首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to evaluate the role of knit structure in underwear on thermoregulatory responses. Underwear manufactured from 100% polypropylene fibres in five different knit structures (1-by-1 rib, fleece, fishnet, interlock, double-layer rib) was evaluated. All five underwear prototypes were tested as part of a prototype clothing system. Measured on a thermal manikin these clothing systems had total thermal resistances of 0.243, 0.268, 0.256, 0.248 and 0.250 m2.K.W-1, respectively (including a value for the thermal resistance of the ambient environment of 0.104 m2.K.W-1). Human testing was done on eight male subjects and took place at ambient temperature (Ta) = 5 degrees C, dew point temperature (Tdp) = -3.5 degrees C and air velocity (Va) = 0.32 m.s-1. The test comprised a repeated bout of 40-min cycle exercise (315 W.m-2; 52%, SD 4.9% maximal oxygen uptake) followed by 20 min of rest (62 W.m-2). The oxygen uptake, heart rate, oesophageal temperature, skin temperature, Ta, Tdp at the skin and in the ambient air, onset of sweating, evaporation rate, non-evaporated sweat accumulated in the clothing and total evaporative loss of mass were measured. Skin wettedness was calculated. The differences in knit structure of the underwear in the clothing systems resulted in significant differences in mean skin temperature, local and average skin wettedness, non-evaporated and evaporated sweat during the course of the intermittent exercise test. No differences were observed over this period in the core temperature measurements.  相似文献   

2.

1. 1. The purposes of this study are to find out the arrangement effects on the vapor pressure gradient across the cotton–nylon double layer and to elucidate changes in the vapor pressure gradient when an additional third layer covers the double layer.

2. 2. Model tests for single, double and triple layer system and wear test for triple layer clothing were conducted.

3. 3. It was found that up to the second layer, dryness of innermost microclimate could be maintained when cotton faced the skin (C/N).

4. 4. However, when more permeable and hydrophobic third layer (UWF) covers the double layer, the microclimate of C/N is no longer drier than N/C.

5. 5. When nylon is exposed to the skin, a larger drop in vapor pressure across the first two layers occurred for both model and wear test.

6. 6. The innermost microclimate was not necessarily kept dry when the outermost layer dissipated more moisture due to the inefficient distribution of moisture.

Author Keywords: Vapor pressure; microclimate; layer arrangement; cotton; nylon  相似文献   


3.
A simulation model that simultaneously calculates heat and mass transfer from a wetted skin surface and fur layer of a cow is presented. The model predicts evaporative, convective and radiant heat losses for different levels of skin and fur wetness, air velocity, air temperature and relative humidity. In the model, fur layer (hair coat) properties such as fur thickness and hair density assumed are that of summer conditions. Evaporative cooling from wet-skin surface and hair coat is the dominant mode of heat mitigation mechanism in stressful hot environments and is further enhanced by increased air velocity. Evaporative cooling is, however, depressed by increased relative humidity because of deficit of water-vapor concentration between the skin surface and ambient air.  相似文献   

4.
Investigating claims that a clothed person's mass loss does not always represent their evaporative heat loss (EVAP), a thermal manikin study was performed measuring heat balance components in more detail than human studies would permit. Using clothing with different levels of vapor permeability and measuring heat losses from skin controlled at 34 degrees C in ambient temperatures of 10, 20, and 34 degrees C with constant vapor pressure (1 kPa), additional heat losses from wet skin compared with dry skin were analyzed. EVAP based on mass loss (E(mass)) measurement and direct measurement of the extra heat loss by the manikin due to wet skin (E(app)) were compared. A clear discrepancy was observed. E(mass) overestimated E(app) in warm environments, and both under and overestimations were observed in cool environments, depending on the clothing vapor permeability. At 34 degrees C, apparent latent heat (lambda(app)) of pure evaporative cooling was lower than the physical value (lambda; 2,430 J/g) and reduced with increasing vapor resistance up to 45%. At lower temperatures, lambda(app) increases due to additional skin heat loss via evaporation of moisture that condenses inside the clothing, analogous to a heat pipe. For impermeable clothing, lambda(app) even exceeds lambda by four times that value at 10 degrees C. These findings demonstrate that the traditional way of calculating evaporative heat loss of a clothed person can lead to substantial errors, especially for clothing with low permeability, which can be positive or negative, depending on the climate and clothing type. The model presented explains human subject data on EVAP that previously seemed contradictive.  相似文献   

