首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A homologue of the human site-specific prolyl cis/trans isomerase PIN1 was identified in Arabidopsis thaliana. The PIN1At gene encodes a protein of 119 amino acids that is 53% identical with the catalytic domain of the human PIN1 parvulin. Steady-state PIN1At mRNA is found in all plant tissues tested. We show by two-dimensional NMR spectroscopy that the PIN1At is a prolyl cis/trans isomerase with specificity for phosphoserine-proline bonds. PIN1At is the first example of an eukaryotic parvulin without N- or C-terminal extensions. The N-terminal WW domain of 40 amino acids, typical of all the phosphorylation-dependent eukaryotic parvulins, is absent. However, triple-resonance NMR experiments showed that PIN1At contained a hydrophobic helix similar to the alpha1 helix observed in PIN1 that could mediate the protein-protein interactions.  相似文献   

2.
The hPar14 protein is a peptidyl prolyl cis/trans isomerase and is a human parvulin homologue. The hPar14 protein shows about 30 % sequence identity with the other human parvulin homologue, hPin1. Here, the solution structure of hPar14 was determined by nuclear magnetic resonance spectroscopy. The N-terminal 35 residues preceding the peptidyl prolyl isomerase domain of hPar14 are unstructured, whereas hPin1 possesses the WW domain at its N terminus. The fold of residues 36-131 of hPar14, which comprises a four-stranded beta-sheet and three alpha-helices, is superimposable onto that of the peptidyl prolyl isomerase domain of hPin1. To investigate the interaction of hPar14 with a substrate, the backbone chemical-shift changes of hPar14 were monitored during titration with a tetra peptide. Met90, Val91, and Phe94 around the N terminus of alpha3 showed large chemical-shift changes. These residues form a hydrophobic patch on the molecular surface of hPar14. Two of these residues are conserved and have been shown to interact with the proline residue of the substrate in hPin1. On the other hand, hPar14 lacks the hPin1 positively charged residues (Lys63, Arg68, and Arg69), which determine the substrate specificity of hPin1 by interacting with phosphorylated Ser or Thr preceding the substrate Pro, and exhibits a different structure in the corresponding region. Therefore, the mechanism determining the substrate specificity seems to be different between hPar14 and hPin1.  相似文献   

3.
4.
In folded proteins, prolyl peptide bonds are usually thought to be either trans or cis because only one of the isomers can be accommodated in the native folded protein. For the N-terminal domain of the gene-3 protein of the filamentous phage fd (N2 domain), Pro161 resides at the tip of a beta hairpin and was found to be cis in the crystal structure of this protein. Here we show that Pro161 exists in both the cis and the trans conformations in the folded form of the N2 domain. We investigated how conformational folding and prolyl isomerization are coupled in the unfolding and refolding of N2 domain. A combination of single-mixing and double-mixing unfolding and refolding experiments showed that, in unfolded N2 domain, 7% of the molecules contain a cis-Pro161 and 93% of the molecules contain a trans-Pro161. During refolding, the fraction of molecules with a cis-Pro161 increases to 85%. This implies that 10.3 kJ mol(-1) of the folding free energy was used to drive this 75-fold change in the Pro161 cis/trans equilibrium constant during folding. The stabilities of the forms with the cis and the trans isomers of Pro161 and their folding kinetics could be determined separately because their conformational folding is much faster than the prolyl isomerization reactions in the native and the unfolded proteins. The energetic coupling between conformational folding and Pro161 isomerization is already fully established in the transition state of folding, and the two isomeric forms are thus truly native forms. The folding kinetics are well described by a four-species box model, in which the N2 molecules with either isomer of Pro161 can fold to the native state and in which cis/trans isomerization occurs in both the unfolded and the folded proteins.  相似文献   

