首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heat shock factor 1 (HSF1) is the central actor of the response to hyperthermia in eukaryotic cells. In mammals, male germ cells are an exception among all cellular populations for their HSF1 activation occurs at low temperature. This feature was believed to be specific of homeotherms whose testicular compartment is located outside the main body cavity, where temperature is lower. In the present study, we show that in the poikilotherm rainbow trout, the maximal heat shock response of male germ cells, that are located in the same body compartment than the other organs, occurs also at a significantly lower temperature (22 degrees C) than for somatic cells (28 degrees C), regardless of culture conditions before heat shock. In addition, the acquisition of the HSE-binding activity of HSF1 upon heat shock is not associated with the classical hsp70 mRNA accumulation. Taken together, these results strongly suggest the existence of a particular mode of heat shock response that could be specific of male germ cells but not restricted to homeotherms.  相似文献   

2.
Soybean seedlings when exposed to a heat shock respond in a manner very similar to that exhibited by cultured cells, and reported earlier [2]. Maximum synthesis of heat shock proteins (HSPs) occurs at 40C. The heat shock response is maintained for a relatively short time under continuous high temperature. After 2.5 hr at 40 C the synthesis of HSPs decreases reaching a very low level by 6 hr. The HSPs synthesized by cultured cells and seedlings are identical and there is a large degree of similarity in HSPs synthesized between the taxonomically widely separated species, soybean and corn. Storage protein synthesis in the developing soybean embryo is not inhibited but is actually stimulated during a heat shock, unlike most other non-HSPs, whose synthesis is greatly reduced. Seedlings respond differently to a gradual increase in temperature than they do a sudden heat shock. There is an upward shift of several degrees in the temperature at which maximum protein synthesis occurs and before it begins to be inhibited. In addition, there appears to be a protection of normal protein synthesis from heat shock inhibition when the temperature increase is gradual. An additional function of the heat shock phenomenon might be the protection of seedlings from death caused by extreme heat stress. The heat shock response appears to have relevance to plants in the field.  相似文献   

3.
Yeast cells respond to a variety of environmental stresses, including heat shock and growth limitation. There is considerable overlap in these responses both from the point of view of gene expression patterns and cross-protection for survival. We performed experiments in which cells growing at different steady-state growth rates in chemostats were subjected to a short heat pulse. Gene expression patterns allowed us to partition genes whose expression responds to heat shock into subsets of genes that also respond to slow growth rate and those that do not. We found also that the degree of induction and repression of genes that respond to stress is generally weaker in respiratory deficient mutants, suggesting a role for increased respiratory activity in the apparent stress response to slow growth. Consistent with our gene expression results in wild-type cells, we found that cells growing more slowly are cross-protected for heat shock, i.e., better able to survive a lethal heat challenge. Surprisingly, however, we found no difference in cross-protection between respiratory-deficient and wild-type cells, suggesting induction of heat resistance at low growth rates is independent of respiratory activity, even though many of the changes in gene expression are not.  相似文献   

4.
Mammalian cells coexpress a family of heat shock factors (HSFs) whose activities are regulated by diverse stress conditions to coordinate the inducible expression of heat shock genes. Distinct from HSF1, which is expressed ubiquitously and activated by heat shock and other stresses that result in the appearance of nonnative proteins, the stress signal for HSF2 has not been identified. HSF2 activity has been associated with development and differentiation, and the activation properties of HSF2 have been characterized in hemin-treated human K562 erythroleukemia cells. Here, we demonstrate that a stress signal for HSF2 activation occurs when the ubiquitin-proteasome pathway is inhibited. HSF2 DNA-binding activity is induced upon exposure of mammalian cells to the proteasome inhibitors hemin, MG132, and lactacystin, and in the mouse ts85 cell line, which carries a temperature sensitivity mutation in the ubiquitin-activating enzyme (E1) upon shift to the nonpermissive temperature. HSF2 is labile, and its activation requires both continued protein synthesis and reduced degradation. The downstream effect of HSF2 activation by proteasome inhibitors is the induction of the same set of heat shock genes that are induced during heat shock by HSF1, thus revealing that HSF2 affords the cell with a novel heat shock gene-regulatory mechanism to respond to changes in the protein-degradative machinery.  相似文献   