5.
This paper reports on a new transient thermal model integrating the heat and moisture transfer through clothing as well as the two-node human physiological model to predict the human physiological responses. For the first time, the model considered clothing ventilation and moisture accumulation on the surface of the skin and inner surface of the underwear. The numerical results of the model agreed well with a set of published experimental data and another set of experimental data from our own experiments.  相似文献   

6.
We tested the concept that moose (Alces alces) begin to show signs of thermal stress at ambient air temperatures as low as 14 °C. We determined the response of Alaskan female moose to environmental conditions from May through September by measuring core body temperature, heart rate, respiration rate, rate of heat loss from exhaled air, skin temperature, and fecal and salivary glucocorticoids. Seasonal and daily patterns in moose body temperature did not passively follow the same patterns as environmental variables. We used large changes in body temperature (≥1.25 °C in 24hr) to indicate days of physiological tolerance to thermal stressors. Thermal tolerance correlated with high ambient air temperatures from the prior day and with seasonal peaks in solar radiation (June), ambient air temperature and vapor pressure (July). At midday (12:00hr), moose exhibited daily minima of body temperature, heart rate and skin temperature (difference between the ear artery and pinna) that coincided with daily maxima in respiration rate and the rate of heat lost through respiration. Salivary cortisol measured in moose during the morning was positively related to the change in air temperature during the hour prior to sample collection, while fecal glucocorticoid levels increased with increasing solar radiation during the prior day. Our results suggest that free-ranging moose do not have a static threshold of ambient air temperature at which they become heat stressed during the warm season. In early summer, body temperature of moose is influenced by the interaction of ambient temperature during the prior day with the seasonal peak of solar radiation. In late summer, moose body temperature is influenced by the interaction between ambient temperature and vapor pressure. Thermal tolerance of moose depends on the intensity and duration of daily weather parameters and the ability of the animal to use physiological and behavioral responses to dissipate heat loads.  相似文献   

7.
This study was conducted to obtain basic data in improving the health of Koreans, saving energy and protecting environments. This study investigated the effects of wearing thermal underwear for keeping warm in the office in winter where temperature is not as low as affecting work efficiency, on thermoregulatory responses and subjective sensations. In order to create an environment where every subject feels the same thermal sensation, two experimental conditions were selected through preliminary experiments: wearing thermal underwear in 18 degrees C air (18-condition) and not wearing thermal underwear in 23 degrees C air (23-condition). Six healthy male students participated in this study as experiment subjects. Measurement items included rectal temperature (T(re)), skin temperature (T(sk)), clothing microclimate temperature (T(cm)), thermal sensation and thermal comfort. The results are as follows: (1) T(re) of all subjects was maintained constant at 37.1 degrees C under both conditions, indicating no significant differences. (2) (T)(sk) under the 18-condition and the 23-condition were 32.9 degrees C and 33.7 degrees C, respectively, indicating a significant level of difference (p<0.05). (3) Among local skin temperature, trunk part (forehead and abdomen) did not show significant differences. After 90-min exposure, the skin temperature of hands and feet under the 18-condition was significantly lower than that under the 23-condition (p<0.001). (4) More than 80% of all the respondents felt comfortable under both conditions. It was found (T)(sk) decreased due to a drop in the skin temperature of hands and feet, and the subjects felt cooler wearing only one layer of normal thermal underwear at 18 degrees C. Yet, the thermal comfort level, T(re) and T(cm) of chest part under the 18-condition were the same as those under the 23-condition. These results show that the same level of comfort, T(re) and T(cm) can be maintained as that of an environment about 5 degrees C higher in the office in winter, by wearing one layer of thermal underwear. In this regard, this study suggests that lowering indoor temperature by wearing thermal underwear in winter can contribute to saving energy and improving health.  相似文献   