5.
6.
The structure of alpha-hemoglobin stabilizing protein (AHSP), a molecular chaperone for free alpha-hemoglobin, has been determined using NMR spectroscopy. The protein native state shows conformational heterogeneity attributable to the isomerization of the peptide bond preceding a conserved proline residue. The two equally populated cis and trans forms both adopt an elongated antiparallel three alpha-helix bundle fold but display major differences in the loop between the first two helices and at the C terminus of helix 3. Proline to alanine single point mutation of the residue Pro-30 prevents the cis/trans isomerization. The structure of the P30A mutant is similar to the structure of the trans form of AHSP in the loop 1 region. Both the wild-type AHSP and the P30A mutant bind to alpha-hemoglobin, and the wild-type conformational heterogeneity is quenched upon complex formation, suggesting that just one conformation is the active form. Changes in chemical shift observed upon complex formation identify a binding interface comprising the C terminus of helix 1, the loop 1, and the N terminus of helix 2, with the exposed residues Phe-47 and Tyr-51 being attractive targets for molecular recognition. The characteristics of this interface suggest that AHSP binds at the intradimer alpha1beta1 interface in tetrameric HbA.  相似文献   

7.
The WW module of the peptidyl-prolyl cis/trans isomerase Pin1 targets specifically phosphorylated proteins involved in the cell cycle through the recognition of phospho-Thr(Ser)-Pro motifs. When the microtubule-associated Tau protein becomes hyperphosphorylated, it equally becomes a substrate for Pin1, with two recognition sites described around the phosphorylated Thr212 and Thr231. The Pin1 WW domain binds both sites with moderate affinity, but only the Thr212-Pro213 bond is isomerized by the catalytic domain of Pin1. We show here that, in a peptide carrying a single recognition site, the WW module increases significantly the enzymatic isomerase activity of Pin1. However, with addition of a second recognition motif, the affinity of both the WW and catalytic domain for the substrate increases, but the isomerization efficacy decreases. We therefore conclude that the WW domain can act as a negative regulator of enzymatic activity when multiple phosphorylation is present, thereby suggesting a subtle mechanism of its functional regulation.  相似文献   

8.
Parvulins belong to a family of peptidyl-prolyl cis/trans isomerases (PPIases) that catalyze the cis/trans conformations of prolyl-peptidyl bonds. Herein, we characterized two novel parvulins, TbPIN1 and TbPAR42, in Trypanosoma brucei. TbPIN1, a 115 amino-acid protein, contains a single PPIase domain but lacks the N-terminal WW domain. Using NMR spectroscopy, TbPIN1 was found to exhibit PPIase activity toward a phosphorylated substrate. Overexpression of TbPIN1 can rescue the impaired temperature-sensitive phenotype in a mutant yeast strain. TbPAR42, containing 383 amino acids, comprises a novel FHA domain at its N terminus and a C-terminal PPIase domain but is a non-Pin1-type PPIase. Functionally, a knockdown of TbPAR42 in its procyclic form results in reduced proliferation rates suggesting an important role in cell growth.  相似文献   

9.
10.
The human peptidyl prolyl cis/trans isomerase (PPIase) Pin1 has a key role in developmental processes and cell proliferation. Pin1 consists of an N-terminal WW domain and a C-terminal catalytic PPIase domain both targeted specifically to Ser(PO3H2)/Thr(PO3H2)-Pro sequences. Here, we report the enhanced affinity originating from bivalent binding of ligands toward Pin1 compared to monovalent binding. We developed composite peptides where an N-terminal segment represents a catalytic site-directed motif and a C-terminal segment exhibits a predominant affinity to the WW domain of Pin1 tethered by polyproline linkers of different chain length. We used NMR shift perturbation experiments to obtain information on the specific interaction of a bivalent ligand to both targeted sites of Pin1. The bivalent ligands allowed a considerable range of thermodynamic investigations using isothermal titration calorimetry and PPIase activity assays. They expressed up to 350-fold improved affinity toward Pin1 in the nanomolar range in comparison to the monovalent peptides. The distance between the two binding motifs was highly relevant for affinity. The optimum in affinity manifested by a linker length of five prolyl residues between active site- and WW domain-directed peptide fragments suggests that the corresponding domains in Pin1 are allowed to adopt preferred spatial arrangement upon ligand binding.  相似文献   

