首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human cells that appear capable of metabolizing various classes of carcinogens have been identified using one of two methods: metabolism of tritiated benzo(a)pyrene to aqueous-acetone soluble forms or inhibition of cellular DNA synthesis. Each of the assay systems was optimized and the results on 15 human epithelial cell lines were compared. One or more cell lines were found to activate each of four classes of carcinogens examined: polycyclic hydrocarbons, aromatic amines, heterocyclic hydrocarbons, and nitrosamines. Cells that appeared capable of metabolizing polycyclic hydrocarbons or aromatic amines by these methods were also found to produce metabolites which were cytotoxic to cocultivated human xeroderma pigmentosum fibroblasts after a 48-hr exposure to the carcinogen.  相似文献   

2.
The objective of this study was to determine the ability of the alkaline in vivo Comet assay (pH>13) to distinguish genotoxic carcinogens from epigenetic carcinogens when performed on freshly isolated kidney cells and to determine the possible interference of cytotoxicity by assessing DNA damage induced by renal genotoxic, epigenetic or toxic compounds after enzymatic isolation of kidney cells from OFA Sprague-Dawley male rats. The ability of the Comet assay to distinguish (1) genotoxicity versus cytotoxicity and (2) genotoxic versus non-genotoxic (epigenetic) carcinogens, was thus investigated by studying five known genotoxic renal carcinogens acting through diverse mechanisms of action, i.e. streptozotocin, aristolochic acids, 2-nitroanisole, potassium bromate and cisplatin, two rodent renal epigenetic carcinogens: d-limonene and ciclosporine and two nephrotoxic compounds: streptomycin and indomethacin. Animals were treated once with the test compound by the appropriate route of administration and genotoxic effects were measured at the two sampling times of 3-6 and 22-26h after treatment. Regarding the tissue processing, the limited background level of DNA migration observed in the negative control groups throughout all experiments demonstrated that the enzymatic isolation method implemented in the current study is appropriate. On the other hand, streptozotocin, 20mg/kg, used as positive reference control concurrently to each assay, caused a clear increase in the mean Olive Tail Moment median value, which allows validating the current methodology. Under these experimental conditions, the in vivo rodent Comet assay demonstrated good sensitivity and good specificity: all the five renal genotoxic carcinogens were clearly detected in at least one expression period either directly or indirectly, as in the case of cisplatin: for this cross-linking agent, the significant decrease in DNA migration observed under standard electrophoresis conditions was clearly amplified when the duration of electrophoresis was increased up to 40min. In contrast, epigenetic and nephrotoxic compounds failed to induce any signifcant increase in DNA migration. In conclusion, the in vivo rodent Comet assay performed on isolated kidney cells could be used as a tool to investigate the genotoxic potential of a test compound if neoplasic/preneoplasic changes occur after subchronic or chronic treatments, in order to determine the role of genotoxicity in tumor induction. Moreover, the epigenetic carcinogens and cytotoxic compounds displayed clearly negative responses in this study. These results allow excluding a DNA direct-acting mechanism of action and can thus suggest that a threshold exists. Therefore, the current in vivo rodent Comet assay could contribute to elucidate an epigenetic mechanism and thus, to undertake a risk assessment associated with human use, depending on the exposure level.  相似文献   

3.
Dietary factors are important in the aetiology of human cancer and carcinogens, mostly heterocyclic aromatic amines, have been isolated from cooked proteinaceous foodstuffs. Whilst such carcinogens have induced tumours in rodent bioassays, the dosages required were much higher than estimates of human exposure levels. We have examined the possibility that genotoxins, which were not extractable prior to enzymic digestion, may be released from cooked beef by proteolysis. Dichloromethane and/or a solid-phase tandem extraction procedure were used with aqueous homogenates of pan-fried or uncooked beef, both before and after proteolysis (proteinase K). Genotoxicity was measured using the alkaline single cell-gel electrophoresis ('Comet') assay in MCL-5 cells and mutagenicity in Salmonella typhimurium strains TA1538 or YG1019. Proteolysis released significant amounts of DNA-damaging material that was not extractible prior to enzymic digestion, suggesting that human exposures to diet-derived genotoxins may have been underestimated.  相似文献   