8.
Persons exposed to high temperature, or to equivalent environmental factors, have quantifiable reactions, such as reducing the resistance to both heat and moisture flow in skin tissues and clothing needed to maintain thermal equilibrium. The one-to-one relationship between this resistance in the walking person and temperature, with the other factors neutral, is the basis for the apparent temperature scale and the derived heat index. When this approach is taken to assess the thermal environment for a still person exposed to heat in still air, there is a zone of ambient conditions in which there are three solutions to the heat-balance equation. Extraordinary thermal stress occurs, depending slightly on other conditions, at ambient temperatures near 41 degrees C, especially at high humidity, because of the difficulty in carrying sweat vapor from the person when free convection is minimal. This anomaly is examined for a range of ambient vapor pressures and extra radiation. The rapid rise in heat stress when ambient temperature just exceeds body temperature in still conditions may explain the severity of some observed distress.  相似文献   

9.
The study investigated how the pressure exerted on the skin by clothing worn while working in the daytime affected the urinary excretion of adrenaline, noradrenaline and cortisol, heart rate, and also melatonin secretion at night. Nine young women (experiment I) and seven young women (experiment II) participated. Participants wore either a 100% cotton jacket (tight clothes, TC) or a 100% cotton T-shirt (loose clothes, LC). Loose-fitting, 100% cotton tank tops and panties were worn as underwear in both the TC and the LC groups. The main results can be summarized as follows: (1) urinary excretion of adrenaline, noradrenaline and cortisol was facilitated, and the amounts of urinary excretion were significantly higher when TC were worn. Heart rate was significantly higher in the TC group; (2) nocturnal urinary melatonin excretion was significantly greater in the TC group. These results are discussed in terms of an enhancement of diurnal sympathetic nervous system activity caused by pressure on the skin produced by tight clothing.  相似文献   

10.
(1) A theoretical model that simultaneously solves heat and mass transfer in a wet skin surface and fur layer that occurs when an animal is cooled by blowing air over its wetted skin surface and hair coat is presented. (2) The model predicts evaporative and convective heat losses for different levels of wetness, air velocity, ambient temperature, relative humidity and fur properties. (3) Model predictions provide insight about evaporative and convective cooling processes of cows in stressful hot environments.  相似文献   

11.
 A simple model was developed to describe the transport of water vapour from subjects working in hot environments while wearing chemical-protective clothing. The goal of the modelling was to obtain a better estimate of evaporative cooling of the subjects, as it was hypothesised that calculations of evaporative heat loss based on changes in dressed weight over-estimate the actual benefit experienced by the subjects. The model employed measured values of vapour pressure within the clothing ensemble to estimate the skin vapour pressure. The resistance of the clothing ensemble to water vapour transport was calculated from measurements of the physical properties of the materials in conjunction with estimates of the resistance of air layers between the clothing layers. The model predicts mean evaporation rates from the skin that are approximately 60% of those calculated from measured changes in dressed weight. Error analysis failed to account for the magnitude of this difference and possible explanations for the difference are advanced. A brief examination of the effect of wicking suggests that some of the difference results from a reduction of the resistance of the garment to water vapour due to wicking of liquid sweat through fabric layers. Received: 4 June 1997 / Accepted: 21 October 1997  相似文献   

12.
Transpiration element is included in the integrated stomatal conductance-photosynthesis model by considering gaseous transfer processes, so the present model is capable to simulate the influence of boundary layer conductance. Leuning in his revised Ball' s model replaced relative humidity with VPDs(the vapor pressure deficit from stomatal pore to leaf surface) and thereby made the relation with transpiration more straightforward, and made it possible for the regulation of transpiration and the influence of boundary layer conductance to be integrated into the combined model. If the differences in water vapor and CO2 concentration between leaf and ambient air are considered, VPDs, the evaporative demand, is influenced by stomatal and boundary layer conductance. The physiological responses of photosynthesis, transpiration, and stomatal function, and the changes of intercellular CO2 and water use efficiency to environmental factors, such as wind speed, photon flux density, leaf temperature and ambient CO2, are analyzed. It is shown that ff the boundary layer conductance drops to a level comparable with stomatal conductance, the results of simulation by the model presented here differ significantly from those by the previous model, and, in some cases, are more realistic than the latter.  相似文献   