11.
Song J  Laskowski M  Qasim MA  Markley JL 《Biochemistry》2003,42(21):6380-6391
Turkey ovomucoid third domain (OMTKY3) is shown to exist at low pH as two distinctly folded, interconverting conformations. Activation parameters were determined for the transition, and these were of the type reported previously for cis/trans isomerizations of prolyl peptide bonds. Multidimensional, multinuclear NMR spectroscopy was used to determine the three-dimensional structure of each of the two states of P(5)-Pro(14)Asp OMTKY3 at pH 2.5 and 25 degrees C, under conditions where the two states have equal populations with interchange rates of 0.25 s(-1). The results showed that the two states differ by cis/trans isomerization of the P(8)-Tyr(11)-P(7)-Pro(12) peptide bond, which is cis in the conformer dominant at neutral pH and trans in the conformer appearing at low pH. The major structural differences were found to be in the region of the reactive site loop. The core of the protein, including the antiparallel beta-sheet and a alpha-helix, is preserved in both structures. The state with the cis peptide bond is similar to previously reported structures of OMTKY3 determined by NMR spectroscopy and X-ray crystallography. The cis-to-trans transition results in the relocation of the aromatic ring of P(8)-Tyr(11), disrupts many interactions between the alpha-helix and the reactive-site loop, and leads to more open spacing between this loop and the alpha-helix. In addition, the configurations of two of the three disulfide bonds, P(11)-Cys(8)- P(20)'-Cys(38), and P(3)-Cys(16)- P(17)'-Cys(35), are altered such that the C(alpha)-C(alpha) distances for each disulfide bridge are longer by approximately 1 A in the trans state than in the cis. Mutations at P(1)-Leu(18), P(6)-Lys(13), and P(5)-Pro(14) influence the position of the cis <= => trans equilibrium. In P(1)-Leu(18)Xxx OMTKY3 mutants, the trans state is more favored by P(1)-Gly(18) than by Ala(18) or Leu(18); in P(6)-Lys(13)Xxx OMTKY3 mutants, the trans state is more favored by P(6)-Glu(13) and P(6)-Asp(13) than Lys(13) or His(13). Stabilization of the trans state in P(5)-Pro(14)Xxx OMTKY3 mutants follows the series Xxx = Gly > Asp > Glu > Ala approximately equal His > Pro. In comparing the state with the trans peptide bond to that with the cis, the pK(a) values of P(12)-Asp(7) and P(1)'-Glu(19) are higher and those of P(9)-Glu(10) and P(25)'-Glu(43) are lower. The pK(a) values of other titrating groups in the molecule are similar in both conformational states. These pK(a) changes underlie the pH dependence of the conformational equilibrium and can be explained in part by observed structural differences. (15)N transverse relaxation results indicate that residues P(6)-Lys(13)-P(3)-Cys(16) in the trans state undergo a dynamic process on the microsecond-millisecond time scale not present in the cis state.  相似文献   

