共查询到20条相似文献,搜索用时 15 毫秒
1.
Amable L Grankvist N Largen JW Ortsäter H Sjöholm Å Honkanen RE 《The Journal of biological chemistry》2011,286(47):40413-40422
PP5 is a ubiquitously expressed Ser/Thr protein phosphatase. High levels of PP5 have been observed in human cancers, and constitutive PP5 overexpression aids tumor progression in mouse models of tumor development. However, PP5 is highly conserved among species, and the roles of PP5 in normal tissues are not clear. Here, to help evaluate the biological actions of PP5, a Cre/loxP-conditional mouse line was generated. In marked contrast to the early embryonic lethality associated with the genetic disruption of other PPP family phosphatases (e.g. PP2A and PP4), intercrosses with mouse lines that ubiquitously express Cre recombinase starting early in development (e.g. MeuCre40 and ACTB-Cre) produced viable and fertile PP5-deficient mice. Phenotypic differences caused by the total disruption of PP5 were minor, suggesting that small molecule inhibitors of PP5 will not have widespread systemic toxicity. Examination of roles for PP5 in fibroblasts generated from PP5-deficient embryos (PP5(-/-) mouse embryonic fibroblasts) confirmed some known roles and identified new actions for PP5. PP5(-/-) mouse embryonic fibroblasts demonstrated increased sensitivity to UV light, hydroxyurea, and camptothecin, which are known activators of ATR (ataxia-telangiectasia and Rad3-related) kinase. Further study revealed a previously unrecognized role for PP5 downstream of ATR activation in a UV light-induced response. The genetic disruption of PP5 is associated with enhanced and prolonged phosphorylation of a single serine (Ser-345) on Chk1, increased phosphorylation of the p53 tumor suppressor protein (p53) at serine 18, and increased p53 protein levels. A comparable role for PP5 in the regulation of Chk1 phosphorylation was also observed in human cells. 相似文献
2.
In Streptomyces fradiae, calcium ions induce alterations in intensity and specificity of the secondary metabolism and stimulate aerial mycelium formation and sporulation. Using in vitro labeling, we demonstrate that in S. fradiae in the late exponential growth phosphorylation of 65-kDa membrane-associated protein is also influenced by Ca(2+) added exogenously. Calcium ions at physiological concentration stimulate intensive Ca(2+)-dependent phosphorylation of 65-kDa protein at multiple sites on serine, threonine, and tyrosine residues. Assay of protein kinases in situ demonstrated in the fraction of membrane-associated proteins the presence of two autophosphorylating protein serine/threonine kinases with molecular masses of 127 kDa and 65 kDa. Autophosphorylation of both proteins is also Ca(2+)-dependent. 相似文献
3.
In Mycobacterium tuberculosis (Mtb), regulatory phosphorylation of proteins at serine and/or threonine residues by serine/threonine protein kinases (STPKs) is an emerging theme connected with the involvement of these enzymes in virulence mechanisms. The identification of phosphorylation sites in proteins provides a powerful tool to study signal transduction pathways and to identify the corresponding interaction networks. Detection of phosphorylated proteins as well as assignment of the phosphorylated sites in STPKs is a major challenge in proteomics since some of these enzymes might be interesting therapeutical targets. Using different strategies to identify phosphorylated residues, we report, in the present work, MS studies of the entire intracellular regions of recombinant protein kinases PknA, PknD, PknE, and PknH from Mtb. The on-target dephosphorylation/MALDI-TOF for identification of phosphorylated peptides was used in combination with LC-ESI/MS/MS for localization of phosphorylation sites. By doing so, seven and nine phosphorylated serine and/or threonine residues were identified as phosphorylation sites in the recombinant intracellular regions of PknA and PknH, respectively. The same technique led also to the identification of seven phosphorylation sites in each of the two recombinant kinases, PknD and PknE. 相似文献
4.
5.