5.
Several studies have demonstrated that the activity of system A is upregulated by insulin, osmotic shock and amino acid deprivation. However, the mechanisms are not clear. We carried out studies using L6 rat skeletal muscle cells to clarify the mechanisms of upregulation of system A activity by insulin, osmotic shock and amino acid deprivation. The upregulation was found to be due to an increase in V max, not K m. Chloroquine and wortmannin inhibited the upregulation induced by insulin stimulation and amino acid deprivation but not that induced by osmotic shock. On the other hand, cycloheximide and actinomycin D inhibited the upregulation by each stimulation. Moreover, PD98059 and SP600125 inhibited only amino acid deprivation-induced upregulation and SB202190 inhibited only insulin-induced upregulation. Our findings indicate that the mechanisms of upregulation of system A activity by insulin, osmotic shock and amino acid deprivation are different in L6 cells. Western blot and RT-PCR analysis showed an increase in system A at the protein and mRNA levels with each stimulation.  相似文献   

6.
7.
OBSERVATIONS ON THE ACID PHOSPHATASES OF EUGLENA GRACILIS   总被引:6,自引:3,他引:3       下载免费PDF全文
When a bleached strain of Euglena is maintained in a medium containing very low con centrations of phosphate, the acid phosphatase activity increases. The increase in acid phosphatase activity is prevented by Actinomycin D and by p-fluorophenylalanine (PFA), indicating that the increased activity is due to de novo synthesis of acid phosphatase. When phosphate is replenished, the acid phosphatase activity decreases to the level characteristic of uninduced cells before there is any appreciable cell division. When cell division resumes in the presence of PFA, the level of acid phosphatase activity remains approximately constant. This indicates that there are two different phosphatases: a constitutive enzyme, whose synthesis is insensitive to the presence of PFA, and an induced enzyme, whose synthesis is sensitive to PFA. These enzymes are not equally sensitive to changes in pH and in fluoride concentration, thus permitting them to be assayed individually in whole toluene-treated cells. Induced cells also acquire the ability to remove phosphate from the medium very rapidly.  相似文献   

8.
Quercetin is a very common flavonoid widely distributed in many plants. The flavonoid intake has been linked to the prevention of some human diseases including cancer. Quercetin inhibits heat shock protein expression and in this way triggers apoptosis of tumor cells. The present study was designed to investigate whether quercetin exerts cytotoxic activity against human colon adenocarcinoma cells. The studies have shown that quercetin alone and in combination with the heat shock can induce apoptosis and necrosis in vitro in human colon adenocarcinoma cells (LS 180). Relationships between heat shock proteins and quercetin in this phenomenon are discussed.  相似文献   

9.
10.
Small heat shock proteins (sHsps) show a very rapid stress- and mitogen-dependent phosphorylation by MAPKAP kinase 2. Based on this observation, phosphorylation of sHsps was thought to play a key role in mediating thermoresistance immediately after heat shock, before the increased synthesis of heat shock proteins becomes relevant. We have analysed the phosphorylation dependence of the chaperone and thermoresistance-mediating properties of the small heat shock protein Hsp25. Surprisingly, overexpression of Hsp25 mutants, which are not phosphorylated in the transfected cells, confers the same thermoresistant phenotype as overexpression of wild type Hsp25, which is either mono- or bis-phosphorylated at serine residues 15 and 86 within the cells. Furthermore, in vitro phosphorylated Hsp25 shows the same oligomerization properties and the same chaperone activity as the nonphosphorylated protein. No differences between phosphorylated and nonphosphorylated Hsp25 are detected in preventing thermal aggregation of unfolding proteins and assisting refolding of denatured proteins. The results suggest that chaperone properties of the small heat shock proteins contribute to the increased cellular thermoresistance in a phosphorylation-independent manner.  相似文献   

