首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Native acetyl CoA carboxylase was phosphorylated by catalytic subunit of cyclic AMP-dependent protein kinase and ATP-citrate lyase kinase to 1 and 0.5 mol/subunit respectively. Both protein kinases added together increased acetyl CoA carboxylase phosphorylation additively. Partial proteolysis of 32P-acetyl CoA carboxylase followed by electrophoretic analysis showed that the 32P-phosphopeptides generated from acetyl CoA carboxylase phosphorylated with lyase kinase were different from the peptides obtained from the enzyme phosphorylated by cyclic AMP-dependent protein kinase. Mapping of tryptic 32P-phosphopeptides by high performance liquid chromatography showed that the major phosphopeptides phosphorylated by ATP-citrate lyase kinase were different from the major phosphopeptides phosphorylated by cyclic AMP-dependent protein kinase. The results suggest that at least one different site on acetyl CoA carboxylase is preferentially phosphorylated by each protein kinase.  相似文献   

2.
F Irvine  N J Pyne  M D Houslay 《FEBS letters》1986,208(2):455-459
Treatment of intact hepatocytes with the phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) potentiated the ability of glucagon to increase intracellular cyclic AMP concentrations. This effect was dose-dependent upon TPA, exhibiting an EC50 of 0.39 ng/ml and such activation was observed at both saturating and sub-saturating concentrations of glucagon. However, this stimulatory effect of TPA was completely abolished by the presence of the cyclic AMP phosphodiesterase inhibitor 1-isobutyl-3-methylxanthine, when TPA now inhibited the glucagon-stimulated increase in intracellular cyclic AMP concentrations. It is suggested that, as well as inhibiting glucagon-stimulated adenylate cyclase activity, TPA also inhibits cyclic AMP phosphodiesterase activity in intact hepatocytes. Treatment of either hepatocyte homogenates or purified cyclic AMP phosphodiesterase with TPA failed to show any direct inhibitory effect of TPA on activity showing that TPA did not exert any direct inhibitory action on phosphodiesterase activity. However, homogenates made from hepatocytes that had been pre-treated with TPA did show a reduced cyclic AMP phosphodiesterase activity. It is suggested that TPA might inhibit cyclic AMP phosphodiesterase activity through phosphorylation by C-kinase.  相似文献   

3.
1. Protein kinase activities in homogenates of rat islets of Langerhans were studied. 2. On incubation of homogenates with [gamma-32P]ATP, incorporation of 32P into protein occurred: this phosphorylation was neither increased by cyclic AMP nor decreased by the cyclic AMP-dependent protein kinase inhibitor described by Ashby & Walsh [(1972) J. Biol. Chem. 247, 6637--6642]. 3. On incubation of homogenates with [gamma-32P]ATP and histone as exogenous substrate for phosphorylation, incorporation of 32P into protein was stimulated by cyclic AMP (approx. 2.5-fold) and was inhibited by the cyclic AMP-dependent protein kinase inhibitor. In contrast, when casein was used as exogenous substrate, incorporation of 32P into protein was not stimulated by cyclic AMP, nor was it inhibited by the cyclic AMP-dependent protein kinase inhibitor. 4. DEAE-cellulose ion-exchange chromatography resolved four peaks of protein kinase activity. One species was the free catalytic subunit of cyclic AMP-dependent protein kinase, two species corresponded to 'Type I' and 'Type II' cyclic AMP-dependent protein kinase holoenzymes [see Corbin, Keely & Park (1975) J. Biol. Chem. 250, 218--225], and the fourth species was a cyclic AMP-independent protein kinase. 5. Determination of physical and kinetic properties of the protein kinases showed that the properties of the cyclic AMP-dependent activities were similar to those described in other tissues and were clearly distinct from those of the cyclic AMP-independent protein kinase. 6. The cyclic AMP-independent protein kinase had an s20.w of 5.2S, phosphorylated a serine residue(s) in casein and was not inhibited by the cyclic AMP-dependent protein kinase inhibitor. 7. These studies demonstrate the existence in rat islets of Langerhans of multiple forms of cyclic AMP-dependent protein kinase and also the presence of a cyclic AMP-independent protein kinase distinct from the free catalytic subunit of cyclic AMP-dependent protein kinase. The presence of the cyclic AMP-independent protein kinase may account for the observed characteristics of 32P incorporation into endogenous protein in homogenates of rat islets.  相似文献   