4.
The objective of this study was to determine the ability of the alkaline in vivo Comet assay (pH > 13) to distinguish genotoxic carcinogens from epigenetic carcinogens when performed on freshly isolated kidney cells and to determine the possible interference of cytotoxicity by assessing DNA damage induced by renal genotoxic, epigenetic or toxic compounds after enzymatic isolation of kidney cells from OFA Sprague–Dawley male rats. The ability of the Comet assay to distinguish (1) genotoxicity versus cytotoxicity and (2) genotoxic versus non-genotoxic (epigenetic) carcinogens, was thus investigated by studying five known genotoxic renal carcinogens acting through diverse mechanisms of action, i.e. streptozotocin, aristolochic acids, 2-nitroanisole, potassium bromate and cisplatin, two rodent renal epigenetic carcinogens: d-limonene and ciclosporine and two nephrotoxic compounds: streptomycin and indomethacin. Animals were treated once with the test compound by the appropriate route of administration and genotoxic effects were measured at the two sampling times of 3–6 and 22–26 h after treatment. Regarding the tissue processing, the limited background level of DNA migration observed in the negative control groups throughout all experiments demonstrated that the enzymatic isolation method implemented in the current study is appropriate. On the other hand, streptozotocin, 20 mg/kg, used as positive reference control concurrently to each assay, caused a clear increase in the mean Olive Tail Moment median value, which allows validating the current methodology.Under these experimental conditions, the in vivo rodent Comet assay demonstrated good sensitivity and good specificity: all the five renal genotoxic carcinogens were clearly detected in at least one expression period either directly or indirectly, as in the case of cisplatin: for this cross-linking agent, the significant decrease in DNA migration observed under standard electrophoresis conditions was clearly amplified when the duration of electrophoresis was increased up to 40 min. In contrast, epigenetic and nephrotoxic compounds failed to induce any signifcant increase in DNA migration. In conclusion, the in vivo rodent Comet assay performed on isolated kidney cells could be used as a tool to investigate the genotoxic potential of a test compound if neoplasic/preneoplasic changes occur after subchronic or chronic treatments, in order to determine the role of genotoxicity in tumor induction. Moreover, the epigenetic carcinogens and cytotoxic compounds displayed clearly negative responses in this study. These results allow excluding a DNA direct-acting mechanism of action and can thus suggest that a threshold exists. Therefore, the current in vivo rodent Comet assay could contribute to elucidate an epigenetic mechanism and thus, to undertake a risk assessment associated with human use, depending on the exposure level.  相似文献   

5.
An assay based on induction by carcinogens of Ty1 transposition in Saccharomyces cerevisiae is proposed. A tester strain was developed that contains a marked Ty1 element, which allows following the transposition in the genome as a whole and a mutation, which increases cellular permeability. Hypersensitivity to chemical agents, higher cell wall porosity and transformability with plasmid DNA evidenced an enhanced cellular permeability of the tester cells. The increased permeability resulted in higher sensitivity to carcinogens. The treatment with different laboratory carcinogens induced Ty1 transposition rates in the tester strain by a factor of 10 to 20, compared to the controls. The induction is not stress-generated by the cytotoxicity of carcinogens, since treatment with NaN3 at concentrations killing 50% of the cells did not increase the transposition rate. The increase of Ty1 transposition in tester cells is specific for active carcinogens and a positive response with procarcinogens was obtained only in presence of S9 mix. The Ty1 transposition test responded positively to a number of Ames-test or DEL-test negative carcinogens. The positive response of Ty1 test was statistically significant and verified in kinetics and concentration-dependent experiments. It is concluded that the Ty1 transposition test can be used, in addition to the Ames assay, as a short-term test for detection of carcinogens.  相似文献   