We previously identified a 70-kDa serine/threonine protein kinase (MbK or PknD) from Mycobacterium tuberculosis Erdman containing a transmembrane domain and bearing a 270-amino acid N-terminal kinase domain. With the use of a polyclonal serum, Mbk has now been identified by Western blotting in protein extracts from M. tuberculosis and confirmed to be localised in the envelope. An identical mbk gene has been found by sequencing different M. tuberculosis and M. africanum strains. Surprisingly, in two virulent M. bovis strains and four different strains of M. bovis BCG, an additional adenine after position 829 of the open reading frame was found that produces a frame shift resulting in a predicted truncated, presumably free cytoplasmic protein, encoding only the N-terminal 30-kDa Mbk kinase domain. This sequence polymorphism has been confirmed by Western blot analysis of M. bovis BCG protein extracts. 相似文献
6.
7.
8.
9.
10.
The role of c-FLIP in cell motility was investigated using RNA interference. Down-regulation of c-FLIP increased amounts of
reactive oxygen species (ROS), while over-expression of c-FLIP produced opposite effect. ROS induced phosphorylation of Akt
and impaired cell motility. 相似文献
11.
H. W. Yoon M. C. Kim P. G. Shin J. S. Kim C. Y. Kim S. Y. Lee I. Hwang J. D. Bahk J. C. Hong C. Han M. J. Cho 《Molecular & general genetics : MGG》1997,255(4):359-371
Two soybean cDNA clones, SPK-3 and SPK-4, encoding putative protein kinases were isolated and characterized. Both cDNAs encoded approximately 40-kDa serine/threonine
kinases with unusual stretches of acidic amino acids in their carboxy-terminal regions, which are highly homologous to PKABA1
from wheat and ASKs from Arabidopsis. These kinases are encoded by one- or two-copy genes in the soybean genome. Notably, SPK-3 and -4 showed different patterns of expression in various soybean tissues. SPK-3 is highly expressed in dividing and elongating tissues of young seedlings but relatively weakly in tissues of mature plants.
In contrast, SPK-4 showed relatively high and constitutive expression in all the tissues examined except for leaf tissues of mature plants.
Although various stressors, such as dehydration and high salinity, increased the expression of both genes, the induction kinetics
were different. The two genes also differed in their response to abscisic acid (ABA). SPK-3 was induced but SPK-4 was not affected by exogenously supplied abscisic acid. In accordance with these expression data analysis of the activity
of a chimeric SPK-3 promoter::β-glucuronidase (GUS) reporter gene by transient expression in tobacco leaves confirmed the inducibility of SPK-3
by salt and ABA. Polyclonal antibodies raised against a recombinant SPK-4 protein produced in Escherichia coli specifically recognized both recombinant SPK-3 and -4 proteins. Kinase assays using affinity-purified SPK-4/antibody complexes
with crude soybean extracts as substrate identified specific phosphorylation of two 41 and 170 kDa soybean proteins that were
phosphorylated on serine residues. Taken together, our results suggest that SPK-3, and/or SPK-4 are functional serine protein
kinase(s). Furthermore, SPK-3 and -4 may play different roles in the transduction of various environmental stresses.
Received: 6 January 1997 / Accepted: 19 March 1997 相似文献
12.
Martin Fleischmann Igor Stagljar Markus Aebi 《Molecular & general genetics : MGG》1996,250(5):614-625
The yeast PRP20 protein is homologous to the RCC1 protein of higher eukaryotes and is required for mRNA export and maintenance of nuclear structure. RCC1/PRP20 act as guanine nucleotide exchange factors for the nuclear Ras-like Ran/GSP1 proteins. In a search forprp20-10 allele-specific high-copy-number suppressors, theKSP1 locus, encoding a serine/threonine protein kinase was isolated. Ksp1p is a nuclear protein that is not essential for vegetative growth of yeast. Inactivation of the kinase activity by a mutation affecting the catalytic center of the Ksp1p eliminated the suppressing activity. Based on the isolation of a protein kinase as a high-copy-number suppressor, the phosphorylation of Prp20p was examined. In vivo labeling experiments showed that Prp20p is a phosphoprotein; however, deletion of the KSP1 kinase did not affect Prp20p phosphorylation. 相似文献
13.
