首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of electro-acupuncture (EA) on the expression of platelet derived growth factor (PDGF) in spared dorsal root ganglion (DRG) and associated dorsal horns were evaluated in cats subjected to bilateral removal of L1–L5 and L7–S2 DRG, while sparing L6 DRG and were demonstrated using Immunohistochemistry, Western blot and RT-PCR techniques. On the acupunctured side, there was a significant increase in the total number of PDGF positive neurons. Large neurons of the L6 DRG at 7 days post operation (dpo), and small to medium-sized neurons at 14 dpo, as well as in the lamina II of the L6 spinal cord at 14 dpo was observed. The expression of PDGF protein increased significantly in the L6 DRG at 7 and 14 dpo and in the dorsal horn of the L6 spinal cord at 14 dpo while the upregulation of PDGF mRNA was seen at 3 dpo in the L6 DRG and the dorsal horn of the L3 and L6 spinal cord. These findings demonstrate that intrinsic PDGF has been upregulated in cats subjected to partial dorsal root ganglionectomy following EA, indicating endogenous PDGF is involved in promoting spinal plasticity following EA.  相似文献   

2.
Neuroplasticity of the spinal cord following electroacupuncture (EA) has been demonstrated although little is known about the possible underlying mechanism. This study evaluated the effect of EA on expression of neurotrophins in the lamina II of the spinal cord, in cats subjected to dorsal rhizotomy. Cats received bilateral removal of L1–L5 and L7–S2 dorsal root ganglia (DRG, L6 DRG spared) and unilateral EA. They were sacrificed 7 days after surgery, and the L6 spinal segment removed and processed by immunohistochemistry and in situ hybridization histochemistry, to demonstrate the expression of neurotrophins. Significantly greater numbers of nerve growth factor (NGF) and neurotrophin-3 (NT-3) positive neurons, brain-derived neurotrophic factor (BDNF) immunoreactive varicosities and NT-3 positive neurons and glial cells were observed in lamina II on the acupunctured (left) side, compared to the non-acupunctured, contralateral side. Greater number of neurons expressing NGF mRNA was also observed on the acupunctured side. No signal for mRNA to BDNF and NT-3 was detected. The above findings demonstrate that EA can increase the expression of endogenous NGF at both the mRNA and protein level, and BDNF and NT-3 at the protein level. It is postulated that EA may promote the plasticity of the spinal cord by inducing increased expression of neurotrophins.  相似文献   

3.
Zhao W  Zhao Q  Liu J  Xu XY  Sun WW  Zhou X  Liu S  Wang TH 《Neurochemical research》2008,33(11):2214-2221
While electro-acupuncture (EA) has been well known to contribute towards neuroplasticity occurring in both the central and the peripheral nervous system after injury, the underlying mechanism remains largely unknown. This study evaluated the effects and the possible mechanism of EA on neuronal apoptosis in the spinal cords of cats subjected to the removal of L1–L5 and L7–S2 dorsal root ganglion, sparing the L6 dorsal root ganglion. EA treatment decreased the number of TUNEL-positive apoptotic cells in lamina II of the L3 and L6 cord segments at 7 and 14 days post operation (dpo). This EA-mediated neuroprotection is associated with a decrease in the number of Bax immunoreactive neurons and an increase in the number of Bcl-2 immunoreactive neurons. Furthermore, Western blot and RT-PCR analysis revealed a significant downregulation of Bax protein and its mRNA, but an upregulation of Bcl-2 in the dorsal horn of L3 and L6 cords at both 7 and 14 dpo. The present findings suggest that EA could inhibit neuronal apoptosis in dorsal root deafferentated cat spinal cords, possibly by Bax downregulation and Bcl-2 upregulation. Wei Zhao and Qi Zhao contributed equally to this work.  相似文献   