11.
The human oesophageal epithelium is subject to damage from thermal stresses and low extracellular pH that can play a role in the cancer progression sequence, thus identifying a physiological model system that can be used to determine how stress responses control carcinogenesis. The classic heat shock protein HSP70 is not induced but rather is down-regulated after thermal injury to squamous epithelium ex vivo; this prompted a longer-term study to address the nature of the heat shock response in this cell type. An ex vivo epithelial culture system was subsequently used to identify three major proteins of 78, 70, and 58 kDa, whose steady-state levels are elevated after heat shock. Two of the three heat shock proteins were identified by mass spectrometric sequencing to be the calcium-calmodulin homologue transglutaminase-3 (78 kDa) and a recently cloned oesophageal-specific gene called C1orf10, which encodes a 53-kDa putative calcium binding protein we have named squamous epithelial heat shock protein 53 (SEP53). The 70-kDa heat shock protein (we have named SEP70) was not identifiable by mass spectrometry, but it was purified and studied immunochemically to demonstrate that it is distinct from HSP70 protein. Monoclonal antibodies to SEP70 protein were developed to indicate that: (a) SEP70 is induced by exposure of cultured cells to low pH or glucose starvation, under conditions where HSP70 protein was strikingly down-regulated; and (b) SEP70 protein exhibits variable expression in preneoplastic Barrett's epithelium under conditions where HSP70 protein is not expressed. These results indicate that human oesophageal squamous epithelium exhibits an atypical heat shock protein response, presumably due to the evolutionary adaptation of cells within this organ to survive in an unusual microenvironment exposed to chemical, thermal and acid reflux stresses.  相似文献   

12.
13.
The cells of Pseudomonas aeruginosa showed high activity for leucine transport in the absence of Na+, giving a Km value of 0.34 microM. In the presence of Na+, however, two Km values, 0.37 microM (LIV-I system) and 7.6 microM (LIV-II system), were obtained. The former system seemed to serve not only for the entry of leucine, isoleucine, and valine, but also for that of alanine and threonine, although less effectively. However, the LIV-II system served for the entry of branched-chain amino acids only. The LIV-II system alone was operative in membrane vesicles, for the transport of branched-chain amino acids in membrane vesicles required Na+ and gave single Km values for the respective amino acids. When cells were osmotically shocked, the activity of the LIV-I system decreased, whereas the LIV-II system remained unaffected. The shock fluid from P. aeruginosa cells showed leucine-binding activity with a dissociation constant of 0.25 microM. The specificity of the activity was very similar to that of the LIV-I system. These results suggest that a leucine-binding protein(s) in the periplasmic space may be required for the transport process via the LIV-I system of P. aeruginosa.  相似文献   

14.
Recent studies suggest that sodium arsenite downregulates NF-kappaB activity by inhibiting phosphorylation and subsequent degradation of IkappaBalpha. Many effects of sodium arsenite are secondary to induction of heat shock proteins. The role of the heat shock response in arsenite-induced inhibition of NF-kappaB, however, is not known. We examined the involvement of the heat shock response in arsenite-induced inhibition of NF-kappaB activity in IL-1beta-stimulated Caco-2 cells, a human colorectal adenocarcinoma cell line with enterocytic properties. Treatment of the cells with IL-1beta resulted in increased IkappaB kinase activity, reduced levels of IkappaBalpha and increased NF-kappaB DNA binding activity. Sodium arsenite blocked all of these responses to IL-1beta without inducing changes in heat shock factor activity or heat shock protein levels. Results from additional experiments showed that the protective effect of sodium arsenite on IkappaBalpha was not influenced by the oxygen radical scavenger catalase or by inhibitors of the MAP-kinase signaling pathway. The present results suggest that sodium arsenite stabilizes IkappaBalpha and prevents NF-kappaB activation in IL-1beta-stimulated Caco-2 cells independent of the heat shock response. In addition, stabilization of IkappaBalpha by sodium arsenite does not require oxygen radical formation or activation of the MAP kinase signaling pathway.  相似文献   

