共查询到20条相似文献,搜索用时 15 毫秒
1.
Gretchen Kurpiewski Lawrence J. Forrester James T. Barrett Benedict J. Campbell 《Biochimica et Biophysica Acta (BBA)/General Subjects》1981,678(3):467-476
A facile and quantitative assay for measuring the activity of sphingomyelinase D in recluse spider venom has been developed using L-α-[palmitoyl-1-14C]lysophosphatidylcholine as substrate. This assay avoids the problem of substrate insolubility that occurs when sphingomyelin and other lipids are used as subtrates. This assay has been employed in gel filtration and isoelectric focusing isolation techniques to purify sphingomyelinase D from spider venom. The purified sphingomyelinase exhibits four active enzyme forms in isoelectric focusing with pI values of 8.7, 8.4., 8.2, and 7.8. Each active form when examined in SDS-polyacrylamide gel electrophoresis gave an estimated molecular weight of 32 000. The four active enzyme forms were immunologically cross-reactive with each other as demonstrated with radioimmune assays using an antiserum developed to one of the active forms. Each active form hydrolysed sphingomyelin to release choline and produce N-acylsphingosine phosphate. One of the active enzyme forms was characterized further in dermonecrosis and platelet aggregation measurements. This purified sphingomyelinase D was identified as a poisonous toxin that can develop the typical dermonecrotic spider lesion when injected into experimental animals at levels expected to be delivered in a normal bite. Furthermore, the purified toxin acts to aggregate human blood platelets. The toxin-induced platelet aggregation has been related to serotonin release as aggregation occurs, and it has been shown to be inhibited by EDTA over the range of 0.6 to 3.0 mM EDTA. It is suggested that spider-induced dermonecrosis could result in part from platelet aggregation at and near the site of envenomation. 相似文献
2.
An inhibitor of complement in the venom of the brown recluse spider, Loxosceles reclusa 总被引:1,自引:0,他引:1
W T Kniker P N Morgan W J Flanigan P W Reagan C J Dillaha 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1969,131(4):1432-1434
3.
Platelet aggregation and antibacterial effects of an l-amino acid oxidase purified from Bothrops alternatus snake venom 总被引:4,自引:0,他引:4
Stábeli RG Marcussi S Carlos GB Pietro RC Selistre-de-Araújo HS Giglio JR Oliveira EB Soares AM 《Bioorganic & medicinal chemistry》2004,12(11):2881-2886
The isolation and biochemical/enzymatic characterization of an L-amino acid oxidase, Balt-LAAO-I, from Bothrops alternatus snake venom, is described. Balt-LAAO-I is an acidic glycoprotein, pI approximately 5.37, homodimeric, Mr approximately 123,000, whose N-terminal sequence is ADVRNPLE EFRETDYEVL. It displays a high specificity toward hydrophobic and basic amino acids, while deglycosylation does not alter its enzymatic activity. Balt-LAAO-I induces platelet aggregation and shows bactericidal activity against Escherichia coli and Staphylococcus aureus. In addition, this enzyme is slightly hemorrhagic and induces edema in the mouse paw. Balt-LAAO-I is a multifunctional enzyme with promising relevant biotechnological and medical applications. 相似文献
4.
Cunha RB Barbaro KC Muramatsu D Portaro FC Fontes W de Sousa MV 《Journal of Protein Chemistry》2003,22(2):135-146
The most common manifestation of Loxosceles spider envenoming is a dermonecrotic lesion at the bite site. Dermonecrotic toxins from Loxosceles gaucho venom were purified and characterized by mass spectrometry (capillary liquid chromatography followed by mass spectrometry detection). Two components were purified: a major one of 31,444 Da, called loxnecrogin A, and a minor one of 31,626 Da, called loxnecrogin B, being probably two isoforms of the toxin. The N-terminal sequence of loxnecrogin A showed similarity with N termini of other sphingomyelinolytic dermonecrotic toxins isolated from venoms of different Loxosceles species. The internal sequences did not present any statistically significant hits in sequence databases searches. However, loxnecrogin A partial sequence showed high similarity to regions of L. intermedia LiD1 recombinant protein sequence, recently described in the literature but not yet deposited in databanks. 相似文献
5.