13.
The present paper aimed at learning the effects of two different levels of air permeability and moisture absorption on clothing microclimate and subjective sensation in sedentary women. Three kinds of clothing ensemble were investigated: 1) polyester clothing with low moisture absorption and low air permeability (A clothing); 2) polyester clothing with low moisture absorption and high air permeability (B clothing); and 3) cotton clothing with high moisture absorption and high air permeability (C clothing). After 20 min of dressing time, the room temperature and humidity began to rise from 27 degrees C and 50% rh to 33 degrees C and 70% rh over 20 min, and it was maintained for 30 min (Section I); it then began to fall to 27 degrees C and 50% rh over 20 min, and it was maintained there for 20 min (Section II). The subject sat quietly on a chair for 110 min. The main findings are summarized as follows: 1) The clothing surface temperature was significantly higher in C clothing than in B clothing during section I, but it was significantly higher in B clothing than in C clothing during section II. 2) Although the positive relationship between the microclimate humidity and forearm sweat rate was significantly confirmed in all three kinds of clothing, the microclimate humidity at the chest for the same sweat rate was lower in C clothing than in A and B clothing. These results were discussed in terms of thermal physiology.  相似文献   

14.
Mean skin temperature (Tsk) was measured in 24 subjects during experiments in a climatic chamber. Three conditions of ambient temperature (Ta = 25.6 degrees, 28.9 degrees and 32.2 degrees C), and three of humidity (relative humidity = 50%, 70% and 90%) were studied. A relationship was established by a linear regression technique. It is valid in the 24 degree-34 degree C range, for air velocity = 0.2 m.s-1, clothing insulation = 0.077 degrees C.m2.w-1 (0.5 clo), metabolic rate = 64 w.m-2 (1.1 met) and radiant temperature = air temperature. In these conditions Tsk = 28.125 + 0.021 Pw + 0.210 Ta (Pw: ambient water vapour pressure in mb). It shows a small humidity influence. The influences of sex, transition from one condition to the next, and air velocity were also studied. Measurements in Africa confirmed the small influence of humidity. Ethnic life-style differences indicated that a high precision in Tsk determination is difficult to achieve.  相似文献   

15.
The influence of clothing on skin temperature distributions of the torso was investigated during and after cold exposure. Volunteers were cooled for one hour at 5 degrees C while wearing clothing designed to have insulation which was intended to be relatively uniformly distributed. Three different thicknesses of clothing were used. Following thermistor measurements of skin temperatures during the cold exposures, clothing was quickly removed from the upper parts of the body to enable thermographic investigations of the temperature distributions of the front of the bare torso. The evolution of temperature distributions were then studied at different ambient temperatures (5 degrees C and 20 degrees C) as a function of the thickness of the insulation which had previously been worn. The patterns of the temperature distributions, and the range and standard deviation of torso temperatures were all found to be relatively constant in spite of the different thicknesses of clothing worn or in the time-variant mean torso temperatures which resulted. The front torso sites normally used for the determination of mean skin temperatures were found to be on portions of the torso which were cooler than the surrounding regions. It was concluded that a site midway between the umbilicus and a nipple yields a more accurate estimate of mean torso temperature in the conditions of the present study.  相似文献   

16.
We examined the effect of increased skin pressure from tight clothing on small bowel transit time by means of the breath hydrogen test, using milk that contained lactulose as an additional indigestible disaccharide, which is used as a test meal after overnight fasting. In this experiment, we measured the small bowel transit time from 9 healthy and non-constipated female subjects with two different skin pressures that were applied by loose-fitting experimental garment or an additional tight-fitting girdle on two consecutive days. The skin pressure of the latter condition was 8-9 mmHg higher than that of the former one on the participants' waist, abdomen and hip region. The experimental order of the two skin pressure conditions was counterbalanced. As a result, the small bowel transit time obtained with and without girdle did not differ significantly (165.0 +/- 26.0 minutes for less skin pressure condition and 173.3 +/- 26.8 minutes for more skin pressure condition, n = 9, p = 0.43). This result indicated that the skin pressure from clothing has no effect on the passage rate of food through the small intestine.  相似文献   