4.
The hormonal regulation of L-type pyruvate kinase in hepatocytes from phosphorylase b kinase-deficient (gsd/gsd) rats was investigated. Adrenaline (10 microM) and glucagon (10 nM) each led to an inactivation and phosphorylation of pyruvate kinase. Dose-response curves for adrenaline-mediated inactivation of pyruvate kinase, phosphorylation of pyruvate kinase and the stimulation of gluconeogenesis from 1.8 mM-lactate were similar for hepatocytes from control and gsd/gsd rats. Time-course studies indicated that adrenaline-mediated inactivation and phosphorylation of pyruvate kinase proceeded more slowly in phosphorylase kinase-deficient hepatocytes than in control hepatocytes. The age-dependent change in the adrenergic control of pyruvate kinase was similar between control and phosphorylase kinase-deficient hepatocytes. Adrenaline, glucagon and noradrenaline activated the cyclic AMP-dependent protein kinase and inhibited pyruvate kinase in phosphorylase kinase-deficient hepatocytes. Vasopressin (0.2-2 nM), angiotensin (10nM) and A23187 (10 microM) had no effect on the activity ratio of the cyclic AMP-dependent protein kinase or pyruvate kinase in these cells. It is concluded that phosphorylase kinase plays no significant role in the hormonal control of pyruvate kinase and that phosphorylation and inactivation of this enzyme results predominantly from the action of the cyclic AMP-dependent protein kinase.  相似文献   

5.
Hepatic ATP-citrate lyase prepared with a fluoride-free step to allow endogenous phosphatases to dephosphorylate the enzyme was phosphorylated in vitro by the catalytic subunit of cyclic AMP-dependent protein kinase and [γ-32P]ATP. After electrophoresis the radioactive phosphate was located predominantly in the gel slice containing the Coomassie blue stained protein corresponding to ATP-citrate lyase. The Stoichiometry of phosphorylation of hepatic ATP-citrate lyase in vitro by the catalytic subunit was such that 0.53 ± 0.02 molecules of phosphate were incorporated per subunit. The degree of phosphorylation was independent of the amount of ATP-citrate lyase present as substrate in the concentration range 1.2–6.4 μm. In the absence of catalytic subunit there was very little labeled phosphate incorporated into ATP-citrate lyase. Phosphorylation of ATP-citrate lyase by catalytic subunit was abolished by the specific protein inhibitor of cyclic AMP-dependent protein kinase. When ATP-citrate lyase was subjected to electrophoresis under nondenaturing conditions, lyase activity was recovered from the gel slice corresponding to the Coomassie blue staining phosphoprotein of a stained gel run in parallel.  相似文献   

6.
1. The administration of insulin to anaesthetized rabbits caused the inactivation of liver phosphorylase and phosphorylase kinase, but did not change either the hepatic concentration of cyclic AMP or the activity of cyclic AMP-dependent histone kinase. All measured parameters were increased by the subsequent administration of glucagon. 2. Activation of glycogen synthase by insulin was only observed when phosphorylase had been strongly inactivated.  相似文献   

7.
The phosphorylation of keratin polypeptides was examined in calf snout epidermis. When slices of epidermis were incubated in the medium containing 32Pi, the radioactivity was incorporated into several proteins. The predominant phosphorylated proteins migrated in SDS-polyacrylamide gels with apparent molecular weights between 49000 and 69000 and coincided with keratin polypeptides. The extent of keratin phosphorylation was not altered in the presence of dibutyryl cyclic AMP or reagents which elevate intracellular cyclic AMP. When homogenates of epidermis were incubated with [gamma-32P]ATP, keratin polypeptides were the predominant species phosphorylated as was also observed in epidermal slices. The presence of cyclic AMP or heat-stable inhibitor of cyclic AMP-dependent protein kinase in the reaction mixture did not affect the phosphorylation of keratin polypeptides, although the phosphorylation of exogenously-added histone was stimulated and inhibited, respectively, by these additions. Keratin polypeptides extracted from calf snout epidermis by 8 M urea were phosphorylated by incubation with [gamma-32P]ATP and cyclic AMP-dependent protein kinase from calf snout epidermis or bovine heart. No proteins were phosphorylated without the addition of the enzymes. The presence of cyclic AMP in the reaction mixture stimulated the keratin phosphorylation, and further addition of heat-stable protein kinase inhibitor reduced this stimulation.  相似文献   