4.
Neurotrophin-3 plays an important role in survival and differentiation of sensory and sympathetic neurons, sprouting of neurites, synaptic reorganization, and axonal growth. The present study evaluated changes in expression of NT-3 in the spinal cord and L6 dorsal root ganglion (DRG), after ganglionectomy of adjacent dorsal roots in cats. NT-3 immunoreactivity increased at 3 days post-operation (dpo), but decreased at 10 dpo in spinal lamina II after ganglionectomy of L1–L5 and L7–S2 (leaving L6 DRG intact). Conversely, NT-3 immunoreactivity decreased on 3 dpo, but increased on 10 dpo in the nucleus dorsalis. Very little NT-3 mRNA signal was detected in the spinal cord, despite the changes in NT-3 expression. The above changes may be related to changes in NT-3 expression in the DRG. Ganglionectomy of L1–L5 and L7–S2 resulted in increase in NT-3 immunoreactivity and mRNA in small and medium-sized neurons, but decreased expression in large neurons of L6 DRG at 3 dpo. It is possible that increased NT-3 in spinal lamina II is derived from anterograde transport from small- and medium-sized neurons of L6 DRG, whereas decreased NT-3 immunoreactivity in the nucleus dorsalis is due to decreased transport of NT-3 from large neurons in the DRG at this time. This notion is supported by observations on NT-3 distribution in the dorsal root of L6 after ligation of the nerve root. The above results indicate that DRG may be a source of neurotrophic factors such as NT-3 to the spinal cord, and may contribute to plasticity in the spinal cord after injury.  相似文献   

5.
In our experiments on rat dorsal root ganglia (DRG) neurons, we studied the effects of an antiepileptic agent, gabapentin, on calcium transients evoked by depolarization of the membrane using the fluorescence calciumsensitive dye Fura-2/AM. Application of gabapentin to neurons with large-diameter somata practically did not change the characteristics of calcium transients. In mid-sized neurons, the amplitude of transients decreased, on average, by 27% with respect to the control, while in small-sized neurons the transients changed insignificantly (on average, less than by 7%). The mid-sized neurons were additionally subjected to the capsaicin test, which allowed us to differentiate primary nociceptive neurons of this group where TRPV1-type channels are expressed. In capsaicin-sensitive neurons, application of gabapentin led to a decrease in the amplitude of calcium transients, on average, by 37%, while such a decrease was only 16% in capsaicininsensitive neurons. Based on our own data and findings of other researchers on the ability of gabapentin to demonstrate affine binding with the accessory α2δ subunit of voltage-dependent calcium channels and also on the peculiarities of expression of these channels in somatosensory neurons of the corresponding types, we discuss the probable pattern of expression of subunits of the α2δ-1 subtype in DRG cells of different sizes. We demonstrated that the effects of gabapentin on calcium transients in nociceptive and hypothetically nonnociceptive mid-sized DRG neurons are selective (the effects in neurons involved in the sensation of acute pain are probably more intense). Neirofiziologiya/Neurophysiology, Vol. 40, No. 4, pp. 281–287, July–August, 2008.  相似文献   

6.
In co-cultured dorsal root ganglion (DRG) neurons and spinal cord neurons from newborn rats, using a voltage-clamp technique in the whole-cell configuration enabled us to observe in DRG neurons the effects evoked by extracellular local electrical stimulation of cells corresponding to spinal cord neurons in their morphological characteristics. Such stimulation caused the appearance of postsynaptic currents (PSC) in DRG neurons in 9% of the cases. The mean delay of these currents (measured from the stimulus leading edge) was 4.7 ± 0.29 msec, the mean time to peak was 2.6 ± 0.77 msec, and the decay time constant = 14.5 ± 1.04 msec. The reversal potential of evoked PSC (ePSC) was close to the equilibrium potential for chloride ions estimated by the Nernst equation. Application of 20 M bicuculline induced practically complete and reversible ePSC block. The conclusion was drawn that these currents arise due to activation of the chloride channels operated by GABA receptors and, hence, represent an inhibitory PSC. Thus, one may deem it proved that spinal cord neurons can establish functional inhibitory synapses with DRG neurons.  相似文献   