12.
Refined crystal structure of dogfish M4 apo-lactate dehydrogenase   总被引:11,自引:0,他引:11  
The crystal structure of M4 apo-lactate dehydrogenase from the spiny dogfish (Squalus acanthius) was initially refined by a constrained-restrained, and subsequently restrained, least-squares technique. The final structure contained 286 water molecules and two sulfate ions per subunit and gave an R-factor of 0.202 for difraction data between 8.0 and 2.0 A resolution. The upper limit for the co-ordinate accuracy of the atoms was estimated to be 0.25 A. The elements of secondary structure of the refined protein have not changed from those described previously, except for the appearance of a one-and-a-half turn 3(10) helix immediately after beta J. There is also a short segment of 3(10) helix between beta C and beta D in the part of the chain that connects the two beta alpha beta alpha beta units of the six-stranded parallel sheet (residues Tyr83 to Ala87). Examination of the interactions among the different elements of secondary structure by means of a surface accessibility algorithm supports the four structural clusters in the subunit. The first of the two sulfate ions is in the active site and occupies a cavity near the essential His195. Its nearest protein ligands are Arg171, Asp168 and Asn140. The second sulfate ion is located near the P-axis subunit interface. It is liganded by His188 and Arg173. These two residues are conserved in bacterial lactate dehydrogenase and form part of the fructose 1,6-bisphosphate effector binding site. Two other data sets in which one (collected at pH 7.8) or both (collected at pH 6.0) sulfate ions were replaced by citrate ions were also analyzed. Five cycles of refinement with respect to the pH 6.0 data (25 to 2.8 A resolution) resulted in an R value of 0.191. Only water molecules occupy the subunit boundary anion binding site at pH 7.8. The amino acid sequence was found to be in poor agreement with (2Fobs-Fcalc) electron density maps for the peptide between residues 207 and 211. The original sequence WNALKE was replaced by NVASIK. The essential His195 is hydrogen bonded to Asp168 on one side and Asn140 on the other. The latter residue is part of a turn that contains the only cis peptide bond of the structure at Pro141. The "flexible loop" (residues 97 to 123), which folds down over the active center in ternary complexes of the enzyme with substrate and coenzyme, has a well-defined structure. Analysis of the environment of Tyr237 suggests how its chemical modification inhibits the enzyme.  相似文献   

13.
In proteins and peptides, the vast majority of peptide bonds occurs in trans conformation, but a considerable fraction (about 5%) of X-Pro bonds adopts the cis conformation. Here we study the conservation of cis prolyl residues in evolutionary related proteins. We find that overall, in contrast to local, protein sequence similarity is a clear indicator for the conformation of prolyl residues. We observe that cis prolyl residues are more often conserved than trans prolyl residues, and both are more conserved than the surrounding amino acids, which show the same extent of conservation as the whole protein. The pattern of amino acid exchanges differs between cis and trans prolyl residues. Also, the cis prolyl bond is maintained in proteins with sequence identity as low as 20%. This finding emphasizes the importance of cis peptide bonds in protein structure and function.  相似文献   

14.
The recent crystal structure of Pin1 protein bound to a doubly phosphorylated peptide from the C-terminal domain of RNA polymerase II revealed that binding interactions between Pin1 and its substrate take place through its Trp-Trp (WW) domain at the level of the loop Ser(11)-Arg(12) and the aromatic pair Tyr(18)-Trp(29), and showed a trans conformation for both pSer-Pro peptide bonds. However, the orientation of the ligand in the aromatic recognition groove still could be sequence-specific, as previously observed in SH3 domains complexed by peptide ligands or for different class of WW domains (Zarrinpar, A., and Lim, W. A. (2000) Nat. Struct. Biol. 7, 611-613). Because the bound peptide conformation could also differ as observed for peptide ligands bound to the 14-3-3 domain, ligand orientation and conformation for two other biologically relevant monophosphate substrates, one derived from the Cdc25 phosphatase of Xenopus laevis (EQPLpTPVTDL) and another from the human tau protein (KVSVVRpTPPKSPS) in complex with the WW domain are here studied by solution NMR methods. First, the proton resonance perturbations on the WW domain upon complexation with both peptide ligands were determined to be essentially located in the positively charged beta-hairpin Ser(11)-Gly(15) and around the aromatic Trp(29). Dissociation equilibrium constants of 117 and 230 microm for Cdc25 and tau peptides, respectively, were found. Several intermolecular nuclear Overhauser effects between WW domain and substrates were obtained from a ligand-saturated solution and were used to determine the structures of the complexes in solution. We found a similar N to C orientation as the one observed in the crystal complex structure of Pin1 and a trans conformation for the pThr-Pro peptidic bond in both peptide ligands, thereby indicating a unique binding scheme for the Pin1 WW domain to its multiple substrates.  相似文献   