8.
32P-labeled ATP-citrate lyase isolated from 32P-labeled hepatocytes treated with insulin contained 1.6-1.8-fold greater 32P-radioactivity per mg protein than control enzyme. Both enzyme preparations were digested in parallel with trypsin until 94% of all 32P-radioactivity was rendered acid soluble. Quantitative high performance liquid chromatographic peptide mapping of the tryptic digests revealed a principal 32P-peptide which accounted for at least 80% of the insulin induced increment in 32P-radioactivity of native lyase. This peptide was purified, sequenced, and the site of 32P-phosphorylation assigned by two methods: electrophoresis (pH 6.5) of residual peptide after each step of Edman degradation and solid phase sequencing. The site of insulin-directed phosphorylation of ATP-citrate lyase (Thr-Ala-Ser(32P)-Phe-Ser-Glu-Ser-Arg) is the same as that directed by glucagon, and, in turn, identical with that phosphorylated by the cAMP-dependent protein kinase in vitro.  相似文献   

9.
Two cyclic AMP-independent protein kinases (ATP: protein phosphotransferase, EC 2.7.1.37) (casein kinase 1 and 2) have been purified from rat liver cytosol by a method involving chromatography on phosphocellulose and casein-Sepharose 4B. Both kinases were essentially free of endogeneous protein substrates and capable of phosphorylating casein, phosvitin and I-form glycogen synthase, but were inactive on histone IIA, protamine and phosphorylase b. They were neither stimulated by cyclic AMP, Ca2+ and calmodulin, nor inhibited by the cyclic AMP-dependent protein kinase inhibitor protein. The casein and glycogen synthase kinase activities of each enzyme decreased at the same rate when incubated at 50 degrees C. Casein kinase 1 and casein kinase 2 showed differences in molecular weight, sensitivity to KCl, Km for casein and phosvitin and Ka for Mg2+, whereas their Km values for ATP and I-form glycogen synthase were similar. The phosphorylation of glycogen synthase by these kinases correlated with a decrease in the +/- glucose 6-phosphate activity ratio (independence ratio). However, casein kinase 1 catalyzed the incorporation of about 3.6 mol of 32P/85000 dalton subunit, decreasing the independence ratio from 83 to about 15, whereas the phosphorylation achieved by casein kinase 2 was only about 1.9 mol of 32P/850000 dalton subunit, decreasing the independence ratio to about 23. The independence ratio decrease was prevented by the presence of casein but was unaffected by phosphorylase b. These data indicate that casein/glycogen synthase kinases 1 and 2 are different from cyclic AMP-dependent protein kinase and phosphorylase kinase.  相似文献   

10.
Angiotensin II, catecholamines, and vasopressin are thought to stimulate hepatic glycogenolysis and gluconeogenesis via a cyclic AMP-independent mechanism that requires calcium ion. The present study explores the possibility that angiotensin II and vasopressin control the activity of regulatory enzymes in carbohydrate metabolism through Ca2+-dependent changes in their state of phosphorylation. Intact hepatocytes labeled with [32P]PO43- were stimulated with angiotensin II, glucagon, or vasopressin and 30 to 33 phosphorylated proteins resolved from the cytoplasmic fraction of the cell by electrophoresis in sodium dodecyl sulfate polyacrylamide slab gels. Treatment of the cells with angiotensin II or vasopressin increased the phosphorylation of 10 to 12 of these cytosolic proteins without causing measurable changes in cyclic AMP-dependent protein kinase activity. Glucagon stimulated the phosphorylation of the same set of 11 to 12 proteins through a marked increase in cyclic AMP-dependent protein kinase activity. The molecular weights of three of the protein bands whose phosphorylation was increased by these hormones correspond to the subunit molecular weights of phosphorylase (Mr = 93,000), glycogen synthase (Mr = 85,000), and pyruvate kinase (Mr = 61,000). Two of these phosphoprotein bands were positively identified as phosphorylase and pyruvate kinase by affinity chromatography and immunoprecipitation, respectively. Incubation of hepatocytes in a Ca2+-free medium completely abolished the effects of angiotensin II and vasopressin on protein phosphorylation but did not alter those of glucagon. Treatment of hepatocytes with angiotensin II, glucagon, or vasopressin stimulated phosphorylase activity by 250 to 260%, inhibited glycogen synthase activity by 50%, and inhibited pyruvate kinase activity by 30 to 35% (peptides) to 70% (glucagon). The effects of angiotensin II and vasopressin on the activity of all three enzymes were completely abolished if the cells were incubated in a Ca2+-free medium while those of glucagon were not altered. The results imply that angiotensin II, catecholamines, and vasopressin control hepatic carbohydrate metabolism through a Ca2+-requiring, cyclic AMP-independent pathway that leads to the phosphorylation of important regulatory enzymes.  相似文献   