7.
In co-culture of spinal cord and dorsal root ganglion (DRG) neurons, we studied at different terms of culturing postsynaptic currents in DRG neurons evoked by direct electrical stimulation of single spinal neurons using a voltage-clamp technique in the whole-cell configuration. According to the reversal potential and sensitivity to bicuculline, these currents were classified as inhibitory postsynaptic currents (IPSC) carried by Cl- ions through GABAA receptors. During neuronal development in dissociated co-culture, the amplitude of evoked IPSC and their time to peak significantly increased. The time to peak of spontaneous IPSC (sIPSC) in DRG neurons remained unchanged, while the frequency of these currents increased with increasing culturing time. It is concluded that under culturing conditions spinal neurons establish inhibitory synaptic contacts with the somata of DRG neurons, and the number of such functional contacts increases in the course of culturing. Our findings show that in dissociated co-culture the process of formation of inhibitory synapses on the axon terminals of primary afferent neurons is akin to that realized in vivo, but with dissimilar topography of distribution of such synapses.  相似文献   

8.
It is well known that mature neurons in the central nervous system (CNS) cannot regenerate their axons after injuries due to diminished intrinsic ability to support axon growth and a hostile environment in the mature CNS1,2. In contrast, mature neurons in the peripheral nervous system (PNS) regenerate readily after injuries3. Adult dorsal root ganglion (DRG) neurons are well known to regenerate robustly after peripheral nerve injuries. Each DRG neuron grows one axon from the cell soma, which branches into two axonal branches: a peripheral branch innervating peripheral targets and a central branch extending into the spinal cord. Injury of the DRG peripheral axons results in substantial axon regeneration, whereas central axons in the spinal cord regenerate poorly after the injury. However, if the peripheral axonal injury occurs prior to the spinal cord injury (a process called the conditioning lesion), regeneration of central axons is greatly improved4. Moreover, the central axons of DRG neurons share the same hostile environment as descending corticospinal axons in the spinal cord. Together, it is hypothesized that the molecular mechanisms controlling axon regeneration of adult DRG neurons can be harnessed to enhance CNS axon regeneration. As a result, adult DRG neurons are now widely used as a model system to study regenerative axon growth5-7.Here we describe a method of adult DRG neuron culture that can be used for genetic study of axon regeneration in vitro. In this model adult DRG neurons are genetically manipulated via electroporation-mediated gene transfection6,8. By transfecting neurons with DNA plasmid or si/shRNA, this approach enables both gain- and loss-of-function experiments to investigate the role of any gene-of-interest in axon growth from adult DRG neurons. When neurons are transfected with si/shRNA, the targeted endogenous protein is usually depleted after 3-4 days in culture, during which time robust axon growth has already occurred, making the loss-of-function studies less effective. To solve this problem, the method described here includes a re-suspension and re-plating step after transfection, which allows axons to re-grow from neurons in the absence of the targeted protein. Finally, we provide an example of using this in vitro model to study the role of an axon regeneration-associated gene, c-Jun, in mediating axon growth from adult DRG neurons9.  相似文献   

9.
In a co-culture of dissociated neurons of lumbar dorsal root ganglia (DRG) and spinal dorsal horn (DH) neurons of newborn rats, we examined peculiarities of induction of long-term depression (LTD) of synaptic transmission through synapses formed by primary afferents on DH neurons. Induction of LTD was provided by low-frequency (5 sec−1) microstimulation of single DRG neurons. Ion currents were simultaneously recorded in pre- and post-synaptic cells using a dual whole-cell path-clamp technique. Parameters of evoked excitatory and inhibitory postsynaptic currents (eEPSCs and eIPSCs, respectively) initiated in DH neurons by intracellular stimulation of DRG neurons were analyzed. Monosynaptic eEPSC mediated by activation of AMPA receptors demonstrated no sensitivity to blockers of NMDA and kainate receptors (20 μM DL-AP5 and 10 μM SIM 2081, respectively), but were entirely blocked upon applications of 10 μM DNQX. Monosynaptic glycinergic eIPSCs found in some of the DH neurons were blocked by 1 μM strychnine and were insensitive to 10 μM bicuculline and blockers of glutamatergic neurotransmission, DL-AP5 and DNQX. Long-lasting (360 sec) low-frequency stimulation of DRG neurons did not affect the amplitude of glycineinduced eIPSCs in DH neurons. At the same time, such stimulation of DRG neurons evoked a drop in the amplitude of AMPA-activated eEPSCs in DH neurons to 41.6 ± 2.5%, on average, as compared with the analogous index in the control. This effect lasted at least 20 min after stimulation. Long-term depression of glutamatergic transmission in DH neurons was observed at the holding potential of −70 mV and did not change after applications of 10 μM bicuculline and 1 μM strychnine. The LTD intensity depended on the duration of low-frequency stimulation of primary afferent neurons. Sequential stimulation of DRG neurons lasting 120, 160, 200, and 240 sec resulted in decreases in the eEPSC amplitude in DH neurons to 85.6 ± 3.9, 62.7 ± 4.3, 51.8 ± 3.5, and 41.6 ±2.5% with respect to control values. Our findings show that use-dependent induction of homosynaptic LTD of glutamatergic transmission is possible at the level of a separate pair of synaptically connected DRG and DH neurons under co-culturing conditions. Such LTD of glutamatergic synaptic transmission mostly mediated by activation of AMPA receptors depends on the duration of activation of a presynaptic DRG neuron and does not need depolarization of a postsynaptic DH neuron.  相似文献   