beta-Toxins of staphylococcal species possess dual activity in that they can both lyse erythrocytes (by 'hot-cold' lysis) and catalyse hydrolysis of membrane-associated sphingomyelin. However, the precise relationship between these two activities has not been extensively studied. We have partially purified a beta-like toxin from culture supernatants of Staphylococcus schleiferi N860375 which exhibits both 'hot-cold' lysis of erythrocytes and neutral sphingomyelinase activities. This toxin has a strong preference for sheep erythrocytes, the membranes of which are rich in sphingomyelin. Kinetic analysis suggests that haemolysis and sphingomyelinase activities are very closely associated obeying identical Michaelis-Menten kinetics. However, pre-treatment with antibodies to Staphylococcus aureus beta-toxin, Ca(2+), dithiothreitol and phenylmethylsulfonyl fluoride appear to inhibit sphingomyelinase activity significantly more strongly than haemolysis while Mg(2+) activates sphingomyelinase activity more strongly than haemolysis. We attribute these effects to differences in binding properties in the two assays. Micropurification by both sphingosylphosphocholine-agarose affinity chromatography and preparative electrophoresis revealed that the 34-kDa toxin associates non-covalently with individual proteins. 相似文献
6.
Appel MH da Silveira RB Chaim OM Paludo KS Silva DT Chaves DM da Silva PH Mangili OC Senff-Ribeiro A Gremski W Nader HB Veiga SS 《Biochimica et biophysica acta》2008,1780(2):167-178
Brown spider bites are associated with lesions including dermonecrosis, gravitational spreading and a massive inflammatory response, along with systemic problems that may include hematological disturbances and renal failure. The mechanisms by which the venom exerts its noxious effects are currently under investigation. It is known that the venom contains a major toxin (dermonecrotic toxin, biochemically a phospholipase D) that can experimentally induce dermonecrosis, inflammatory response, animal mortality and platelet aggregation. Herein, we describe cloning, heterologous expression, purification and functionality of a novel isoform of the 33 kDa dermonecrotic toxin. Circular dichroism analysis evidenced correct folding for the toxin. The recombinant toxin was recognized by whole venom serum antibodies and by a specific antibody to a previously described dermonecrotic toxin. The identified toxin was found to display phospholipase activity and dermonecrotic properties. Additionally, the toxin caused a massive inflammatory response in rabbit skin dermis, evoked platelet aggregation, increased vascular permeability, caused edema and death in mice. These characteristics in combination with functional studies for other dermonecrotic toxins illustrate that a family of dermonecrotic toxins exists, and includes a novel member with high activity that may be useful for future structural and functional studies. 相似文献
7.
Trimeresurus wagleri venom is the most potent inducer of platelet aggregation among the seven Trimeresurus snake venoms tested. By means of CM-Sephadex C-50 column chromatography, T. wagleri venom was separated into 19 fractions. Fraction XVI possessed the strongest aggregating activity and was further purified by Sephadex G-75 and on heparin-agarose columns, and finally Triwaglerin, with a molecular weight of 68000, was obtained. Its aggregating and ATP-releasing activity was dose-dependent and 10-times more potent than the crude venom. Triwaglerin was devoid of any of the enzymatic activities possessed by the crude venom. Triwaglerin-induced aggregation was not affected by indomethacin, creatine phosphate/creatine phosphokinase (CP/CPK), platelet-activating factor (PAF) antagonists, verapamil or heparin, but was inhibited completely by mepacrine, imipramine and forskolin and markedly by tetracaine and sodium nitroprusside. Thromboxane B2 formation caused by Triwaglerin was suppressed by mepacrine, imipramine and indomethacin. R59022 and TMB-8 caused a synergistic inhibitory effect against Triwaglerin-induced aggregation. These data suggest that Triwaglerin activates platelets in a unique action which is independent of formation of thromboxane A2 and PAF, or release of ADP. 相似文献
8.
A non-coagulant platelet aggregation inducer (called platelet 'aggregoserpentin') was isolated from Trimeresurus mucrosquamatus snake venom by CM-Sephadex chromatography and purified by gel filtration. It was homogeneous as judged by the ultracentrifugal analysis and electrophoresis on polyacrylamide gel and cellulose acetate membrane. The molecular weight was estimated to be 68 000 as judged by the SDS-polyacrylamide gel electrophoresis and gel filtration on Sephadex G-75. The ultracentrifugal analysis gave 3.19 Svedberg units. It was a protein-polysaccharide complex containing 340 amino acid residues and 50% carbohydrate per molecule. The isoelectric point was pH 5.4. It did not possess any of the hydrolase enzymatic properties which were found in the crude venom. The minimal concentration of 'aggregoserpentin' necessary to induce platelet aggregation was 10 ng/ml, about one four-hundredth of that of the crude venom. It did not cause lysis of platelets because lactate dehydrogenase was not found in supernatant after complete aggregation. An intravenous injection of 'aggregoserpentin' (35 microgram/kg) into rabbit ear marginal vein caused marked decrease of platelet number to approx. 10-20% of that of the control. 相似文献
9.
