首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of nematode infestation on the alternative pathway respiration of mitochondria isolated from resistant and susceptible tomato roots greatly depended on the oxidisable substrate tested. The percentage of alternative respiration in NADH, malate and succinate oxidation was markedly different between the resistant (Rossol) and the susceptible (Roma VF) cultivars before infestation. Only the percentage of malate alternative oxidation in mitochondria from the resistant roots was influenced by nematode invasion. Conversely, attacked roots showed consistent variations in the content of mitochondria per unit fresh weight and in the phosphorylation efficiency (ADP/O) of the organelles. Expression of the alternative pathway (ρ' value) was found to be unchanged in intact roots and isolated mitochondria six days after nematode inoculation.  相似文献   

2.
3.
Management of Meloidogyne incognita (root-knot nematode) in cotton in the United States was substantially affected by the decision to stop production of aldicarb by its principle manufacturer in 2011. The remaining commercially available tools to manage M. incognita included soil fumigation, nematicide seed treatments, postemergence nematicide application, and cultivars partially resistant to M. incognita. Small plot field studies were conducted on a total of nine sites from 2011–2013 to examine the effects of each of these tools alone or in combinations, on early season galling, late-season nematode density in soil, yield, and value ($/ha = lint value minus chemical costs/ha). The use of a partially resistant cultivar resulted in fewer galls/root system at 35 d after planting in eight of nine tests, lower root-knot nematode density late in the growing season for all test sites, higher lint yield in eight of nine sites, and higher value/ha in six of nine sites. Galls per root were reduced by aldicarb in three of nine sites and by 1,3-dichloropropene (1,3-D) in two of eight sites, relative to the nontreated control (no insecticide or nematicide treatment). Soil fumigation reduced M. incognita density late in the season in three of nine sites. Value/ha was not affected by chemical treatment in four of nine sites, but there was a cultivar × chemical interaction in four of nine sites. When value/ha was affected by chemical treatment, the nontreated control had a similar value to the treatment with the highest value/ha in seven of eight cultivar-site combinations. The next “best” value/ha were associated with seed treatment insecticide (STI) + oxamyl and aldicarb (similar value to the highest value/ha in six of eight cultivar-site combinations). The lowest valued treatment was STI + 1,3-D. In a semi-arid region, where rainfall was low during the spring for all three years, cultivars with partial resistance to M. incognita was the most profitable method of managing root-knot nematode in cotton.  相似文献   

4.
Microplot and greenhouse experiments were conducted to evaluate the effects of soil incorporation of the nematophagous fungus Arthrobotrys conoides and green alfalfa mulch on the population dynamics of Meloidogyne incognita on corn. Reproduction of M. incognita and the incidence of root galling were reduced by the addition of A. conoides and/or green alfalfa in all tests. Numbers of juveniles were reduced by as much as 84%, and eggs were fewest in early to mid-season soil samples from microplots. Yields increased in treatments with A. conoides and/or green alfalfa in greenhouse tests and in the microplot tests in 1979. No interaction was found between the fungus and green alfalfa in the reduction of the nematode population.  相似文献   

5.
Aims: To investigate the influence of yeast extract, peptone, temperature and pH upon protease productivity by Bacillus sp. HTS102 – a novel wild strain isolated from wool of a Portuguese sheep breed (Merino). Methods and Results: A 24 full factorial, central composite design together with response surface methodology was used to carry out the experiments and analyse the results, respectively. Among the individual parameters tested, temperature and peptone concentration produced significant effects upon protease productivity. A high correlation coefficient (R2 = 0·994, P < 0·01) indicated that the empiric second‐order polynomial model postulated was adequate to predict said productivity, with the optimum loci characterized by: temperature of 43°C, peptone content of 1·4 g l?1, pH of 5·1 and yeast extract concentration of 10·0 g l?1. Conclusions: Protease synthesis depends chiefly on temperature and peptone level. The maximum protease activity was more than twice that obtained with the basal medium, so the experimental design and analysis undertaken were effective towards process optimization. Significance and Impact of the Study: Rational choice of processing conditions for maximum protease productivity will be relevant if an economically feasible fermentation process based on Bacillus sp. HTS102 is intended.  相似文献   