10.
Alterations in the expression of the neuropeptide, galanin, were examined in micturition reflex pathways of rat after cyclophosphamide (CYP)-induced cystitis of variable duration: acute (4 h), intermediate (48 h), or chronic (10 days). In control animals, galanin expression was present in specific regions of the gray matter in the rostral lumbar and caudal lumbosacral spinal cord, including: (1) the dorsal commissure (DCM); (2) superficial dorsal horn; (3) the regions of the intermediolateral cell column (L1–L2) and the sacral parasympathetic nucleus (SPN, L6–S1); and (4) the lateral collateral pathway (LCP) in lumbosacral spinal segments. Densitometry analysis demonstrated significant decreases (P≤0.01) in galanin immunoreactivity (IR) in these regions of the L1–S1 spinal cord after acute or intermediate CYP-induced cystitis. In contrast, increases (P≤0.01) in galanin–IR were observed in the DCM, SPN, or LCP regions in the L6–S1 spinal segments in rats with chronic cystitis. No changes in the number of galanin–immunoreactive cells were observed in the L1–S1 dorsal root ganglia (DRG) after CYP-induced cystitis of any duration. A small percentage of bladder afferent cells (Fast-blue-labeled) in the DRG expressed galanin–IR in control rats; this was not altered with cystitis. Galanin–IR was observed encircling DRG cells after chronic cystitis. These changes may contribute to urinary bladder dysfunction, altered sensation, and referred somatic hyperalgesia after cystitis.This work was supported in part through NIH grants DK051369, DK060481, DK065989, and NS040796.  相似文献   

11.
Cell adhesion molecules belonging to the immunoglobulin superfamily (IgSF) control synaptic specificity through hetero- or homophilic interactions in different regions of the nervous system. In the developing spinal cord, monosynaptic connections of exquisite specificity form between proprioceptive sensory neurons and motor neurons, however, it is not known whether IgSF molecules participate in regulating this process. To determine whether IgSF molecules influence the establishment of synaptic specificity in sensory-motor circuits, we examined the expression of 157 IgSF genes in the developing dorsal root ganglion (DRG) and spinal cord by in situ hybridization assays. We find that many IgSF genes are expressed by sensory and motor neurons in the mouse developing DRG and spinal cord. For instance, Alcam, Mcam, and Ocam are expressed by a subset of motor neurons in the ventral spinal cord. Further analyses show that Ocam is expressed by obturator but not quadriceps motor neurons, suggesting that Ocam may regulate sensory-motor specificity in these sensory-motor reflex arcs. Electrophysiological analysis shows no obvious defects in synaptic specificity of monosynaptic sensory-motor connections involving obturator and quadriceps motor neurons in Ocam mutant mice. Since a subset of Ocam+ motor neurons also express Alcam, Alcam or other functionally redundant IgSF molecules may compensate for Ocam in controlling sensory-motor specificity. Taken together, these results reveal that IgSF molecules are broadly expressed by sensory and motor neurons during development, and that Ocam and other IgSF molecules may have redundant functions in controlling the specificity of sensory-motor circuits.  相似文献   