6.
Syrian hamster embryo (SHE) cell transformation has been used for many years to study chemical carcinogenesis in vitro. It has been shown that this assay is probably the most predictive short-term test system for identifying rodent carcinogens. Although most of the operational difficulties encountered in the early stage of application of this assay have been overcome by culturing the SHE cells under slightly acidic conditions (pH 6.7), a relatively low level of induction of morphological transformation (MT) by known carcinogens still occurs for many cell isolates. In order to improve the response of this assay system to known carcinogens, the effect of incubation time of target SHE cells on the frequency of morphological transformation induced by benzo(a)pyrene (BaP) was investigated. It was shown that the morphological transformation frequency induced by BaP increased significantly (1.4-2.5-fold) when the incubation time of target cells was reduced from the usual 24h to less than 6h prior to seeding onto feeder layers. This improvement in sensitivity was consistent for different cell isolates. In addition, the enhanced response appeared to be a property of carcinogens because treatment with two non-carcinogens, l-ascorbic acid and 4-nitro-o-phenylenediamine, did not induce significant increases in the transformation frequency under the shortened incubation period for target cells. These results suggest that the response of the SHE cell transformation assay may be improved by optimizing the incubation time of the target SHE cells. In addition, the results of the present study provide further evidence to support the idea that morphological transformation of SHE cells results from a block of cellular differentiation of stem or stem-like cells.  相似文献   

7.
Contrary to mutagenesis, lysogenic induction produced by chemical carcinogens occurs in the majority of a population of lysogenic cells. Such a mass effect can therefore be measured at the biochemical level using an E. coli tester strain in which the galactose operon has been put under the negative control of the lambda repressor. In this publication we show that galactokinase synthesis is turned on by aflatoxin B1 metabolites within an hour after treatment of the tester bacteria. Such a biochemical assay provides a useful means for identifying potential chemical carcinogens.  相似文献   

8.
A sensitive assay for quantitating ‘unscheduled DNA synthesis’ (repair synthesis) in transformed human amnion (AV3) cells has been developed. The combined use of hydroxyurea and arginine-deficient culture medium enabled the detection of 10–20 fold increases in ‘unscheduled DNA synthesis’ after treatment with N-acetoxy-2-acetylaminofluorene or ultraviolet light. The technique allows the detection of ‘DNA repair synthesis’ following treatment with extremely low doses of mutagens and carcinogens.  相似文献   

9.
The genetic toxicity of human carcinogens and its implications   总被引:9,自引:0,他引:9  
23 chemicals and chemical combinations have been designated by the International Agency for Research on Cancer (IARC) as causally associated with cancer in humans. The literature was searched for reports of their activity in the Salmonella mutagenicity assay and for evidence of their ability to induce chromosome aberrations or micronuclei in the bone marrow of mice or rats. In addition, the chemical structures of these carcinogens were assessed for the presence of electrophilic substituents that might be associated with their mutagenicity and carcinogenicity. The purpose of this study was to determine which human carcinogens exhibit genetic toxicity in vitro and in vivo and to what extent they can be detected using these two widely employed short-term tests for genetic toxicity. The results of this study revealed 20 of the 23 carcinogens to be active in one or both short-term tests. Treosulphan, for which short-term test results are not available, is predicted to be active based on its structure. The remaining two agents, asbestos and conjugated estrogens, are not mutagenic to Salmonella; asbestos is not likely to induce cytogenetic effects in the bone marrow and the potential activity of conjugated estrogens in the bone marrow is difficult to anticipate. These findings show that genetic toxicity is characteristic of the majority of IARC Group 1 human carcinogens. If these chemicals are considered representative of human carcinogens, then two short-term tests may serve as an effective primary screen for chemicals that present a carcinogenic hazard to humans.  相似文献   