A basic phospholipase A was isolated from Vipera russellii snake venom. It induced a biphasic effect on washed rabbit platelets suspended in Tyrode's solution. The first phase was a reversible aggregation which was dependent on stirring and extracellular calcium. The second phase was an inhibitory effect on platelet aggregation, occurring 5 min after the addition of the venom phospholipase A without stirring or after a recovery from the reversible aggregation. The aggregating phase could be inhibited by indomethacin, tetracaine, papaverine, creatine phosphate/creatine phosphokinase, mepacrine, verapamil, sodium nitroprusside, prostaglandin E1 or bovine serum albumin. The venom phospholipase A released free fatty acids from synthetic phosphatidylcholine and intact platelets. p-Bromophenacyl bromide-modified venom phospholipase A lost its phospholipase A enzymatic and platelet-aggregating activities, but protected platelets from the aggregation induced by the native enzyme. The second phase of the venom phospholipase A action showed a different degree of inhibition on platelet aggregation induced by some activators in following order: arachidonic acid greater than collagen greater than thrombin greater than ionophore A23187. The longer the incubation time or the higher the concentration of the venom phospholipase A, the more pronounced was the inhibitory effect. The venom phospholipase A did not affect the thrombin-induced release reaction which was caused by intracellular Ca2+ mobilization in the presence of EDTA, but inhibited collagen-induced release reaction which was caused by Ca2+ influx from extracellular medium. The inhibitory effect of the venom phospholipase A and also lysophosphatidylcholine or arachidonic acid could be antagonized or reversed by bovine serum albumin. It was concluded that the first stimulatory phase of the venom phospholipase A action might be due to arachidonate liberation from platelet membrane. The second phase of inhibition of platelet aggregation and the release of ATP might be due to the inhibitory action of the split products produced by this venom phospholipase A. 相似文献
10.
A basic phospholipase A was isolated from Vipera russellii snake venom. It induced a biphasic effect on washed rabbit platelets suspended in Tyrode's solution. The first phase was a reversible aggregation which was dependent on stirring and extracellular calcium. The second phase was an inhibitory effect on platelet aggregation, occurring 5 min after the addition of the venom phospholipase A without stirring or after a recovery from the reversible aggregation. The aggregating phase could be inhibited by indomethacin, tetracaine, papaverine, creatine phosphate/creatine phosphokinase, mepacrine, verapamil, sodium nitroprusside, prostaglandin E1 or bovine serum albumin. The venom phospholipase A released free fatty acids from synthetic phosphatidylcholine and intact platelets. bromide-modified venom phospholipase A lost its phospholipase A enzymatic and platelet-aggregating activities, but protected platelets from the aggregation induced by the native enzyme. The second phase of the venom phospholipase A action showed a different degree of inhibition on platelet aggregation induced by some activators in following order: . The longer the incubation time or the higher the concentration of the venom phospholipase A, the more pronounced was the inhibitory effect. The venom phospholipase A did not affect the thrombin-induced release reaction which was caused by intracellular Ca2+ mobilization in the presence of EDTA, but inhibited collagen-induced release reaction which was caused by Ca2+ influx from extracellular medium. The inhibitory effect of the venom phospholipase A and also lysophosphatidylcholine or arachidonic acid could be antagonized or reversed by bovine serum albumin. It was concluded that the first stimulatory phase of the venom phospholipase A action might be due to arachidonate liberation from platelet membrane. The second phase of inhibition of platelet aggregation and the release of ATP might be due to the inhibitory action of the split products produced by this venom phospholipase A. 相似文献
11.