11.
In rat hepatocytes, vanadate modifies neither the intracellular concentration of cyclic AMP nor the --cyclic AMP/+cyclic AMP activity ratio for cyclic AMP-dependent protein kinase. Vanadate can, however, counteract the increase in cyclic AMP and the increase in the --cyclic AMP/+cyclic AMP activity ratio of cyclic AMP-dependent protein kinase induced by glucagon. On the other hand, vanadate treatment of hepatocytes can produce a time- and concentration-dependent increase in cyclic AMP- and Ca2+-independent casein kinase activity. Maximal activation at the optimal time with 5 mM-vanadate was about 70% over control. A clear relationship was observed between the activation of casein kinase and the inactivation of glycogen synthase after vanadate treatment. These results suggest that casein kinase activity may be involved in vanadate actions in rat hepatocytes.  相似文献   

12.
Guanosine 3',5'-monophosphate-dependent protein kinase (cyclic GMP-dependent protein kinase) and adenosine 3',5'-monophosphate-dependent protein kinase (cyclic AMP-dependent protein kinase) exhibited a high degree of cyclic nucleotide specificity when hormone-sensitive triacylglycerol lipase, phosphorylase kinase, and cardiac troponin were used as substrates. The concentration of cyclic GMP required to activate half-maximally cyclic dependent protein kinase was 1000- to 100-fold less than that of cyclic AMP with these substrates. The opposite was true with cyclic AMP-dependent protein kinase where 1000- to 100-fold less cyclic AMP than cyclic GMP was required for half-maximal enzyme activation. This contrasts with the lower degree of cyclic nucleotide specificity of cyclic GMP-dependent protein kinase of 25-fold when histone H2b was used as a substrate for phosphorylation. Cyclic IMP resembled cyclic AMP in effectiveness in stimulating cyclic GMP-dependent protein kinase but was intermediate between cyclic AMP and cyclic GMP in stimulating cyclic AMP-dependent protein kinase. The effect of cyclic IMP on cyclic GMP-dependent protein kinase was confirmed in studies of autophosphorylation of cyclic GMP-dependent protein kinase where both cyclic AMP and cyclic IMP enhanced autophosphorylation. The high degree of cyclic nucleotide specificity observed suggests that cyclic AMP and cyclic GMP activate only their specific kinase and that crossover to the opposite kinase is unlikely to occur at reported cellular concentrations of cyclic nucleotides.  相似文献   

13.
Guanosine 3′,5′-monophosphate-dependent protein kinase (cyclic GMP-dependent protein kinase) and adenosine 3′,5′-monophosphate-dependent protein kinase (cyclic AMP-dependent protein kinase) exhibited a high degree of cyclic nucleotide specificity when hormone-sensitive triacylglycerol lipase, phosphorylase kinase, and cardiac troponin were used as substrates. The concentration of cyclic GMP required to activate half-maximally cyclic dependent protein kinase was 1000- to 100-folds less than that of cylic AMP with these substrates. The opposite was true with cyclic AMP-dependent protein kinase where 1000- to 100-fold less cyclic GMP was required for half-maximal enzyme activation. This contrasts with the lower degree of cyclic nucleotide specificity of cyclic GMP-dependent protein kinase of 25-fold when histone H2b was used as a substrate for phosphorylation. Cyclic IMP resembled cyclic AMP in effectiveness in stimulating cyclic GMP-dependent protein kinase but was intermediate between cyclic AMP and cyclic GMP in stimulating cyclic. AMP-dependent protein kinase. The effect of cyclic IMP on cyclic GMP-dependent protein kinase was confirmed in studies of autophosphorylation of cyclic GMP-dependent protein kinase where both cyclic AMP and cyclic IMP enhanced autophophorylation. The high degree of cyclic nucleotide specificity observed suggests that cyclic AMP and cyclic GMP activate only their specific kinase and that crossover to the opposite kinase is unlikely to occur at reported cellular concentrations of cyclic nucleotides.  相似文献   