10.
The DNA mismatch repair pathway is well known for its role in correcting biosynthetic errors of DNA replication. We report here a novel role for mismatch repair in signaling programmed cell death in response to DNA damage induced by chemical carcinogens. Cells proficient in mismatch repair were highly sensitive to the cytotoxic effects of chemical carcinogens, while cells defective in either human MutS or MutL homologs were relatively insensitive. Since wild-type cells but not mutant cells underwent apoptosis upon treatment with chemical carcinogens, the apoptotic response is dependent on a functional mismatch repair system. By analyzing p53 expression in several pairs of cell lines, we found that the mismatch repair-dependent apoptotic response was mediated through both p53-dependent and p53-independent pathways. In vitro biochemical studies demonstrated that the human mismatch recognition proteins hMutSalpha and hMutSbeta efficiently recognized DNA damage induced by chemical carcinogens, suggesting a direct participation of mismatch repair proteins in mediating the apoptotic response. Taken together, these studies further elucidate the mechanism by which mismatch repair deficiency predisposes to cancer, i.e., the deficiency not only causes a failure to repair mismatches generated during DNA metabolism but also fails to direct damaged and mutation-prone cells to commit suicide.  相似文献   

11.
A Sakai  M Sato 《Mutation research》1989,214(2):285-296
The present studies intend to heighten the sensitivity of BALB/3T3 cells to chemical carcinogens in a transformation assay, by including exposure of carcinogen-treated cells to a tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA). In the assay, cells were first treated with a known or suspected carcinogen for 72 h, cultured in normal medium for 3 days, exposed to media with and without TPA for 2 weeks, and cultured in normal medium for an additional 3 weeks. Benzo[a]pyrene, a potent carcinogen with a polycyclic aromatic hydrocarbon structure, caused transformation in the presence and absence of TPA. N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG), a carcinogen with direct-acting alkylating ability, did not induce significant transformation without TPA, while treatment with MNNG followed by TPA produced numerous transformed foci, classifying MNNG as an initiating agent of transformation under the condition presented in this report. 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (AF-2), sodium nitrite and butylated hydroxyanisole (BHA), which are carcinogenic and/or mutagenic, produced transformed foci in significant numbers of treated dishes in the presence but not in the absence of TPA. Butylated hydroxytoluene (BHT) and sodium saccharin, which are considered to be a modifier and a promoter of carcinogenesis, did not cause significant transformation with or without TPA treatment. These studies suggest that this 2-stage transformation system is capable of detecting a wider range of chemical carcinogens as initiating agents than the standard assay. Studies on the transformation assay schedule revealed that the proportion of dishes with foci, the number of foci per dish and sizes of foci all increased in the normal medium after the termination of TPA treatment. Therefore, transformed cells appear to proliferate independently of TPA after those cells are released by TPA from postconfluence inhibition of cell division.  相似文献   

12.
The genotoxicity of 30 aromatic amines selected from IARC (International Agency for Research on Cancer) groups 1, 2A, 2B and 3 and from the U.S. NTP (National Toxicology Program) carcinogenicity database were evaluated using the alkaline single cell gel electrophoresis (SCG) (Comet) assay in mouse organs. We treated groups of four mice once orally at the maximum tolerated dose (MTD) and sampled stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow 3, 8 and 24 h after treatment. For the 20 aromatic amines that are rodent carcinogens, the assay was positive in at least one organ, suggesting a high predictive ability for the assay. For most of the SCG-positive aromatic amines, the organs exhibiting increased levels of DNA damage were not necessarily the target organs for carcinogenicity. It was rare, in contrast, for the target organs not to show DNA damage. Organ-specific genotoxicity, therefore, is necessary but not sufficient for the prediction of organ-specific carcinogenicity. For the 10 non-carcinogenic aromatic amines (eight were Ames test-positive and two were Ames test-negative), the assay was negative in all organs studied. In the safety evaluation of chemicals, it is important to demonstrate that Ames test-positive agents are not genotoxic in vivo. Chemical carcinogens can be classified as genotoxic (Ames test-positive) and putative non-genotoxic (Ames test-negative) carcinogens. The alkaline SCG assay, which detects DNA lesions, is not suitable for identifying non-genotoxic carcinogens. The present SCG study revealed a high positive response ratio for rodent genotoxic carcinogens and a high negative response ratio for rodent genotoxic non-carcinogens. These results suggest that the alkaline SCG assay can be usefully used to evaluate the in vivo genotoxicity of chemicals in multiple organs, providing for a good assessment of potential carcinogenicity.  相似文献   