6.
AIMS: The aim of the present investigation was to determine the influence of Rhizoctonia solani and its pathogenicity factor on the production of nematicidal agent(s) by Pseudomonas fluorescens strain CHA0 and its GM derivatives in vitro and nematode biocontrol potential by bacterial inoculants in tomato. METHODS AND RESULTS: One (Rs7) of the nine R. solani isolates from infected tomato roots inhibited seedling emergence and caused root rot in tomato. Thin layer chromatography revealed that culture filtrates of two isolates (Rs3 and Rs7) produced brown spots at Rf-values closely similar to synthetic phenylacetic acid (PAA), a phytotoxic factor. Filtrates from isolate Rs7, amended with the growth medium of P. fluorescens, markedly repressed nematicidal activity and PhlA'-'LacZ reporter gene expression of the bacteria in vitro. On the contrary, isolate Rs4 enhanced nematicidal potential of a 2,4-diacetylphloroglucinol overproducing mutant, CHA0/pME3424, of P. fluorescens strain CHA0 in vitro. Therefore, R. solani isolates Rs4 and Rs7 were tested more rigorously for their potential to influence biocontrol effectiveness of the bacterial agents. Methanol extract of the culture filtrates of PAA-producing isolate Rs7 resulting from medium amended with phenylalanine enhanced fungal repression of the production of nematicidal agents by bacteria, while amendments with zinc or molybdenum eliminated such fungal repression, thereby restoring bacterial potential to cause nematode mortality in vitro. A pot experiment was carried out, 3-week-old tomato seedlings were infested with R. solani isolates Rs4 or Rs7 and/or inoculated with Meloidogyne incognita, the root-knot nematode. The infested soil was treated with aqueous cell suspensions (10(8) CFU) of P. fluorescens strain CHA0 or its GM derivatives or left untreated (as a control). Observations taken 45 days after nematode inoculation revealed that, irrespective of the bacterial treatments, galling intensity per gram of fresh tomato roots was markedly higher in soil amended with isolate Rs4 than in Rs7-amended soils. Soil amendments with R. solani and the bacterial antagonists resulted in substantial reductions of the number of galls per gram of root. These results are contradictory to those obtained under in vitro conditions where culture filtrates of PAA-positive Rs7 repressed the production of nematicidal compounds. Plants grown in Rs7-amended soils, with or without bacterial inoculants, had lesser shoot and root weights than plants grown in nonamended or Rs4-amended soils. Moreover, amendments with Rs7 substantially retarded root growth and produced necrotic lesions that reduced the number of entry sites for invasion and subsequent infection by nematodes. Populations of P. fluorescens in the tomato rhizosphere were markedly higher in Rs7-amended soils. CONCLUSIONS: PAA-producing virulent R. solani drastically affects the potential of P. fluorescens to cause death of M. incognita juveniles in vitro and influences bacterial effectiveness to suppress nematodes in tomato roots. SIGNIFICANCE AND IMPACT OF THE STUDY: As most agricultural soils are infested with root-infecting fungi, including R. solani, it is likely that some PAA-producing isolates of the fungus may also be isolated from such soils. The inhibitory effect of PAA-producing R. solani on the biosynthesis of nematicidal agent(s) critical in biocontrol may reduce or even eliminate the effectiveness of fluorescent pseudomonads against root-knot nematodes, both in nursery beds and in field conditions. Introduction of bacterial inoculants, for the control of any plant pathogen, should be avoided in soils infested with PAA-producing R. solani. Alternatively, the agents could be applied together with an appropriate quantity of fungicide or chemicals such as zinc to create an environment more favourable for bacterial biocontrol action.  相似文献   

7.
Activity profiles of bacterioplankton in a eutrophic river   总被引:2,自引:0,他引:2  
1. The significance of microbial diversity in processing dissolved organic matter (DOM) is largely unknown. We investigated the range of functional diversity in the bacterioplankton from a eutrophic river by profiling extracellular enzyme activities (EEA) and substrate-induced respiration (SIR) patterns.
2. The EEA profiles consisted of assays for 21 hydrolases, measured using fluorogenic substrates arrayed on 96-well microplates. Commercially available BiOLOG® GN and ECO plates, which contained 120 different substrates, were used for the SIR profiles.
3. The EEA data were more dynamic than the SIR. Five enzymes, leucine aminopeptidase, alkaline phosphatase, alanine aminopeptidase, arginine aminopeptidase and β-glucosidase, showed consistently high activity; ten others were ubiquitous at lower activity levels; the remainder were detected intermittently. The SIR data showed less temporal variability. With one exception (citrate), the 20 substrates that generated the largest responses were all saccharides or their derivatives.
4. The EEA and SIR data did not generally correlate. Both methods were effective for ordinating bacterioplankton although, unlike the SIR, the EEA ordination followed a clear temporal trajectory.
5. Because the SIR profiles are based on a culture response, whilst the EEA profiles measure activity of the extant community, the latter appear to be more directly linked to the mechanics of DOM processing.  相似文献   