12.
肝细胞生长因子在正常大鼠腰段脊髓和背根神经节的表达   总被引:1,自引:0,他引:1  
目的:观察肝细胞生长因子(hepatocyte growth factor,HGF)在大鼠脊髓和背根神经节(dorsal root ganglion,DRG)的表达。方法:取健康成年6只SD大鼠运用免疫组织化学染色技术检测HGF在腰段脊髓、背根神经节内的表达和分布。结果:在L4-6段脊髓,HGF免疫阳性产物可见于各板层神经元,尤以脊髓前角运动神经元明显;在DRG中,HGF免疫阳性物质可见于以大、中型为主的神经元的胞浆及突起中。结论:脊髓和背根神经节内的HGF通过与受体c-Met结合可能在神经再生及突触可塑性方面起一定作用。  相似文献   

13.
Previous studies suggest that adenosine A1 receptors (A1R) modulate the processing of pain. The aim of this study was to characterize the distribution of A1R in nociceptive tissues and to evaluate whether targeting A1R with the partial agonist capadenoson may reduce neuropathic pain in mice. The cellular distribution of A1R in dorsal root ganglia (DRG) and the spinal cord was analyzed using fluorescent in situ hybridization. In behavioral experiments, neuropathic pain was induced by spared nerve injury or intraperitoneal injection of paclitaxel, and tactile hypersensitivities were determined using a dynamic plantar aesthesiometer. Whole-cell patch-clamp recordings were performed to assess electrophysiological properties of dissociated DRG neurons. We found A1R to be expressed in populations of DRG neurons and dorsal horn neurons involved in the processing of pain. However, administration of capadenoson at established in vivo doses (0.03–1.0 mg/kg) did not alter mechanical hypersensitivity in the spared nerve injury and paclitaxel models of neuropathic pain, whereas the standard analgesic pregabalin significantly inhibited the pain behavior. Moreover, capadenoson failed to affect potassium currents in DRG neurons, in contrast to a full A1R agonist. Despite expression of A1R in nociceptive neurons, our data do not support the hypothesis that pharmacological intervention with partial A1R agonists might be a valuable approach for the treatment of neuropathic pain.  相似文献   

14.

Background

A sudden mechanical insult to the spinal cord is usually caused by changing pressure on the surface of the spinal cord. Most of these insults are mechanical force injuries, and their mechanism of injury to the spinal cord is largely unknown.

Methods

Using a compression-driven instrument to simulate mechanical force, we applied mechanical pressure of 0.5 MPa to rat dorsal root ganglion (DRG) neurons for 10 min to investigate cytoskeletal alterations and calpain-induced apoptosis after the mechanical force injury.

Results

The results indicated that mechanical forces affect the structure of the cytoskeleton and cell viability, induce early apoptosis, and affect the cell cycle of DRG neurons. In addition, the calpain inhibitor PD150606 reduced cytoskeletal degradation and the rate of apoptosis after mechanical force injury.

Conclusion

Thus, calpain may play an important role in DRG neurons in the regulation of apoptosis and cytoskeletal alterations induced by mechanical force. Moreover, cytoskeletal alterations may be substantially involved in the mechanotransduction process in DRG neurons after mechanical injury and may be induced by activated calpain. To our knowledge, this is the first report to demonstrate a relationship between cytoskeletal degradation and apoptosis in DRG neurons.  相似文献   