13.
We have recently developed an alkaline elution/rat hepatocyte assay to sensitively measure DNA single-strand breaks induced by xenobiotics in non-radiolabeled rat hepatocytes. Here we have evaluated this assay as a predictor of carcinogenic/mutagenic activity by testing 91 compounds (64 carcinogens and 27 non-carcinogens) from more than 25 diverse chemical classes. Hepatocytes were isolated from uninduced rats by collagenase perfusion, exposed to chemicals for 3 h, harvested, and analyzed for DNA single-strand breaks by alkaline elution. DNA determinations were done fluorimetrically. Cytotoxicity was estimated by glutamate-oxaloacetate transaminase release or by trypan blue dye exclusion. The assay correctly predicted the reported carcinogenic/non-carcinogenic potential of 92% of the carcinogens tested and 85% of non-carcinogens tested. The assay detected a number of compounds, including inorganics, certain pesticides, and steroids, which give false-negative results in other short-term tests. Only 2 rat liver carcinogens were incorrectly identified; the other carcinogens incorrectly identified are weakly or questionably carcinogenic (i.e., they cause tumors only in one species, after lifetime exposure, or at high doses). Some chemicals cause DNA damage only at cytotoxic concentrations; of 16 such compounds in this study, 12 are weak carcinogens suggesting a link between DNA damage caused by cytotoxicity and carcinogenesis. Our data indicate that this assay rapidly, reproducibly, sensitively, and accurately detects DNA single-strand breaks in rat hepatocytes and that the production of these breaks correlates well with carcinogenic and mutagenic activity.  相似文献   

14.
Transformation of the baby hamster kidney cell line BHK SN-10 by chemical carcinogens such as nitrosylmethylurea (NMU) is mediated by the loss of a gene product critical for the suppression of malignant transformation. Somatic cell hybrids between chemically transformed BHK SN-10 cells and either normal hamster kidney or human fibroblast cells are nontransformed; therefore, a recessive mechanism underlies the malignant transformation of BHK SN-10 cells after chemical carcinogenesis (A. Stoler and N. P. Bouck, Proc. Natl. Acad. Sci. USA 82:570-574, 1985). A human fibroblast cDNA library was constructed and introduced into NMU-transformed BHK SN-10 cells (NMU 34m) in order to identify a human cDNA capable of suppressing cellular transformation. NMU-transformed BHK cells were analyzed for reversion to an anchorage-dependent normal cellular phenotype after transfection with human cDNA. The human cDNA capable of inducing stable reversion of NMU 34m cells encodes the intermediate filament protein vimentin, which is apparently required for maintenance of the normal phenotype in BHK SN-10 cells.  相似文献   

15.
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue® mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents.  相似文献   

16.
The genotoxic potential of 48 inorganic derivatives was studied using the bacterial colorimetric assay: the SOS Chromotest. Some of these compounds are known as carcinogens (As, CR(VI), Cd, Ni) or suspected carcinogens for human beings (Hg, Pb), others are known as non-carcinogens. Among these 48 derivatives, only the two Cr(VI) compounds and the Sn(II) compounds gave positive results.  相似文献   

17.
Extensive studies on the safety evaluation of chemicals have indicated that a considerable number of non-genotoxic chemicals are carcinogenic. Tumour promoters are likely to be among these non-genotoxic carcinogens, and their detection is considered to be an important approach to the prevention of cancer. In this review, the results are summarised for in vitro transformation assays involving established cell lines, and for an assay for inhibition of gap junctional intercellular communication for the detection of tumour promoters, which involves V79 cells. Although the number of chemicals examined is still too small to permit a full evaluation of the correlation between in vitro cell transformation and in vivo carcinogenicity, it is clear that the sensitivity of the focus formation assay is very high. In the case of the metabolic cooperation assay, the sensitivity appears to be rather poor, but the assay can be considered to be useful because of its simple procedure and its considerable database. These in vitro assays for tumour promoters are recommended as useful tools for the detection of non-genotoxic carcinogens.  相似文献   