da Silveira RB Pigozzo RB Chaim OM Appel MH Dreyfuss JL Toma L Mangili OC Gremski W Dietrich CP Nader HB Veiga SS 《Biochimie》2006,88(9):1241-1253
Brown spider (Genus Loxosceles) bites are normally associated with necrotic skin degeneration, gravitational spreading, massive inflammatory response at injured region, platelet aggregation causing thrombocytopenia and renal disturbances. Brown spider venom has a complex composition containing many different toxins, of which a well-studied component is the dermonecrotic toxin. This toxin alone may produce necrotic lesions, inflammatory response and platelet aggregation. Biochemically, dermonecrotic toxin belongs to a family of toxins with 30-35 kDa characterized as sphingomyelinase-D. Here, employing a cDNA library of Loxosceles intermedia venom gland, we cloned and expressed two recombinant isoforms of the dermonecrotic toxin LiRecDT2 (1062 bp cDNA) and LiRecDT3 (1007 bp cDNA) that encode for signal peptides and complete mature proteins. Phylogenetic tree analysis revealed a structural relationship for these toxins compared to other members of family. Recombinant molecules were expressed as N-terminal His-tag fusion proteins in Escherichia coli and were purified to homogeneity from cell lysates by Ni(2+) chelating chromatography, resulting in proteins of 33.8 kDa for LiRecDT2 and 34.0 kDa for LiRecDT3. Additional evidence for related toxins containing sequence/epitopes identity comes from antigenic cross-reactivity using antibodies against crude venom toxins and antibodies raised with a purified dermonecrotic toxin. Recombinant toxins showed differential functionality in rabbits: LiRecDT2 caused a macroscopic lesion with gravitational spreading upon intradermal injection, while LiRecDT3 evoked transient swelling and erythema upon injection site. Light microscopic analysis of skin biopsies revealed edema, a collection of inflammatory cells in and around blood vessels and a proteinaceous network at the dermis. Moreover, differential functionality for recombinant toxins was also demonstrated by a high sphingomyelinase activity for LiRecDT2 and low activity for LiRecDT3 as well as greater in vitro platelet aggregation and blood vessel permeability induced by LiRecDT2 and residual activity for LiRecDT3. Cloning and expression of two recombinant dermonecrotic toxins demonstrate an intraspecific family of homologous toxins that act in synergism for deleterious activities of the venom and open possibilities for biotechnological applications for recombinant toxins as research tools for understanding the inflammatory response, vascular integrity and platelet aggregation modulators. 相似文献
12.
Fernandes Pedrosa Mde F Junqueira de Azevedo Ide L Gonçalves-de-Andrade RM van den Berg CW Ramos CR Ho PL Tambourgi DV 《Biochemical and biophysical research communications》2002,298(5):638-645
The bite of spiders of the genus Loxosceles can induce a variety of biological effects, including dermonecrosis and complement-dependent haemolysis. The aim of this study was to generate recombinant proteins from the Loxosceles spider gland to facilitate structural and functional studies in the mechanisms of loxoscelism. Using "Expressed Sequencing Tag" strategy of aleatory clones from, L. laeta venom gland cDNA library we have identified clones containing inserts coding for proteins with significant similarity with previously obtained N-terminus of sphingomyelinases from Loxosceles intermedia venom [1]. Clone H17 was expressed as a fusion protein containing a 6x His-tag at its N-terminus and yielded a 33kDa protein. The recombinant protein was endowed with all biological properties ascribed to the whole L. laeta venom and sphingomyelinases from L. intermedia, including dermonecrotic and complement-dependent haemolytic activities. Antiserum raised against the recombinant protein recognised a 32-kDa protein in crude L. laeta venom and was able to block the dermonecrotic reaction caused by whole L. laeta venom. This study demonstrates conclusively that the sphingomyelinase activity in the whole venom is responsible for the major pathological effects of Loxosceles spider envenomation. 相似文献
13.
A new peptidyl inhibitor of the small-conductance Ca(2+)-activated K+ channels (SKca) was purified to homogeneity from the venom of the Tunisian scorpion Buthus occitanus tunetanus. The molecular mass determined by SDS-PAGE, shows that it's a short peptide (3300 Da). The primary sequence of this toxin shows that it is a 31-residue polypeptide cross-linked by three disulfide bridges and structurally related to subfamily 5 of short scorpion toxins. This molecule shows similar pharmacological properties with this group of peptides inducing high toxicity in mice after intracerebro-ventricular injection, and competing with iodinated apamin for binding to its receptor site from rat brain synaptosomes (K0.5 = 4 nM). 相似文献
14.