15.
The Src homology 2 (SH2) domain of interleukin-2 tyrosine kinase (Itk) is a critical component of the regulatory apparatus controlling the activity of this immunologically important enzyme. To gain insight into the structural features associated with the activated form of Itk, we have solved the NMR structure of the SH2 domain bound to a phosphotyrosine-containing peptide (pY) and analyzed changes in trans-hydrogen bond scalar couplings ((3h)J(NC')) that result from pY binding. Isomerization of a single prolyl imide bond in this domain is responsible for simultaneous existence of two distinct SH2 conformers. Prolyl isomerization directs ligand recognition: the trans conformer preferentially binds pY. The structure of the SH2/pY complex provides insight into the ligand specificity; the BG loop in the ligand-free trans SH2 conformer is pre-arranged for optimal contacts with the pY+3 residue of the ligand. Analysis of (3h)J(NC') couplings arising from hydrogen bonds has revealed propagation of structural changes from the pY binding pocket to the CD loop containing conformationally heterogeneous proline as well as to the alphaB helix, on the opposite site of the domain. These findings offer a structural framework for understanding the roles of prolyl isomerization and pY binding in Itk regulation.  相似文献   

16.
Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the hydroxylation of -X-Pro-Gly- sequences and plays a central role in the synthesis of all collagens. The [alpha(I)]2beta2 type I enzyme is effectively inhibited by poly(L-proline), whereas the [alpha(II)]2beta2 type II enzyme is not. We report here that the poly(L-proline) and (Pro-Pro-Gly)10 peptide substrate-binding domain of prolyl 4-hydroxylase is distinct from the catalytic domain and consists of approximately 100 amino acids. Peptides of 10-19 kDa beginning around residue 140 in the 517 residue alpha(I) subunit remained bound to poly(L-proline) agarose after limited proteolysis of the human type I enzyme tetramer. A recombinant polypeptide corresponding to the alpha(I) subunit residues 138-244 and expressed in Escherichia coli was soluble, became effectively bound to poly(L-proline) agarose and could be eluted with (Pro-Pro-Gly)10. This polypeptide is distinct from the SH3 and WW domains, and from profilin, and thus represents a new type of proline-rich peptide-binding module. Studies with enzyme tetramers containing mutated alpha subunits demonstrated that the presence of a glutamate and a glutamine in the alpha(II) subunit in the positions corresponding to Ile182 and Tyr233 in the alpha(I) subunit explains most of the lack of poly(L-proline) binding of the type II prolyl 4-hydroxylase. Keywords: collagen/dioxygenases/peptide-binding domain/ proline-rich/prolyl hydroxylase  相似文献   

17.
The peptidyl prolyl cis/trans isomerase (PPIase) Pin1 plays an important role in phosphorylation-dependent events of the cell cycle. This function is linked to its display of two phosphothreonine/phosphoserine-proline binding motifs, one within the type IV WW domain and a second within the parvulin-like catalytic domain. By microinjection of the compound Ac-Phe-D-Thr(PO3H2)-Pip-Nal-Gln-NH2, which inhibits Xenopus laevis Pin1 with a Ki value of 19.4+/-1.5 nM, into the animal pole of X. laevis embryos at the two-cell stage, the impact of Pin1 PPIase activity on cell cycle progression and embryonic development could be analysed, independent of WW domain-mediated phosphoprotein binding. Injected embryos showed a dramatically decreased survival rate at late stages of development that could only be partially compensated by co-injection with mRNAs of enzymatically active Pin1 variants, demonstrating that the phosphorylation-specific PPIase activity of Pin1 is essential for cell division and development in X. laevis.  相似文献   