15.
Summary In this study, immunohistochemistry for neuronal nitric oxide synthase (bNOS-IR), nicotinamide adenine dinucleotide phosphate diaphorase histochemistry (NADPHd) and nitric oxide synthase radioassay were used to study the occurrence, number and distribution pattern of nitric oxide synthesizing neurons in the lumbar (L1–L7) and sacral (S1–S3) dorsal root ganglia of the dog. Nitric oxide synthase immunolabelling was present in a large number of small- (area <1000 μm2) and medium-sized (area 1000–2000 μm2) as well as in a limited number of large-sized (area >2000 μm2) neurons. Although neuronal nitric oxide synthase immunolabelling and histochemical staining provided intense staining of multiple small- and medium-sized neurons in all lumbar and sacral dorsal root ganglia, immunolabelled or histochemically stained somata exhibited little topographic distribution in individual dorsal root ganglia. Great heterogeneity was noticed in the immunolabelling of medium-sized nitric oxide synthase immunopositive neurons ranging from lightly immunolabelled somata to heavily immunoreactive ones with completely obscured nuclei. Both staining procedures proved to be highly effective in visualizing intraganglionic fibers of various diameters. In general, the largest fibers revealed at the peripheral end of lumbar and sacral dorsal root ganglia were larger, 6.49–9.35 μm in diameter, while those running centrally and proceeding into the dorsal roots were about 30% reduced, ranging between 5.32 and 8.67 μm in diameter. Peripherally, the occurrence of nitric oxide synthase detected in axonal profiles, and confirmed histochemically, in the specimens of the femoral and sciatic nerves, is the first indication of the presence of nitric oxide synthase in the peripheral processes of somata located in L4–S2 dorsal root ganglia. Large and thin central nitric oxide synthase immunoreactive processes of L1–S3 dorsal root ganglion neurons segregate shortly before entering the spinal cord, the former making a massive medial bundle in the dorsal root accompanied by a slim lateral bundle penetrating Lissauer's tract. Quantitative assessment of the distribution of bNOS-IR and/or NADPHd-stained neurons showed a peculiar pattern in relation to spinal levels. Apparent incongruity was found in the total number of NADPHd-stained versus bNOS-IR neurons, demonstrating a clear prevalence of small bNOS-IR somata in all lumbar ganglia, while medium-sized NADPHd-stained somata clearly prevailed all along the rostrocaudal axis with a peak in L5 ganglion. While the number of small bNOS-IR neurons clearly outnumbered NADPHd-stained and NADPHd-unstained somata in S1–S3 ganglia, an inverse relation appeared comparing the total number of medium-sized NADPHd-stained and NADPHd-unstained somata compared with the number of moderate and intense bNOS-IR neurons. Densitometry of bNOS-IR and NADPHd-stained neurons in lumbar and sacral ganglia revealed two distinct subsets of densitometric profiles, one relating to more often found medium-sized bNOS immunolabelled and the other, characteristic for moderately bNOS immunoreactive somata of the same cell size. Considerable differences in catalytic nitric oxide synthase activity, determined by conversion of [3H]arginine to [3H]citrulline were obtained in lumbosacral dorsal root ganglia all along the lumbosacral intumescence, the lowest (0.898± 0.2 dpm/min/μg protein) being in the L4 dorsal root ganglion and the highest (4.194± 0.2 dpm/min/μg protein) in the S2 dorsal root ganglion.  相似文献   

16.
The effects of cadmium on the central nervous system are still relatively poorly understood and its role in neurodegenerative diseases has been debated. In our research, cultured explants from 25 human foetal spinal cords (10–11 weeks gestational age) were incubated with 10 and 100 μM cadmium chloride (CdCl2) for 24 h. After treatment, an immunohistochemical study [for Sglial fibrillary acidic protein (GFAP) and choline acetyltransferase (ChAT)], a Western blot analysis (for GFAP, β-Tubulin III, nerve growth factor receptor, Caspase 8 and poly (ADP-ribose) polymerase), and a terminal deoxynucleotidyl transferase biotin-dUTP nick end labelling (TUNEL) assay (for detection of apoptotic bodies) were performed. The treatment with CdCl2 induced a significant and dose-dependent change in the ratio motor neurons/glial cells in the ventral horns of human foetal spinal cord. The decrease of the choline acetyltransferase-positive cells (motor neurons) and the reduction of β Tubulin III indicate that CdCl2 specifically affects motor neurons of the ventral horns. While the number of motor neurons decreased for the activation of apoptotic pathways (as shown by the increased expression of Caspase 8, nerve growth factor receptor, and poly (ADP-ribose) polymerase), glial cells, both in the subependymal zone and in the gray matter of the ventral horns, increased (as shown by the increase of GFAP expression). These results provide the evidence that during human spinal cord development, CdCl2 may affect the fate of neural and glial cells thus, being potentially involved in the etiopathogenesis of neurodegenerative diseases.  相似文献   

