, and secrete large amounts of recombinant protein. However, the structures of N- and O-linked oligosaccharide chains in yeast differ significantly from those of mammalian cells. The most common O-linked glycan structures added by P. pastoris are typically polymers of between one and four α-linked mannose residues, with a subset of glycans being capped by a β-1,2-mannose disaccharide or phosphomannose residue. Such mannosylation of recombinant proteins is considered a key factor in immunomodulation, with mannose-specific receptors binding and promoting enhanced immune responses. As a result of engineering the N-linked glycosylation pathway of P. pastoris, the recombinant proteins expressed in this system are devoid of phospho- and β-mannose on O-linked glycans, leaving only α-mannose polymers. Here we screen a library of α-mannosidases for their ability to decrease the extent of O-mannosylation on glycoproteins secreted from this expression system. In doing so, we demonstrate the utility of the α-1,2/3/6-mannosidase from Jack bean in not only reducing extended O-linked mannose chains but also in specifically hydrolyzing the Man-α-O-Ser/Thr glycosidic bond on intact glycoproteins. As such, this presents for the first time a strategy to remove O-linked glycosylation from intact glycoproteins expressed in P. pastoris. We additionally show that this strategy can be used to significantly decrease the extent of O-mannosylation on commercial products produced in other similar expression systems.  相似文献   

10.
Effect of N-linked glycosylation on hepatic lipase activity   总被引:2,自引:0,他引:2  
Hepatic lipase (HL) is a secretory protein synthesized in hepatocytes and bound to liver endothelium. Previous studies have suggested that HL N-linked glycans are required for catalytic activity. To directly test this hypothesis, Xenopus laevis oocytes were used to express native rat HL or HL lacking one or both N-linked glycosylation sites. The expressed and secreted native HL had an apparent molecular mass of 53 kDa, consistent with purified rat liver HL. The mutant lacking both glycosylation sites, while poorly secreted, had an apparent molecular mass of 48 kDa, the same size observed for HL after enzymatic removal of N-linked oligosaccharides. Mutants lacking one of the two sites were intermediate in size and showed reduced secretion. Each of these expressed and secreted proteins had full catalytic activity that was inhibited by antisera to rat HL. Thus, N-linked glycosylation of rat HL, while important to lipase secretion, is not essential for the expression of lipase activity.  相似文献   

11.
Glycoprotein C (gC) was purified by immunoabsorbent from herpes simplex virus type-1-infected BHK cells labeled with [14C]glucosamine for 11 h and chased for 3 h. Glycopeptides obtained by pronase digestion of gC were fractionated by Bio-Gel filtration and concanavalin A-Sepharose chromatography. Each glycopeptide fraction was analyzed for amino sugar composition by thin-layer chromatography. The majority of radioactivity was recovered as N-acetylglucosamine, but a significant amount of labeled N-acetylgalactosamine was detected and recovered preferentially in some glycopeptide species. Mild alkaline borohydride treatment of the glycopeptides resulted in the release of small degradation products which contained N-acetylgalactosaminitol as the major labeled component and a drastic reduction of N-acetylgalactosamine in the residual glycopeptides. These results demonstrated that gC carries O-glycosidically linked oligosaccharides in addition to the N-linked di- and triantennary glycans previously described (F. Serafini-Cessi, F. Dall'Olio, L. Pereira, and G. Campadelli-Fiume, J. Virol. 51:838-844, 1984). Chromatographic behavior on DEAE-Sephacel chromatography and neuraminidase digestion of O-linked oligosaccharides indicated the presence of two major sialylated species carrying one and two sialic acid residues, respectively. The characterization of a peculiar glycopeptide species supported the notion that some of the O-linked oligosaccharides are bound to a cluster of hydroxyamino acids located near an N-glycosylation site which carries one N-linked diantennary oligosaccharide.  相似文献   