15.
Summary We have introduced hsp-cat plasmid DNA intoSpodoptera frugiperda (Lepidoptera: Noctuidae) cells by transfection with purified DNA (1 to 48 μg/ml) mixed with the polycation polybrene (100 μg/ml) in serum-free Grace's medium. The hsp-cat construct contains a gene coding for the bacterial enzyme chloramphenicol acetyltransferase (CAT), whose expression is controlled by a promoter derived from aDrosophila heat shock protein (hsp) gene. Expression of CAT activity in transfectedSpodoptera cells was induced by a 2-h heat shock at 43°C. The temperature of the heat shock was based on conditions that maximized the expression of endogenous heat shock protein genes in these cells. CAT activity was maximal in cells that were exposed to the heat shock 2 d after transfection; by 4 d, activity was diminished, and little activity was detectable after 6 d. Transfection frequencies, which varied with DNA concentration and ranged as high as 6000 per million cells, were determined using a histochemical staining procedure. This work was supported by grant 88-37263-4020 from the United States Department of Agriculture, Washington, DC, and by the University of Minnesota Experiment Station. This is contribution 17,543 from the University of Minnesota Experiment Station, St. Paul, MN.  相似文献   

16.
17.
The localization of phosphoglucose isomerase (PGI) was studied in relation to the induction of hexose phosphate uptake in Escherichia coli. The uptake system is induced only by extracellular glucose-6-phosphate (G6P); there is no induction by intracellular G6P. Fructose-6-phosphate (F6P) is an indirect inducer, and isomerization of F6P to G6P must occur before induction. PGI has been considered to be an internal enzyme; therefore, uptake of F6P by noninduced cells and leakage of the G6P formed would be required for induction. In this study, it was concluded that part of the PGI activity is located in the cell surface because: (i) uninduced, intact cells are able to convert F6P to G6P, whereas the activity of G6P dehydrogenase is not detectable; (ii) when cells are subjected to osmotic shock, about 10% of the PGI activity is found in the shock fluid; and (iii) sorbitol-6-phosphate (S6P) inhibits both PGI activity of whole cells and the induction of hexose phosphate transport system by F6P. S6P was not taken by intact cells. The data indicate that the isomerization of F6P to G6P can take place on the cell surface, and this explains the indirect induction of hexose phosphate transport by F6P.  相似文献   

18.
We have developed an in vitro translation system from heat-shocked and normal Drosophila cultured cells. The lysates retain regulation of translation typical of the whole cells from which they were prepared, both when programmed by endogenous mRNA and when RNA-dependent. These systems have been used to investigate the mechanism of shutdown of normal protein synthesis and selection of heat shock mRNAs for translation in heat shock in Drosophila. Supplementation of intact RNA-dependent lysates with separated ribosome or supernatant fractions from normal or heat-shocked translation systems showed the normal supernatant fraction could "rescue" normal protein synthesis in a heat shock lysate. Normal ribosomes had no rescuing activity and neither heat shock fraction affected translation in normal lysates. Reconstitution of the system from separated ribosomes and supernatant in normal and mixed combinations showed heat shock and normal ribosomes were both competent to support normal protein synthesis with normal supernatant. Heat shock supernatant did not support normal protein synthesis with ribosomes from either source. We conclude that the factors regulating translation in heat-shocked Drosophila cells are soluble factors in the lysate and that the soluble factors present in the normal lysate are dominant.  相似文献   

19.
Heat shock proteins are essential for the survival of all cells. The C-terminal EEVD motif of Hsp70 has previously been implicated in binding 15-deoxyspergualin (DSG), an immunosuppressant with antimalarial activity whose mechanism of action is uncertain. We report the cloning, overexpression, and characterization of three members of the heat shock family, PfHsp70-1 (an Hsp70 protein with a C-terminal EEVD motif), PfHsp70-2 (an Hsp70 protein without the EEVD motif), and PfHsp70 interacting protein. The chaperone activity of PfHsp70-1, and PfHsp70-2 was enhanced by ATP and by PfHip. Interestingly, while binding of protein substrates to PfHsp70-1, PfHsp70-2 and PfHip was unaffected in the presence of DSG, the ATP enhanced chaperone activity of PfHsp70-1 but not PfHsp70-2 was stimulated further by DSG. Our finding suggests that the binding partner of DSG in the parasite cellular milieu is PfHsp70-1 and paves the way for the elucidation of the mechanism of antimalarial action of DSG.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号