14.
The phosphorylation of keratin polypeptides was examined in calf snout epidermis. When slices of epidermis were incubated in the medium containing 32Pi, the radioactivity was incorporated into several proteins. The predominant phosphorylated proteins migrated in SDS-polyacrylamide gels with apparent molecular weight between 49000 and 69000 and coincided with keratin polypeptides. The extent of keratin phosphorylation was not altered in the presence of dibutyryl cyclic AMP or reagents which elevate intracellular cyclic AMP. When homogenates of epidermis were incubated with [γ-32P]ATP, keratin polypeptides were the predominant species phosphorylated as was also observed in epidermal slices. The presence of cyclic AMP or heat-stable inhibitor of cyclic AMP-dependent protein kinase in the reaction mixture did not affect the phosphorylation of keratin polypeptides, although the phosphorylation of exogenously-added histone was stimulated and inhibited, respectively, by these additions. Keratin polypeptides extracted from calf snout epidermis by 8 M urea were phosphorylated by incubation with [γ-32P]ATP and cyclic AMP-dependent protein kinase form calf snout epidermis or bovine heart. No proteins were phosphorylated without the addition of the enzymes. The presence of cyclic AMP in the reaction mixture stimulated the keratin phosphorylation, and further addition of heat-stable protein kinase inhibitor reduced this stimulation.  相似文献   

15.
1. A factor which modulates the activity of cyclic AMP-dependent protein kinase copurifies from rat adipocytes with an inhibitor of adenylate cyclase. Purification and stability studies suggest that both effects reside in a single factor previously referred to as a feedback regulator. 2. The magnitude and direction of the feedback regulator effect on cyclic AMP-dependent protein kinase activity was dependent on the concentration of feedback regulator and the concentration and type of protein substrate. Using histone type IIA as substrate, feedback regulator was inhibitory at low histone concentrations and stimulatory at high concentrations. Preincubation of protein kinase with feedback regulator resulted in inhibition at all histone concentrations. With some protein substrates, e.g. histone f2b and casein, inhibition was observed at all histone concentrations. 3. The stimulation of histone type IIA phosphorylation resulted from an increased V with no effect on either the apparent Ka for cyclic AMP or the Km for ATP. Time course studies suggest that feedback regulator increased the rate of phosphorylation without increasing the total number of phosphorylation sites. Increased histone phosphorylation was observed regardless of whether the cyclic AMP-dependent protein kinase was peak I or peak II (off Deae-cellulose), isolated from bovine or rabbit skeletal muscle or rat heart. A small stimulation was observed using cyclic GMP-dependent protein kinase. 4. These results indicate that feedback regulator can inhibit or stimulate protein kinase, an effect which is probably substrate directed, and depends on the reaction conditions. Whether feedback regulator modulated protein phosphorylation in vivo in addition to its inhibition of adenylate cyclase is unknown. However, stimulation of protein kinase activity in the presence of cyclic AMP is a valuable and rapid assay for monitoring feedback regulator fractions during purification procedures.  相似文献   

16.
A phospho-oligosaccharide which is the polar head group of a novel insulin-sensitive glycophospholipid has recently been involved in insulin action. We have investigated the insulin-like effects of this phospho-oligosaccharide on both glycogen phosphorylase a and pyruvate kinase activities of hepatocytes incubated in the presence of glucagon (0.1 nM). Similarly to insulin, the phospho-oligosaccharide antagonized glucagon-dependent activation of glycogen phosphorylase, as well as the inactivation of pyruvate kinase caused by this hormone. The antagonistic action of the phospho-oligosaccharide on glucagon effects was dose-dependent. Furthermore, it partially antagonized glucagon-stimulated cyclic AMP levels. These results support the hypothesis that this phospho-oligosaccharide mediates at least some insulin actions in hepatocytes.  相似文献   

17.
The effects of hormonal status on protein kinase activity was examined in homogenates of rat liver. Protein kinase activity was evaluated from incorporation of 32P from [gamma-32P]ATP into protamine or histone as receptor substrates. Protamine phosphorylation in the presence or absence of cyclic AMP exceeded histone phosphorylation by at least a factor or two. Hypophysectomy markedly increased protamine phosphorylation in the presence or absence of saturating amounts of cyclic AMP. In contrast, hypophysectomy only slightly increased cyclic AMP independent phosphorylation of histone. These results could not be amounted for by differences in ATPase or protein phosphase activities. Cortisone (2 mg/day x 3) decreased total protein kinase activity in livers of hypophysectomized rats when protamine was substrate, but had no effect on the total activity toward histone. Growth hormone (100 mug/day x 3) significantly increased histone, but not protamine phosphorylation in livers of hypophysectomized rats. Administration of 5 mug of triiodothyonine/day to hypophysectomized rats also markedly increased the phosphorylation of histone, but not protamine when saturating amounts of cyclic AMP were present. These results support the hypothesis that liver may contain more than one type of protein kinase activity and that the different protein kinase activities can be separately affected by hormones. Such control distal to cyclic AMP might allow selective modulation of cyclic AMP-dependent processes in cells which carry out more than one such process.  相似文献   