12.
The role of glycans in the apical targeting of proteins in epithelial cells remains a debated question. We have expressed the mouse soluble dipeptidyl peptidase IV (DPP IV ectodomain) in kidney (MDCK) and in intestinal (Caco-2) epithelial cell lines, as a model to study the role of glycosylation in apical targeting. The mouse DPP IV ectodomain was secreted mainly into the apical medium by MDCK cells. Exposure of MDCK cells to GalNac-alpha-O-benzyl, a drug previously described as an inhibitor of mucin O-glycosylation, produced a protein with a lower molecular weight. In addition this treatment resulted in a decreased apical secretion and an increased basolateral secretion of mouse DPP IV ectodomain. When expressed in Caco-2 cells, the mouse DPP IV ectodomain was secreted mainly into the basolateral medium. However, BGN was still able to decrease the amount of apically secreted protein and to increase its basolateral secretion. Neuraminidase digestion showed that the most striking effect of BGN was a blockade of DPP IV sialylation in both MDCK and Caco-2 cells. These results indicate that a specific glycosylation step, namely, sialylation, plays a key role in the control of the apical targeting of a secreted DPP IV both in MDCK and Caco-2 cells.  相似文献   

13.
Ovarian cancer is difficult to diagnose in women because symptoms of the disease are often not noticed until the disease has progressed to an advanced untreatable stage. Although a serum test, CA125, is currently available to assist with monitoring treatment of ovarian cancer, this test lacks the necessary specificity and sensitivity for early detection. Therefore, better biomarkers of ovarian cancer are needed. A glycoprotein analysis approach was undertaken using high resolution Fourier transform ion cyclotron resonance mass spectrometry to analyze glycosylated proteins present in the conditioned media of ovarian cancer cell lines and in sera obtained from ovarian cancer patients and normal controls. In this study, glycosylated proteins were separated by gel electrophoresis, and individual glycoproteins were selected for glycosylation analysis and protein identification. The attached glycans from each protein were released and profiled by mass spectrometry. Glycosylation of a mucin protein and a large glycosylated protein isolated from the ES2 ovarian cancer cell line was determined to consist of mostly O-linked glycans. Four prominent glycoproteins of approximate 517, 370, 250, 163 kDa from serum samples were identified as two forms of apolipoprotein B-100, fibronectin, and immunoglobulin A1, respectively. Mass spectrometric analysis of glycans isolated from apolipoprotein B-100 (517 kD) showed the presence of small, specific O-linked oligosaccharides. In contrast, analysis of fibronectin (250 kD) and immunoglobulin A1 (163 kD) produced N-linked glycan fragments in forms that were sufficiently different from the glycans obtained from the corresponding protein band present in the normal serum samples. This study shows that not only a single protein but several are aberrantly glycosylated, and those abnormal glycosylation changes can be detected and may ultimately serve as glycan biomarkers for ovarian cancer.  相似文献   

14.
Low density lipoprotein receptor (LDL-R) is a membrane glycoprotein carrying both N- and O-linked oligosaccharides, processing of which is reflected in conversion from a precursor to mature form during its synthesis and intracellular transport. Treatment with brefeldin A (BFA) of mouse macrophage-like J774 cells, Chinese hamster ovary cells, and two human cancer cell lines (A431 and IMC-2) resulted in production of LDL-R with a molecular size 5-10 kDa smaller than that of the mature form in the control cells. Treatment with sialidase caused apparent reduction in the molecular size of LDL-R synthesized in all BFA-treated J774, Chinese hamster ovary, A431, and IMC-2 cell lines as observed for the mature form of the control cells. Thus, O-linked sugar chains of LDL-R were apparently sialylated in the BFA-treated cells. We also examined the effect of BFA on the processing of another membranous glycoprotein, epidermal growth factor receptor (EGF-R) carrying only N-linked oligosaccharides. EGF-R synthesized in the presence of BFA was found to have no response to sialidase treatment, suggesting that the drug blocks the sialylation of EGF-R. The results indicate that BFA causes different effects on the sialylation of LDL-R and EGF-R depending upon linkage types of their oligosaccharides.  相似文献   