17.
Clothing textiles protect our human body against external factors. These textiles are not sterile and can harbor high bacterial counts as sweat and bacteria are transmitted from the skin. We investigated the microbial growth and odor development in cotton and synthetic clothing fabrics. T-shirts were collected from 26 healthy individuals after an intensive bicycle spinning session and incubated for 28 h before analysis. A trained odor panel determined significant differences between polyester versus cotton fabrics for the hedonic value, the intensity, and five qualitative odor characteristics. The polyester T-shirts smelled significantly less pleasant and more intense, compared to the cotton T-shirts. A dissimilar bacterial growth was found in cotton versus synthetic clothing textiles. Micrococci were isolated in almost all synthetic shirts and were detected almost solely on synthetic shirts by means of denaturing gradient gel electrophoresis fingerprinting. A selective enrichment of micrococci in an in vitro growth experiment confirmed the presence of these species on polyester. Staphylococci were abundant on both cotton and synthetic fabrics. Corynebacteria were not enriched on any textile type. This research found that the composition of clothing fibers promotes differential growth of textile microbes and, as such, determines possible malodor generation.  相似文献   

18.

1. 1. A new type of simulator for clothing microclimate was designed and constructed.

2. 2. The simulator was designed to simulate the humidity fluctuation of clothing microclimate as observed under light working conditions and to measure the surface temperature of sample fabrics against the skin by means of a radiation thermometer.

3. 3. Knitted fabrics of cotton and polyester, and polyethylene films were used as specimens with different hygroscopicities.

4. 4. The quick rise and fall in the surface temperature of cotton fabric was observed under rapid fluctuations of the microclimate humidity.

5. 5. Under the same humidity fluctuations, the temperature of polyester fabric rose and fell more moderately than that of cotton fabrics, and the temperature of the polyethylene film did not change. When the rate of change in stimulus temperature is higher, the threshold temperature of warm sensation of the skin comes closer to a given adaption temperature.

6. 6. Therefore, the rapid and large changes in the fabric temperature against the skin, which were observed especially for hygroscopic cotton fabric, must affect the thermal comfort of clothing.

Author Keywords: Clothing microclimate; humidity changes; temperature change; simulator thermal sensation; cotton; polyester hygroscopic fiber  相似文献   


19.
The factors responsible for the low transpiration rates of citrus were investigated. Leaf resistance to water vapor exchange by orange seedlings (Citrus sinensis L. cv. Koethen) including a substantial boundary layer resistance, was as low as 1 s cm−1 in humid air. Leaf resistance of well watered plants increased to values as large as 5 s cm−1 when the difference in absolute humidity between leaf and air was increased. Leaf resistance was only slightly influenced by temperature between 20 and 30°C providing the humidity difference between leaf and air was kept constant. Leaf resistance increased when leaf temperature was increased between 20 and 30°C when the absolute humidity external to the leaf was kept constant. Increased humidity differences resulted in greater increases in leaf resistance during initial experiments than when the experiments were repeated with the same leaves indicating acclimation by the plant. It was concluded that the effects of humidity differences on leaf resistance are partially responsible for the low transpiration rates of citrus.  相似文献   

20.
以叶片的气体传输过程为基础,将蒸腾作用包括在以往光合作用气孔导度的耦合模型中,建立了光合作用蒸腾作用气孔导度的耦合模型。该模型可以模拟边界层导度对生理过程的影响。模拟了C3植物叶片对环境因子,如光照、温度、湿度、边界层导度和CO2浓度等的生理响应(光合作用、蒸腾作用、气孔导度)以及Ci和水分利用效率的变化。在环境因子变化于较大范围的情况下,模拟结果符合许多实验结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号