18.
Conditions influencing the cyclic AMP-dependence of protein kinase (ATP-protein phosphotransferase, EC 2.7.1.37) during the phosphorylation of histone were studied. Protein kinase from mouse liver cytosol and the two isoenzymes [PK (protein kinase) I and PK II] isolated from the cytosol by DEAE-cellulose chromatography were tested. A relation between concentration of enzyme and cyclic AMP-dependence was observed for both isoenzymes. Moderate dilution of isoenzyme PK II decreased the stimulation of the enzyme by cyclic AMP. Isoenzyme PK I could be diluted 200 times more than isoenzyme PK II before the same decrease in cyclic AMP-dependence appeared. Long-term incubation with high concentrations of histone increased the activity in the absence of cyclic AMP relative to the activity in the presence of the nucleotide. This was more pronounced for isoenzyme PK II than for isoenzyme PK I. The cyclic AMP concentration needed to give half-maximal binding of the nucleotide was the same as the cyclic AMP concentration (Ka) at which the protein kinase had 50% of its maximal activity. The close correlation between binding and activation is also found in the presence of KCl, which increased the apparent activation constant (Ka) for cyclic AMP. With increasing [KCl], a progressively higher proportion of the histone phosphorylation observed in cytosol was due to cyclic AMP-independent (casein) kinases, leading to an overestimation of the degree of activation of the cyclic AMP-dependent protein kinases present. The relative contributions of cyclic AMP-dependent and -independent kinases to histone phosphorylation at different ionic strengths was determined by use of heat-stable inhibitor and phospho-cellulose chromatography.  相似文献   

19.
Differences in the cyclic AMP-dependent plasma membrane phosphorylation system of undifferentiated and differentiated L6 myogenic cells have been detected. Endogenous plasma membrane protein phosphorylation in undifferentiated L6 myoblasts was stimulated more than three fold by 5 x 10(-5) M cyclic AMP, whereas no statistically significant cyclic AMP-dependent phosphorylation of endogenous plasma membrane proteins was observed in differentiated L6 cells. In undifferentiated cells cyclic AMP promoted the phosphorylation of several proteins, the most prominent of which had a molecular weight of 110,000. In differentiated cells cyclic AMP did not selectively promote the phosphorylation of specific plasma membrane proteins. Both differentiated and undifferentiated L6 cells, however, contain a cyclic AMP-dependent protein kinase capable of catalyzing the phosphorylation of exogenous substrates, such as histone f2b. Therefore, the data show that differentiation in L6 cells is associated with a selective change in the activity of a plasma membrane cyclic AMP-dependent protein kinase which employs endogenous membrane proteins as substrate.  相似文献   

20.
DEAE-cellulose chromatography of the 20,000g supernatant fraction of homogenates of C-1300 murine neuroblastoma (clone N2a) yields one major and two minor peaks of cyclic AMP-dependent protein kinase activity. Assessment of the endogenous activation state of the enzyme(s) reveals that the enzyme is fully activated by the treatment of whole cells with adenosine (10 μM) in the presence of the phosphodiesterase inhibitor Ro 20 1724 (0.7 mM). This treatment produces a large elevation in the cyclic AMP content of the cells. The treatment of whole cells with adenosine alone (1–100 μM) or Ro 20 1724 alone (0.1–0.7 mM) produces minimal elevations in cyclic AMP but nevertheless causes significant activations of cyclic AMP-dependent protein kinase. The autophosphorylation of whole homogenates of treated and untreated cells was studied using [γ-32P] ATP, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Treatments which activate cyclic AMP-dependent protein kinase selectively stimulate the incorporation of 32P into several proteins. This stimulation is most prominent in the 15,000-dalton protein band. The addition of cyclic AMP to phosphorylation reactions containing homogenate of untreated cells stimulates the phosphorylation of the same protein bands. These results indicate that adenosine may have regulatory functions through its effect on the cyclic AMP: cyclic AMP-dependent protein kinase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号