15.
Covalently-linked glycans on proteins have many functional roles, some of which are still not completely understood. Antibodies have a very specific glycan modification in the Fc region that is required for mediating immune effector functions. These Fc glycans are typically highly heterogeneous in structure, and this heterogeneity is influenced by many factors, such as type of cellular host and rate of Ab secretion. Glycan heterogeneity can affect the Fc-dependent activities of antibodies. It has been shown recently that increased Fc sialylation can result in decreased binding to immobilized antigens and some Fcγ receptors, as well as decreased antibody-dependent cell-mediated cytotoxicity (ADCC) activity. In contrast, increased Fc sialylation enhances the anti-inflammatory activity of antibodies. To produce antibodies with increased effector functions, we developed host cell lines that would limit the degree of sialylation of recombinantly-expressed antibodies. Towards this end, the catalytic domain of the Arthrobacter ureafaciens sialidase (sialidase A) was engineered for secreted expression in mammalian cell lines. Expression of this sialidase A gene in mammalian cells resulted in secreted expression of soluble enzyme that was capable of removing sialic acid from antibodies secreted into the medium. Purified antibodies secreted from these cells were found to possess very low levels of sialylation compared with the same antibodies purified from unmodified host cells. The low sialylated antibodies exhibited similar binding affinity to soluble antigens, improved ADCC activity, and they possessed pharmacokinetic properties comparable to their more sialylated counterparts. Further, it was observed that the amount of sialidase A expressed was sufficient to thoroughly remove sialic acid from Abs made in high-producing cell lines. Thus, engineering host cells to express sialidase A enzyme can be used to produce recombinant antibodies with very low levels of sialylation.Key words: antibodies, IgGs, glycans, oligosaccharides, sialic acid, sialidase, ADCC, CDC, effector functions, cells, Fc receptors, proteases  相似文献   

16.
CD44 and sulfation have both been implicated in leukocyte adhesion. In monocytes, the inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) stimulates CD44 sulfation, and this correlates with the induction of CD44-mediated adhesion events. However, little is known about the sulfation of CD44 or its induction by inflammatory cytokines. We determined that TNF-alpha induces the carbohydrate sulfation of CD44. CD44 was established as a major sulfated cell surface protein on myeloid cells. In the SR91 myeloid cell line, the majority of CD44 sulfation was attributed to the glycosaminoglycan chondroitin sulfate. However, TNF-alpha stimulation increased CD44 sulfation two- to threefold, largely attributed to the increased sulfation of N- and O-linked glycans on CD44. Therefore, TNF-alpha induced a decrease in the percentage of CD44 sulfation due to chondroitin sulfate and an increase due to N- and O-linked sulfation. Furthermore, TNF-alpha induced the expression of 6-sulfo N-acetyl lactosamine (LacNAc)/Lewis x on these cells, which was detected by a monoclonal antibody after neuraminidase treatment. This 6-sulfo LacNAc/Lewis x epitope was induced on N-linked and (to a lesser extent) on O-linked glycans present on CD44. This demonstrates that CD44 is modified by sulfated carbohydrates in myeloid cells and that TNF-alpha modifies both the type and amount of carbohydrate sulfation occurring on CD44. In addition, it demonstrates that TNF-alpha can induce the expression of 6-sulfo N-acetyl glucosamine on both N- and O-linked glycans of CD44 in myeloid cells.  相似文献   

17.
Many therapeutic proteins require appropriate glycosylation for their biological activities and plasma half life. Coagulation factor VIII (FVIII) is a glycoprotein which has extensive post-translational modification by N-linked glycosylation. The terminal sialic acid in the N-linked glycans of FVIII is required for maximal circulatory half life. The extent of FVIII sialylation can be determined by high pH anion-exchange chromatography coupled with a pulse electrochemical detector (HPAEC-PED), but this requires a large amount of purified protein. Using FVIII as a model, the objective of the present study was to develop assays that enable detection and prediction of sialylation deficiency at an early stage in the process and thus prevent downstream product quality excursions. Lectin ECA (Erythrina Cristagalli) binds to unsialylated Galβ1-4 GlcNAc and the ECA-binding level (i.e., terminal Gal(β1-4) exposure) is inversely proportional to the level of sialylation. By using ECA, a cell-based assay was developed to measure the global sialylation profile in FVIII producing cells. To examine the Galβ1-4 exposure on the FVIII molecule in bioreactor tissue culture fluid (TCF), an ELISA-based ECA-FVIII binding assay was developed. The ECA-binding specificity in both assays was assessed by ECA-specific sugar inhibitors and neuraminidase digestion. The ECA-binding specificity was also independently confirmed by a ST3GAL4 siRNA knockdown experiment. To establish the correlation between Galβ1-4 exposure and the HPAEC-PED determined FVIII sialylation value, the FVIII containing bioreactor TCF and the purified FVIII samples were tested with ECA ELISA binding assay. The results indicated an inverse correlation between ECA binding and the corresponding HPAEC-PED sialylation value. The ECA-binding assays are cost effective and can be rapidly performed, thereby making them effective for in-process monitoring of protein sialylation.  相似文献   