da Silveira RB Wille AC Chaim OM Appel MH Silva DT Franco CR Toma L Mangili OC Gremski W Dietrich CP Nader HB Veiga SS 《The Biochemical journal》2007,406(2):355-363
Injuries caused by brown spiders (Loxosceles genus) are associated with dermonecrotic lesions with gravitational spreading and systemic manifestations. The venom has a complex composition containing many different toxins, of which metalloproteases have been described in many different species of this genus. These toxins may degrade extracellular matrix constituents acting as a spreading factor. By using a cDNA library from an Loxosceles intermedia venom gland, we cloned and expressed a 900 bp cDNA, which encoded a signal peptide and a propeptide, which corresponded to a 30 kDa metalloprotease, now named LALP (Loxosceles astacin-like protease). Recombinant LALP was refolded and used to produce a polyclonal antiserum, which showed cross-reactivity with a 29 kDa native venom protein. CD analysis provided evidence that the recombinant LALP toxin was folded correctly, was still in a native conformation and had not aggregated. LALP addition to endothelial cell cultures resulted in de-adhesion of the cells, and also in the degradation of fibronectin and fibrinogen (this could be inhibited by the presence of the bivalent chelator 1,10-phenanthroline) and of gelatin in vitro. Sequence comparison (nucleotide and deduced amino acid), phylogenetic analysis and analysis of the functional recombinant toxin revealed that LALP is related in both structure and function to the astacin family of metalloproteases. This suggests that an astacin-like toxin is present in a animal venom secretion and indicates that recombinant LALP will be a useful tool for future structural and functional studies on venom and the astacin family. 相似文献
15.
Wu J Liu F Nilsson A Duan RD 《American journal of physiology. Gastrointestinal and liver physiology》2004,287(5):G967-G973
Sphingomyelin (SM) hydrolysis in the gut has implications in colonic tumorigenesis and cholesterol absorption. It is triggered by intestinal alkaline sphingomyelinase (Alk-SMase) that is present in the intestinal mucosa and content. The mechanism by which the enzyme is released into the lumen is not clear. We studied whether trypsin can dissociate Alk-SMase from the mucosa and affect its activity. During luminal perfusion of rat intestine, addition of trypsin to the buffer increased Alk-SMase activity in the perfusate output by about threefold. Treating COS-7 cells transfected with Alk-SMase cDNA with trypsin increased the SMase activity in the medium and reduced that in the cell lysate dose dependently. The appearance of Alk-SMase in the perfusate and culture medium was confirmed by Western blot analysis. The effect of trypsin was blocked by trypsin inhibitor, and neither chymotrypsin nor elastase had a similar effect. We also expressed the full length and COOH-terminal truncated Alk-SMase in COS-7 cells and found that the activity of the full-length enzyme is mainly in the cells, whereas that of the truncated form is mainly in the medium. Both forms were active, but only the activity of the full-length Alk-SMase was enhanced by trypsin. By linking a poly-His tag to the constructed cDNA, we found that the first tryptic site Arg440 upstream of the signal anchor was attacked by trypsin. In conclusion, trypsin cleaves the Alk-SMase at the COOH terminal, releases it from mucosa, and meanwhile enhances its activity. The findings indicate a physiological role of trypsin in SM digestion. 相似文献
16.
P Lazarovici E Zlotkin 《Comparative biochemistry and physiology. C: Comparative pharmacology》1982,71(2):177-181
1. It has been shown that the low toxicity to mammals (LD50 of about 200 mg per kg mice body weight) of the chactoid scorpion venom Scorpio maurus palmatus (Scorpionidae) is due to a single low molecular weight basic protein. 2. This compound was purified by the aid of gel filtration and ion exchange column chromatography, possessed about 80% of the mice lethality of the crude venom with an increase of about 60 fold in its specific toxicity. 3. It is composed of 32 amino acids (mol. wt = 3478) and devoid of isoleucine, leucine, phenylalanine, histidine and tryptophan. 4. The unique amino acid composition of the present toxin is compared to those of the well known buthoid scorpion venom mammal toxins and some other toxins derived from the same venom. 5. It is the first chemically characterized chactoid toxin. 相似文献
17.
18.
V Heredia E Arbaiza J Venegas A Yarlequé A Zavaleta 《Boletín chileno de parasitología》1989,44(1-2):8-16
Some biochemical properties and proteic components of the brown spider (Loxos celes laeta) venom were studied. The electrophoretic profiles of glandular venom and venom obtained through electrical stimulation were compared using two electrophoretic systems. The first, using a polyacrylamide gel with SDS in tubes, and the second, using an acrylamide gradient on slides. The glandular venom presented 20 and 35 bands respectively, while the venom obtained through electrical stimulation presented 19 and 24 bands. The molecular weight of the proteins detected ranged from 13.5 Kd to 220 Kd. A thermolabil proteolitic activity of casein was detected, and was optimum at pH 9. The effects of the divalent ions, calcium and magnesium, as well as that of chelating agents upon the proteolytic activity of the venom were analyzed. The venom had a procoagulant effect upon citrated human plasma, and was not able to activate the Factor X of the coagulation system in vitro. 相似文献
19.