18.
Aniline-based aromatic amine carcinogens are poorly detected in short-term mutagenicity assays such as the Salmonella reverse mutation (Ames) assay. More information on the mechanism of toxicity of such Salmonella-negative carcinogens is needed. Aniline and o-toluidine are negative in the Ames assay, but induce deletions (DEL) due to intrachromosomal recombination in Saccharomyces cerevisiae with an apparent threshold. We show here that the DEL assay also detects the genotoxic activity of another aromatic amine carcinogen, o-anisidine, which is also negative in the Salmonella assay. We also show that the DEL assay distinguishes between o-anisidine and its non-carcinogenic structural analog 2, 4-dimethoxyaniline. We have investigated whether the ability of the DEL assay to detect the carcinogens and to distinguish between the carcinogen/non-carcinogen pair is linked to rises in intracellular free radical species following exposure to the carcinogens. Toxicity induced by all three compounds was reduced in the presence of the free radical scavenger and antioxidant N-acetyl cysteine, recombination induced by o-anisidine and o-toluidine was also reduced by N-acetyl cysteine. All three compounds induced oxidation of the free radical-sensitive reporter compound dichlorofluorescin diacetate. Superoxide dismutase-deficient strains, however, were hypersensitive to cytotoxicity induced by o-toluidine and o-anisidine but not by the non-carcinogen 2,4-dimethoxyaniline, indicating a different potential for generating superoxide radical between the carcinogens and the non-carcinogen analog. The results indicate that the yeast DEL assay is a useful tool for investigating the genotoxic activity of aromatic amine carcinogens.  相似文献   

19.
A rapid, sensitive and reliable gravity-flow alkaline elution assay was developed to detect DNA strand breaks in cultured Madin-Darby bovine kidney epithelial cells. Elution was completed within 2 h without the use of pumps. The system was validated by exposing the cells to X-irradiation (25-1500 R) which resulted in a significant dose dependent response (p less than 0.05) with excellent correlation (r-0.93). The assay reliably detected the DNA damage of seven genotoxic carcinogens. In general, the measured DNA damage was dose dependent and significantly different from control values for all genotoxic carcinogens tested. Six non-genotoxic compounds were tested and showed no detectable DNA damage.  相似文献   

20.
Genotoxicity of complex mixtures of organic compounds adsorbed onto ambient air particles (extractable organic matter, EOM) collected in Teplice (Czech Republic) as well as genotoxicity of the indirectly acting carcinogens benzo[a]pyrene (B[a]P) and 5,9-dimethyl-7H-dibenzo[c,g]carbazole (5,9-diMeDBC) was studied in human HepG2 and Caco-2 cells cultured in vitro. The level of DNA breaks was detected by conventional single-cell gel electrophoresis (alkaline comet assay). The level of DNA breaks+oxidative DNA lesions was assessed by modified single-cell gel electrophoresis. The indirectly acting chemical carcinogens studied were able to induce DNA breaks as well as oxidative DNA damage in both cell lines, but stronger DNA-damaging effects were observed in HepG2 cells, which contain a higher level of metabolic enzymes. Treatment of cells with the complex mixtures showed a dose-dependent increase of DNA breaks in HepG2 cells as well as in Caco-2 cells, with seasonal differences. Winter samples of EOM from Teplice (TP-W) were more effective in inducing DNA damage than summer samples (TP-S). Both mixtures caused significant oxidative DNA damage in HepG2 cells. The effect was less evident in cells treated with higher concentrations of TP-W, since the comet assay is limited by saturation at a higher level of DNA damage. Possible reduction of B[a]P-, 5,9-diMeDBC- or EOM-induced DNA damage by Vitamins E and C was evaluated in HepG2 cells only. Pre-treatment of these cells with either one of the vitamins considerably reduced the levels of both DNA breaks and oxidative DNA lesions induced by all compounds investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号