8.
Crop rotation can significantly increase yield by improving soil conditions through reducing soil pathogens and increasing the microbial diversity near the root system of the plant. Cucumber is widely consumed across the world, and monoculture of cucumber under greenhouse conditions is often threatened by Fusarium wilt, which is caused by fungi belonging to the genus Fusarium. In Jiangsu province of China, rotating cucumber crops with Volvariella volvacea is used as a way to control Fusarium wilt. Here, we tested how rotating cucumber with V. volvacea influences soil physico-chemical and biological properties. We found that rotating with V. volvacea improved bacterial diversity near the cucumber root system. We also found an increase in nitrogen-fixing bacteria that have been used for biological control of plant pathogens, and a decrease in Fusarium species. In the treated soil, we found increased activity of the soil enzymes catalase, dehydrogenase, polyphenol oxidase and alkaline phosphatase by 2–22%, 14–29%, 16–58% and 9–64%, respectively. Lastly, the total and available nitrogen, phosphorus and potassium content significantly increased one to three weeks after V. volvacea residual substrate was mixed into the soil, up to 39%, 24%, 17%, 28%, 18% and 70, but declined slowly afterwards. These results suggested that rotating cucumber with V. volvacea could aid in resetting the structure of the microbial community of the cucumber root system. Increase in beneficial microbes and improved soil conditions are likely to contribute to improved yield of this commercially important crop.  相似文献   

9.
The rice blast disease caused by the fungus Magnaporthe grisea is one of the most devastating rice diseases, but there is no effective fungicide toward chitinase which is a key enzyme of M. grisea. In this study, we observed that distortion and cell-wall damage of M. grisea hyphae were significantly under the scanning electron micrograph after a 24-h treatment with 10?mg/L isobavachalcone (IBC) extracted from Psoralea corylifolia L. To further explore the effect of IBC on the cell wall of M. grisea, we examined changes in enzymes associated with cell wall degradation by enzyme activity experiments, treated liquid culture mycelia with 10?mg/L IBC for 1?h. Results displayed that chitinase was obviously more active than control group. To illustrate the interactions between IBC and chitinase, the studies of homology modeling and molecular docking were carried out successively. The results revealed that IBC had hydrogen bonds with residues ASP267 and ARG276 of chitinase. Besides, these nonpolar residues TYR270, PRO271, VAL272, LEU310, PRO311, TYR316, and LEU317 were able to form strong hydrophobic interactions. Binding energies of the chitinase-IBC complexes were calculated by MM-GBSA showed that the ΔGbind score of molecular dynamics had lower binding energy and more stable than docking complexes. All above, IBC owns significant agonistic activity in chitinase and would be a potent fungicide to inhibit the growth of M. grisea. We hope the above information provides an important insight for understanding the interactions between IBC and chitinase, which may be useful in the discovery of a novel potent agonist.

Communicated by Ramaswamy H. Sarma  相似文献   


10.
Aims: To monitor variations in the bacterial community and fermentation products of maize silage within and between bunker silos. Methods and Results: Silage samples were collected in 2008 and 2009 from three dairy farms, wherein the farmers arranged for a contractor to produce maize silage using bunker silos. Silage was prepared using a lactic acid bacteria (LAB) inoculant consisting of Enterococcus faecium, Lactobacillus plantarum and Lactobacillus buchneri. Eight samples were collected from each bunker silo; 4 ‘outer’ and 4 ‘inner’ samples were collected from near the top and the bottom of the silo. The dry matter, lactic acid, acetic acid, ethanol, 1‐propanol and 1,2‐propanediol contents differed between bunker silos in both sampling years. Higher acetic acid, 1‐propanol and 1,2‐propanediol contents were found in the bottom than the top layers in the 2008 samples, and higher lactic acid content was found in the top than the bottom layers in the 2009 samples. The bacterial community varied more between bunker silos than within a bunker silo in the 2008 samples, whereas differences between the top and the bottom layers were seen across bunker silos in the 2009 samples. The inoculated LAB were uniformly distributed, while several nonconventional silage bacteria were also detected. Lactobacillus acetotolerans, Lactobacillus panis and Acetobacter pasteurianus were detected in both years. Stenotrophomonas maltophilia was detected in the 2008 samples, and Lactobacillus reuteri, Acinetobacter sp. and Rahnella sp. were detected in the 2009 samples. Conclusions: Although differences were seen within and between bunker silos, the bacterial community may indicate a different relationship between bunker silos and sampling locations within a bunker silo from that indicated by the fermentation products. Significance and Impact of the Study: Analysis of bacterial community can help understand how diverse non‐LAB and LAB species are involved in the ensiling process of bunker‐made maize silage.  相似文献   