18.
Proline-directed protein phosphorylation was shown to depend on the capacity of the targeted Ser(Thr)-Pro bond to exhibit conformational polymorphism. The cis/trans isomer specificity underlying ERK2-catalyzed phosphate transfer leads to a complete discrimination of the cis Ser(Thr)-Pro conformer of oligopeptide substrates. We investigated in vitro the ERK2-catalyzed phosphorylation of Aspergillus oryzae RNase T1 containing two Ser-Pro bonds both of which share high stabilization energy in their respective native state conformation, the cis Ser54-Pro and the trans Ser72-Pro moiety. Despite trans isomer specificity of ERK2, a doubly phosphorylated RNase T1 was found as the final reaction product. Similarly, the RNase T1 S54G/P55N and RNase T1 P73V variants, which retain the prolyl bond conformations of the RNase T1-wt, were both monophosphorylated with a catalytic efficiency kcat/KM of 425 M(-1) s(-1) and 1228 M(-1) s(-1), respectively. However, initial phosphorylation rates did not depend linearly on the ERK2 concentration. The phosphorylation rate of the resulting plateau region at high ERK2 concentrations can be increased up to threefold for the RNase T1 P73V variant in the presence of the peptidyl-prolyl cis/trans isomerase Cyclophilin 18, indicating a conformational interconversion as the rate limiting step in the catalyzed phosphate group transfer. Using peptidyl-prolyl cis/trans isomerases with different substrate specificity, we identified a native state conformational equilibrium of the Ser54-Pro bond with the minor trans Ser54-Pro bond as the phosphorylation-sensitive moiety. This technique can therefore be used for a determination of the ratio and the interconversion rates of prolyl bond isomers in the native state of proteins.  相似文献   

19.
The neuronal adaptor protein Fe65 is involved in brain development, Alzheimer disease amyloid precursor protein (APP) signaling, and proteolytic processing of APP. It contains three protein-protein interaction domains, one WW domain, and a unique tandem array of phosphotyrosine-binding (PTB) domains. The N-terminal PTB domain (Fe65-PTB1) was shown to interact with a variety of proteins, including the low density lipoprotein receptor-related protein (LRP-1), the ApoEr2 receptor, and the histone acetyltransferase Tip60. We have determined the crystal structures of human Fe65-PTB1 in its apo- and in a phosphate-bound form at 2.2 and 2.7A resolution, respectively. The overall fold shows a PTB-typical pleckstrin homology domain superfold. Although Fe65-PTB1 has been classified on an evolutionary basis as a Dab-like PTB domain, it contains attributes of other PTB domain subfamilies. The phosphotyrosine-binding pocket resembles IRS-like PTB domains, and the bound phosphate occupies the binding site of the phosphotyrosine (Tyr(P)) within the canonical NPXpY recognition motif. In addition Fe65-PTB1 contains a loop insertion between helix alpha2 and strand beta2(alpha2/beta2 loop) similar to members of the Shc-like PTB domain subfamily. The structural comparison with the Dab1-PTB domain reveals a putative phospholipid-binding site opposite the peptide binding pocket. We suggest Fe65-PTB1 to interact with its target proteins involved in translocation and signaling of APP in a phosphorylation-dependent manner.  相似文献   

20.
We report here the results on N-acetyl-L-proline-N'-methylamide (Ac-Pro-NHMe) calculated at the HF/6-31+G(d) level with the conductor-like polarizable continuum model (CPCM) of self-consistent reaction field methods to investigate the changes of backbone and prolyl ring along the cis-trans isomerization of the prolyl peptide bond. From the potential energy surface, the barrier to ring flip from the down-puckered conformation to the up-puckered one is estimated to be 2.5 and 3.2 kcal/mol for trans and cis conformers of Ac-Pro-NHMe, respectively. In particular, the ring flip seems to be inaccessible in the intermediate regions between trans and cis conformations, because of higher barriers (approximately 13-19 kcal/mol) to rotation of the prolyl peptide bond. The torsion angles for backbone and prolyl ring vary largely around the transition states at omega' approximately 120 degrees and -70 degrees for the prolyl peptide bond. Three kinds of puckering amplitudes show the same trend of puckering along the cis-trans isomerization although their absolute values are different. In particular, trans and cis conformations have the almost same degree of puckering. The cis populations and barriers to rotation of the prolyl peptide bond for Ac-Pro-NHMe are increased with the increase of solvent polarity, which is mainly ascribed to the decreases of relative free energies for cis conformations and the increase of relative free energies for transition states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号