17.
The activation of caspase-3 is considered to be a reliable marker for apoptotic cell death, and a 120-kDa fragment of αII-spectrin is generated by caspase-3 mediated cleavage of this structural protein. In the present study, we compared cleaved αII-spectrin (120-kDa) and cleaved caspase-3-immunoreactive cells and their protein levels in the cervical (C5–C6) and lumbar (L3–L4) levels of the spinal cord in adult (1–2 year-old) and aged (10–12 year-old) dogs (German shepherds). Weak cleaved αII-spectrin and cleaved caspase-3 immunoreactivity was found in neurons of the adult group; however, their immunoreactivity was distinctively increased in the neuronal cytoplasm in the aged group compared to those in the adult group, although the distribution pattern of their neurons was similar between the adult and age group. In addition, cleaved αII-spectrin and cleaved caspase-3 levels in the aged spinal cord were markedly increased compared to those in the adult group. These findings suggest that the increases of cleaved αII-spectrin and cleaved caspase-3 immunoreactivity may be related to aging of the spinal cord in dogs.  相似文献   

18.
In addition to the classic genomic effects, it is well known that glucocorticoids also have rapid, nongenomic effects on neurons. In the present study, the effect of corticosterone (CORT) on ATP-induced Ca2+ mobilization in cultured dorsal root ganglion (DRG) neurons were detected with confocal laser scanning microscopy using fluo-4/AM as a calcium fluorescent indicator that could monitor real-time alterations of intracellular calcium concentration ([Ca2+]i). ATP, an algesic agent, caused [Ca2+]i increase in DRG neurons by activation of P2X receptor. Pretreatment with CORT (1 nM–1 μM for 5 min) inhibited ATP-induced [Ca2+]i increase in DRG neurons. The rapid inhibition of ATP-induced Ca2+ response by CORT was concentration-dependent, reversible and could be blocked by glucocorticoid receptor antagonist RU38486 (10 μM). Furthermore, the inhibitory effect of CORT was abolished by protein kinase A inhibitor H89 (10 μM), but was not influenced by protein kinase C inhibitor Chelerythrine chloride (10 μM). On the other hand, membrane-impermeable bovine serum albumin-conjugated corticosterone had no effect on ATP-induced [Ca2+]i transients. These observations suggest that a nongenomic pathways may be involved in the effect of CORT on ATP-induced [Ca2+]i transients in cultured DRG neurons.  相似文献   

19.
改良了Maximow双盖片悬滴培养法。籍之研究了猫脊髓在部分去腰骶背根专入后以及去传入并行备用背根外周支配区穴位针刺后,背核组织促神经突起生长作用的变化。发现部分去背根传入可使背核组织的促神经突起生长作用增强,电针刺激术侧穴位能够进一步提高背核组织的促神经突起生长效应。推测是为去传入导致备用背根侧支出芽及针刺穴位促进侧支出芽的直接原因之一。  相似文献   

20.
1. Ubiquitin immunohistochemistry was used for investigation of time dependent changes of ubiquitin in the nerve cells reacting to ischemic/reperfusion damage. In the rabbit spinal cord ischemia model a period of 30 min ischemia followed by 24 and 72 h of reperfusion caused neuronal degeneration selectively in the ventral horn motor neurons as well as interneurons of the intermediate zone.2. Ubiquitin aggregates were accumulated in the neurons of lamina IX and the neurons of intermediate zone destined to die 72 h after 30 min of the spinal cord ischemia.3. The activation of ubiquitin hydrolytic system is related to a defective homeostasis and could trigger different degenerative processes. Having in mind this, we used EGb 761 to rescue the motor neurons and interneurons against ischemia/reperfusion damage. Our results show that after 30 min of ischemia and 24 or 72 h of reperfusion with EGb 761 pre-treatment for 7 days the vulnerable neurons in the intermediate zone and lamina IX exhibit marked elevation of ubiquitin–positive granules in the cytoplasm, dendrites and nuclei. Abnormal protein aggregates have not been observed in these cells.4. The rabbits were completely paraplegic after 30 min of ischemia and 24 or 72 h of reperfusion. However, after 7 days EGb 761 pre-treatment, 30 min of ischemia and 24 or 72 h of reperfusion the animals did not show paraplegia.5. Evaluated ubiquitin–positive neurons of the L5–L6 segments showed significant decrease in number and significant increase of density after 30 min of ischemia followed by 24 h and mainly 72 h of reperfusion. Ubiquitin immunohistochemistry confirmed the protective effect of EGb 761 against ischemia/reperfusion damage in the rabbit spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号