11.
Two homologous cotton (Gossypium hirsutum L.) genes, GhCTL1 and GhCTL2, encode members of a new group of chitinase-like proteins (called the GhCTL group) that includes other proteins from two cotton species, Arabidopsis, rice, and pea. Members of the GhCTL group are assigned to family GH19 glycoside hydrolases along with numerous authentic chitinases (http://afmb.cnrs-mrs.fr/CAZY/index.html), but the proteins have novel consensus sequences in two regions that are essential for chitinase activity and that were previously thought to be conserved. Maximum parsimony phylogenetic analyses, as well as Neighbor-Joining distance analyses, of numerous chitinases confirmed that the GhCTL group is distinct. A molecular model of GhCTL2 (based on the three-dimensional structure of a barley chitinase) had changes in the catalytic site that are likely to abolish catalytic activity while retaining potential to bind chitin oligosaccharides. RNA blot analysis showed that members of the GhCTL group had preferential expression during secondary wall deposition in cotton lint fiber. Cotton transformed with a fusion of the GhCTL2 promoter to the beta -d-glucuronidase gene showed preferential reporter gene activity in numerous cells during secondary wall deposition. Together with evidence from other researchers that mutants in an Arabidopsis gene within the GhCTL group are cellulose-deficient with phenotypes indicative of altered primary cell walls, these data suggest that members of the GhCTL group of chitinase-like proteins are essential for cellulose synthesis in primary and secondary cell walls. However, the mechanism by which they act is more likely to involve binding of chitin oligosaccharides than catalysis.  相似文献   

12.
Mulyukin  A. L.  Demkina  E. V.  Kozlova  A. N.  Soina  V. S.  El'-Registan  G. I. 《Microbiology》2001,70(5):535-541
Non-spore-forming bacteria of the genera Arthrobacterand Micrococcus, isolated from permafrost subsoil, were found to produce greater amounts of the d 1extracellular factor than closely related collection strains isolated from soil. The effect of this factor, responsible for cell transition to anabiosis, was not species-specific. Thus, the d 1preparation isolated from the culture liquid of the permafrost isolate Arthrobacter globiformis245 produced an effect on the collection strain Arthrobacter globiformisB-1112 and also on Micrococcus luteusand Bacillus cereus.The d 1preparation from the permafrost isolate of Arthrobacterdiffered from the chemical analogue of this factor, 4-n-hexylresorcinol, in the level of the induced cell response, which may have resulted from different cell sensitivity to various homologs of alkylhydroxybenzenes contained in the d 1preparation. Thus, additional evidence was obtained indicating that autoregulation of bacterial growth and development is implemented at the level of intercellular interactions in microbial communities. Abundant production of the d 1anabiosis-inducing factors by bacteria isolated from permafrost subsoil is probably a result of special antistress mechanisms responsible for the survival of these bacteria under extreme conditions of natural long-term cooling.  相似文献   

13.
Nitrite oxidoreductase (NXR) is the key enzyme responsible for the oxidation of NO(2)(-) to NO(3)(-) in nitrite-oxidizing bacteria. For the first time a molecular approach for targeting the nxrA gene was developed, encoding the catalytic subunit of the NXR, to study diversity of Nitrobacter-like organisms based on the phylogeny of nxrA gene sequences in soils. NxrA sequences of the Nitrobacter strains analysed (Nitrobacter hamburgensis, Nitrobacter vulgaris, Nitrobacter winogradskyi, Nitrobacter alkalicus) by PCR, cloning and sequencing revealed the occurrence of multiple copies of nxrA genes in these strains. The copy number and similarity varied among strains. The diversity of Nitrobacter-like nxrA sequences was explored in three soils (a French permanent pasture soil, a French fallow soil, and an African savannah soil) using a cloning and sequencing approach. Most nxrA sequences found in these soils (84%) differed from nxrA sequences obtained from Nitrobacter strains. Moreover, the phylogenetic distribution and richness of nxrA-like sequences was extremely variable depending on soil type. This nxrA tool extends the panel of functional genes available for studying bacteria involved in the nitrogen cycle.  相似文献   