18.
N-glycosylation is the most conserved form of protein glycosylation in eukaryotes, but the modifications of N-linked oligosaccharides in plants and invertebrates often differ greatly from those in vertebrates and sometimes result in immunogenic structures. By contrast, O-linked glycans tend to be a wide and disparate group of modifications. Whereas the forms of O-linked glycans in plants are unlike those in animals, studies on invertebrate O-glycosylation often yield information relevant to mammalian systems.  相似文献   

19.
《MABS-AUSTIN》2013,5(5):519-527
Covalently-linked glycans on proteins have many functional roles, some of which are still not completely understood. Antibodies have a very specific glycan modification in the Fc region that is required for mediating immune effector functions. These Fc glycans are typically highly heterogeneous in structure, and this heterogeneity is influenced by many factors, such as type of cellular host and rate of Ab secretion. Glycan heterogeneity can affect the Fc-dependent activities of antibodies. It has been shown recently that increased Fc sialylation can result in decreased binding to immobilized antigens and some Fcγ receptors, as well as decreased antibody-dependent cell-mediated cytotoxicity (ADCC) activity. In contrast, increased Fc sialylation enhances the anti-inflammatory activity of antibodies. To produce antibodies with increased effector functions, we developed host cell lines that would limit the degree of sialylation of recombinantly-expressed antibodies. Towards this end, the catalytic domain of the Arthrobacter ureafaciens sialidase (sialidase A) was engineered for secreted expression in mammalian cell lines. Expression of this sialidase A gene in mammalian cells resulted in secreted expression of soluble enzyme that was capable of removing sialic acid from antibodies secreted into the medium. Purified antibodies secreted from these cells were found to possess very low levels of sialylation compared with the same antibodies purified from unmodified host cells. The low sialylated antibodies exhibited similar binding affinity to soluble antigens, improved ADCC activity, and they possessed pharmacokinetic properties comparable to their more sialylated counterparts. Further, it was observed that the amount of sialidase A expressed was sufficient to thoroughly remove sialic acid from Abs made in high-producing cell lines. Thus, engineering host cells to express sialidase A enzyme can be used to produce recombinant antibodies with very low levels of sialylation.  相似文献   

20.
Glycosylation studies of plasma proteins can reveal information about the onset and progression of diseases, where in the glycan biosynthetic pathways are disturbed as in rheumatoid arthritis (RA). The present study was focused on analysis of O-linked glycoproteins of plasma in RA patients. Two dimensional gel electrophoresis of jacalin bound plasma of RA patients revealed a number of differentially expressed protein spots as compared to healthy controls. Eighteen protein spots were found to have statistically significant (p<0.05) difference in their expression level from four sets of gels and were identified by MALDI-TOF MS. Most of the identified proteins were predicted to be O-glycosylated proteins by Net–O-Gly 3.1 algorithm. Among these the alpha 2HS glycoprotein (A2HSG) was found to be down regulated whereas inter alpha trypsin inhibitor H4 (ITIH4) was up regulated and this was validated by Western blotting. The glycosylation studies showed the reduced N-linked sialylation of A2HSG in RA patients. Altered glycoprotein expression and functional as well as structural studies of glycans might help in the diagnosis of RA and understanding the disease pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号