14.
Chakresh Kumar Jain Money Gupta Yamuna Prasad Gulshan Wadhwa Sanjeev Kumar Sharma 《Molecular simulation》2015,41(7):592-599
The prevalence of methicillin-resistant Staphylococcus aureus and vanomycin intermediate S. aureus infections is on the rise, globally. This poses a huge challenge due to limited therapeutic options and the limited number of bacterial-specific drug targets available for due conservation with the human host. A serine/threonine phosphatase/kinase stp1/stk1 phospho-signalling system in S. aureus, which is just beginning to be understood, has been shown to be of importance in virulence and susceptibility to glycopeptide antibiotics. In this study, 3D structure of stp1 (clinical strain of S. aureus N315) was predicted using a homology modelling tool MODELLER. The validation of the predicted model was done using various tools such as PROCHECK, ERRAT, VERIFY-3D and ProSA. Molecular dynamics (MD) study was carried out using GROMACS to refine the least energy model generated from MODELLER9v11 and it was compared with the template. The template used was the crystal structure of serine/threonine phosphatase stp1 in Streptoccocus agalactiae (Protein Data Bank ID: 2PK0) with 38% identity with the query. Various validation tools showed the quality of the model generated using MODELLER. PROCHECK predicted 100% residues in the allowed region, ERRAT with overall quality factor of 76.47, VERIFY-3D with average score of >0.2 in 81.78% of residues, WHATIF with packaging quality score of > ? 5 for all residues and ProSA with Z-score of ? 7.02. MD simulation of the protein showed some fluctuations in the aqueous environment and changes in the ligand binding residues after simulation. The availability of the 3D-structural information of a viable drug target in S. aureus stp1 is expected to facilitate structure–activity relationship and interactions with proteins. 相似文献
15.
Agarwal S Agarwal S Pancholi P Pancholi V 《The Journal of biological chemistry》2011,286(48):41368-41380
Reversible phosphorylation is the key mechanism regulating several cellular events in prokaryotes and eukaryotes. In prokaryotes, signal transduction is perceived to occur primarily via the two-component signaling system involving histidine kinases and cognate response regulators. Although an alternative regulatory pathway controlled by the eukaryote-type serine/threonine kinase (Streptococcus pyogenes serine/threonine kinase; SP-STK) has been shown to modulate bacterial growth, division, adherence, invasion, and virulence in group A Streptococcus (GAS; S. pyogenes), the precise role of the co-transcribing serine/threonine phosphatase (SP-STP) has remained enigmatic. In this context, this is the first report describing the construction and characterization of non-polar SP-STP mutants in two different strains of Type M1 GAS. The STP knock-out mutants displayed increased bacterial chain lengths in conjunction with thickened cell walls, significantly reduced capsule and hemolysin production, and restoration of the phenotypes postcomplementation. The present study also reveals important contribution of cognately regulated-reversible phosphorylation by SP-STK/SP-STP on two major response regulators of two-component systems, WalRK and CovRS. We also demonstrate a distinct role of SP-STP in terms of expression of surface proteins and SpeB in a strain-specific manner. Further, the attenuation of virulence in the absence of STP and its restoration only in the complemented strains that were generated by the use of a low copy plasmid and not by a high copy one emphasize not only the essential role of STP in virulence but also highlight the tightly regulated SP-STP/SP-STK-mediated cognate functions. SP-STP thus is an important regulator of GAS virulence and plays a critical role in GAS pathogenesis. 相似文献
16.
Protein phosphatase M (PPM) regulates key signaling pathways in prokaryotes and eukaryotes. Novel structures of bacterial PPM members revealed three divalent metal ions in their catalytic centers. The function of metal 3 (M3) remained unclear. To reveal its function, we created variants of tPphA from Thermosynechococcus elongatus in all metal-coordinating residues, and multiple variants were created for the M3 coordinating Asp-119 residue. The structures of variants D119A and D193A were resolved, showing loss of M3 binding but unaffected binding of M1 and M2 in the catalytic center of D119A, with the nucleophilic water molecule in the correct place. The catalytic activity of this variant was highly impaired. This and further structure-function analyses showed that M3 is required for catalysis by providing a water molecule as a proton donor during catalysis. Mutation of the homologue Asp residue in human PP2Cα also caused loss of function, suggesting a general requirement of M3 in PPM-catalyzed reactions. 相似文献
17.