14.
Gypsum and sulfur have been used as amendments for application in sodic and saline sodic soils, although gypsum is not effective in soil pH reduction. In this study the combined effects of elemental sulfur inoculated with Acidithiobacillus (S*) and gypsum (G) in chemical attributes of a Brazilian solodic soil was evaluated. The treatments consisted in addition of S* and G in various levels (0, 0.8, 1.6, 2.4, and 3.2 t ha−1) and different mixing proportions (100:0, 75:25, 50:50, 25:75, and 100:0), acting during 15, 30, and 45 days. Sulfur inoculated with Acidithiobacillus (S*) markedly reduced soil pH in the leaching solution, especially when applied in the highest levels. Gypsum or sulfur applied individually was not satisfactory for soil reclamation. At 15 days of incubation Na+, Ca2+, and Mg2+ showed higher values in the leaching solution, and a marked decrease was observed in the leaching solution at 30 days. Reduction in soil electrical conductivity and in exchangeable Na+, Ca2+, and Mg2+ was observed and in a general way best results were achieved with S* : G in the ratio 50:50, using 2.4 and 3.2 t ha−1. Sulfur with Acidithiobacillus was more effective than gypsum in decreasing soil pH, and sulfur applied with gypsum in the proportion 50:50 showed the best results in relation to exchangeable sodium and electrical conductivity and showed values below those used for classification as sodic soils.  相似文献   

15.
Belone  A.F.F.  Madeira  S.  Rosa  P.S.  Opromolla  D.V.A. 《Mycopathologia》2003,155(4):191-194
Long-term maintenance of Lacazia loboi in the laboratory has not been reported. We report here the use BALB/c mice to maintain the Lacazia loboi for extended period of time. Eight to ten week-old mice were inoculated intradermally in both hind footpads with a fungal suspension from a macerated footpad obtained from an original mouse previously infected with the fungi and sacrificed 8 months after inoculation. The inoculated animals were sacrificed at different time intervals, footpads were excised, the right one was submitted to histopathological examination and the left one was macerated in sterile saline for fungal count and viability index determination. The inoculated animals presented the histopathological picture identical to the mice previously inoculated with material from human lesion. Granulomatous infiltrates with predominance of macrophages and giant cells were observed. The granulomas evolved progressively as observed in the different times of sacrifice. After 7 months of inoculation, macroscopic lesions were observed, and the number of fungi obtained from macerated footpads was higher than the number of inoculated fungi. The pattern of lesion development was similar to what was observed in animals infected with a fungal suspension obtained from a human lesion. Considering the histopathological findings, the clinical manifestations, and the finding of a higher number of fungi obtained than the inoculated into footpads of each mice, we believe the BALB/c mice strain is as an excellent way to maintain L. loboi in laboratory. Moreover, even after serial passages of the fungi, the granulomatous lesions are reproduced consistently in laboratory conditions.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

16.
A sensitive and specific assay was developed to detect and biological control of bacterial leaf spot of pumpkin, Xanthomonas cucurbitae was identified on the basis of the morphological, biochemical and molecular assay. The antibiotic sensitivity of the isolate showed that, Carbenicillin revealed highest antibacterial activity with 29 ± 0.00 mm zone of inhibition against isolated bacterial strain. Isolated bacterial strains from soil were also identified by biochemical and molecular characterisation. By analysing morphological and biochemical characteristics and 16S rDNA of three bacterial strains isolated from soil was matched 96% with Bacillus subtilis, 98% with Bacillus brevis and 97% with Pseudomonas fluorescens strain. They were subjected to the antagonistic activity against Xanthomonas cucurbitae by disc diffusion method. Among them, B. subtilis showed significant positive antagonistic activity with 17.0 ± 0.28 mm zone of inhibition against Xanthomonas cucurbitae. The presence of DNA sequence related to the hrpD gene successfully amplified in some isolates of Xanthomonas cucurbitae.  相似文献   

17.
To assess how heterotrophic microorganisms may alter their activities and thus their CO2‐C return to the atmosphere with elevated CO2 and changing N availability, we examined soil organic matter (SOM) dynamics at the Duke Free Air Carbon Enrichment (FACE) site, after N fertilizer was applied. We measured heterotrophic respiration during early and late stages of SOM mineralization in soil incubations to capture activity on relatively labile and refractory SOM pools. We also measured δ13C of respired CO2‐C and phospholipid fatty acids (PLFAs) during early mineralization stages to track the microbial groups involved in substrate use. We calculated , a measure of δ13CPLFA normalized by respired δ13CO2, to assess microbial function with C substrates formed with elevated CO2 and altered N availability, via the distinct δ13C of the supplemental CO2. We also quantified extracellular enzyme activity (EEA) during labile and recalcitrant SOM mineralization. Early in the incubations, increased N availability reduced heterotrophic CO2‐C release. By the later stages of SOM mineralization, elevated CO2 soils with fertilization had respired 72% of the CO2‐C respired by all other soils. values suggest that fungi in elevated CO2 plots took up C substrates possessing the δ13C signature of recently formed SOM, and added N promoted the activity of Gram‐negative bacteria and reduced that of Gram‐positive bacteria, particularly actinomycetes. Consistent with this, the enzyme responsible for the degradation of peptidoglycan and chitin, compounds produced by Gram‐positive bacteria and fungi, respectively, experienced a decline in activity with N fertilization. If patterns observed in this study with N additions are reversed with progressive N limitation at this site, actinomycetes and other Gram‐positive bacteria responsible for mineralizing relatively recalcitrant substrates may experience increases in their activity. Such shifts in microbial functioning may result in increased turnover of, and C release from, relatively decay‐resistant material.  相似文献   

18.
The degradation of beech wood (Fagus sylvatica L.) was followed over 16 months in a central European upland stream, the Breitenbach. 1 cm3 cubes of beech wood were placed on the stream bed and sampled at monthly intervals. Besides mass loss, fungal biomass (ergosterol content) and lignin content, the activity of two extracellular enzymes was measured: β‐D‐glucosidase, an enzyme involved in the degradation of cellulose, and phenoloxidase, a ligninolytic enzyme. The suitability of the fluorigenic model substrate methylumbelliferyl‐β‐D‐glucoside for measuring β‐D‐glucosidase activity in wood from aquatic environments was tested. This technique is much more sensitive than the conventional photometric method. The beech wood was degraded at a constant rate of k = 0.00272 d–1 across the entire 16‐month incubation period. There was a rapid onset of microbial colonisation, as witnessed by the initial detection of enzyme activity, after only 7 days of exposure. Lignin and ergosterol content as well as β‐glucosidase activity reached their highest values at the end of the 16‐month incubation period. Phenoloxidase activity increased rapidly to a maximum after 6 weeks, and then decreased to almost zero by the end of the experiment. The combination of biochemical techniques for measuring extracellular enzyme activities with measurements of mass loss, chemical composition and microbial colonisation provided valuable insights into the decomposition of wood in aquatic environments.  相似文献   

19.
20.
AIMS: To study the effect of zinc on the biodegradation of phenanthrene by the microbial biomass in soil. METHODS AND RESULTS: Uncontaminated soil was amended with zinc and phenanthrene as single or co-contaminants, and microbial metabolic activity was measured using an intracellular dehydrogenase enzyme bioassay over 37 days. Contaminants were amended at optimum, action and double the action level specified in 'The New Dutch List' (Ministry of Housing, Spatial Planning and Environment, the Netherlands, 2000). Microbial activity in soils with zinc or phenanthrene alone indicated the presence of tolerant, albeit inhibited soil micro-organisms. A zinc concentration at the optimum level of 140 mg kg(-1) in the co-contaminated soil (phenanthrene at 40 mg kg(-1)) resulted in marginal stimulation of the rate of phenanthrene biodegradation. However, Zn2+ concentrations at the action and double the action level of zinc (720 and 1440 mg kg(-1)) inhibited phenanthrene degradation. CONCLUSIONS: Biodegradation of phenanthrene in soils co-contaminated with zinc at concentrations above the action value is impeded. SIGNIFICANCE AND IMPACT OF THE STUDY: Bioremediation efforts to remove polycyclic aromatic hydrocarbon in zinc co-contaminated soils are likely to be constrained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号