The dynamics of serine/threonine protein kinase activity during the growth of the wild-typeStreptomyces avermitilis strain 964 and its chloramphenicol-resistant (Cmlr) pleiotropic mutant with an enhanced production of avermectins was studied by measuring the transfer of radiolabeled phosphate
from [y-32P]ATP to the serine and threonine residues of proteins in cell-free extracts. In both of the strains studied, radiolabeled
phosphate was found to incorporate into polypeptides with molecular masses of 32, 35, 41, 68, 75, 79, 83, and 137 kDa; however,
the degree and the dynamics of phosphorylation of particular peptides were different in these strains. The differences revealed
could not be accounted for by the interference of ATPases or phosphoprotein phosphatases. The data obtained may be interpreted
as evidence that Cmlr mutation activates the protein kinase signalling system ofS.avermitilis cells in the early stationary growth phase and thus enhances the production of avermectins and leads to some other physiological
changes in the mutant strain. 相似文献
18.
The serine/threonine protein phosphatases are important regulatory enzymes involved in signal transduction pathways in eukaryotic organisms. These enzymes include protein phosphatases 1, 2A, and 2B (also known as calcineurin). Recent structural data have indicated that the serine/threonine protein phosphatases are novel metalloenzymes containing a dinuclear metal ion cofactor at the active site. The dinuclear metal site is situated in a unique protein fold, a β-α-β-α-β motif which provides the majority of ligands to the metal ions. A similar fold is also seen in plant purple acid phosphatases, which also contain a dinuclear iron–zinc cofactor. In these enzymes, the two metal ions are bridged by a solvent molecule and a carboxylate group from an aspartic acid residue, juxtaposing the two metal ions to within 3.0–4.0?Å of each other. A similar motif has been identified in a number of other enzymes which exhibit phosphoesterase activity, implicating several of them as metalloenzymes which contain dinuclear metal ion cofactors. 相似文献
19.
20.
Human cytomegalovirus carries serine/threonine protein phosphatases PP1 and a host-cell derived PP2A. 总被引:2,自引:2,他引:2 下载免费PDF全文
S Michelson P Turowski L Picard J Goris M P Landini A Topilko B Hemmings C Bessia A Garcia J L Virelizier 《Journal of virology》1996,70(3):1415-1423
Human cytomegalovirus (CMV), a herpesvirus, is an important cause of morbidity and mortality in immunocompromised patients. When studying hyper-immediate-early events after contact between CMV virions and the cell membrane, we observed a hypophosphorylation of cellular proteins within 10 min. This can be explained in part by our finding that purified CMV contains serine/threonine protein phosphatase activities. Biochemical analyses indicate that this protein phosphatase activity has all characteristics of type 1 and 2A protein phosphatases (PP1 and PP2A). Specifically, PP1 accounts for approximately 30% and PP2A accounts for the remaining 70% of the phosphorylase phosphatase activity found. CMV produced in astrocytoma cells stably expressing an amino-terminally tagged PP2A catalytic subunit contained tagged enzyme, thus demonstrating the cellular origin of CMV-associated PP2A. PP2A is specifically found inside the virus, associated with the nucleocapsid fraction. Western blot (immunoblot) analysis of purified virus revealed the presence of the catalytic subunits of PP2A and PP1. Furthermore, the catalytic subunit of PP2A appears to be complexed to the regulatory subunits PR65 and PR55, which is also the most abundant configuration of this enzyme found in the host cells. Incubation of virus with okadaic acid before contact of CMV with cells prevented hypophosphorylation of cellular proteins, thus demonstrating the role of CMV-associated phosphatases in this phenomenon. CMV can thus transport an active enzyme from one cell to another. 相似文献