首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alterations induced by carbon tetrachloride poisoning in fatty acids of liver microsomal lipids were studied. Thin layer chromatography of fatty acid methyl esters prepared from liver microsomal lipids, revealed, in the CCl4-treated rats, the presence of a component (the “D” spot) with an Rf value lower than that of the methyl esters. The lipids recovered from this component showed a marked diene conjugation absorption when examined spectrophotometrically over the UV range, while the lipids recovered from the spot of the methyl esters showed no absorption of conjugated dienes.Studies carried out with labelled carbon tetrachloride indicated that compounds present in the “D” spot contained 28% of 14C applied to the chromatoplate. The spot of the methyl esters (the “M” spot) contained 42% of 14C applied to the chromatoplate. However, specific activity of the “D” spot was about 1000 times greater than specific activity of the “M” spot.The lipids recovered from either the “D” spot or the spot of the methyl esters were analyzed separately by gas-liquid chromatography (GLC) with an electron capture detector (ECD). It was found that the lipids recovered from the “D” spot showed no response, while those recovered from the spot of the methyl esters exhibited the response of the ECD, which was similar to that observed with the unfractionated fatty acid methyl esters. The lack of the response of the ECD for compounds in the “D” spot appears to be due to the fact that they cannot be eluted from the column.On the basis of the analytical results, it can be postulated that the “D” spot contains compounds formed by a chain termination addition reaction of free radicals derived from CCl4 (probably trichloromethyl free radicals) to fatty acid free radicals containing conjugated dienes. On the other hand, the spot of the methyl esters appears to contain also, together with unmodified fatty acids, the fatty acids in which a simple addition of CCl4 free radicals to double bonds has occurred.  相似文献   

2.
Unsaturated fatty acids are constituents of nearly all biological membranes. They are always present in membranes which possess transmembrane potentials. Two completely different biosynthetic routes have evolved (aerobic and anaerobic) for placing cis double bonds in the 9 position on the fatty acids of membrane lipids. Bacterial membranes contain primarily monounsaturated fatty acids, whereas eukaryote membranes contain a significant fraction of polyunsaturated fatty acids. The polyunsaturated fatty acids are concentrated in organelles, such as chloroplasts and mitochondria that are known to manipulate transmembrane potentials. I propose that the function of the unsaturated fatty acids is to facilitate the transmission of a local compaction of the membrane (in response to a transmembrane potential) laterally through the membrane. The role of the cis double bond at position 9 is twofold: first to create a kink in the chains of a large fraction of membrane fatty acids enhancing the separation of two regions in the membrane and second to enhance the rigidity of the membrane in the region between the head group and the 9 double bond. This ordered region contains those carbons proximal to the 9 carbon and which are in a regular array of trans conformations. The presence of a reasonable proportion of cis double bonds at position 9 will tend to maintain these trans conformations utilizing pi-pi (van der Waals) interactions between adjacent hydrocarbon chains at position 9. The disordered region contains the carbons distal to the 9 carbon. These have greater degrees of freedom and considerable gauche conformations. The role of the double bonds in the polyunsaturated fatty acids distal to carbon 9 is to facilitate trans bilayer pi-pi (van der Waals) interactions enhancing compaction of the bilayer during the electrostriction. I further propose that it is the function of the ionic headgroups to form an interlocking polyionic network which constitutes an elastic sheet. These ionic interactions would serve as the restoring force converting the compaction into a wave. The facilitation of the compaction of the bilayer together with the polyionic restoring force permits the membrane to transmit conformational changes from one transmembrane protein to another. Since transmembrane potentials are created and responded to by proteins each in a single location, it is thus proposed that a potential compaction wave emanates from the first protein in all directions in the plane of the membrane. The proposed wave would have both physical and electrical components. The electrohydrodynamic wave would require that the compaction oscillations be coupled to an oscillating electrical field. These proposals are applied to mitochondrial oxidative phosphorylation, and to transport across biological membranes.  相似文献   

3.
Phospholipid, ester-linked fatty acid profiles showed changes in benthic prokaryotic community structure reflecting culture manipulations that were both quantitative and statistically significant. Fatty acid structures, including the position and cis/ trans geometry of double bonds, were chemically verified by GC/MS after appropriate derivatization. The fatty acid profiles of independent flasks showed reproducible shifts when manipulated identically and significant differences when manipulated with different treatments. The absence of polyunsaturated fatty acids indicated that the consortia were predominantly prokaryotic. The prokaryotic consortia of different treatments could be differentiated by the proportions of cyclopropyl fatty acids and the proportions and geometry of monounsaturated fatty acids.  相似文献   

4.
The nonenzymatic isoprostane pathway of lipid peroxidation of polyunsaturated fatty acids results in formation of products, termed isoprostanes, which have very large positional and stereo isomerism, possess various biological activities, produce adducts with proteins, and thus contribute to pathogeneses of the agedependent diseases. However, it was unclear what mechanism drives this type of lipid autoxidation, and why the products have very large isomerism. We propose a mechanism when perhydroxyl radicals (HO2?) react with polyunsaturated fatty acids in the hydrophobic milieu of membranes. In the membrane HO2? initiates a chain of reactions with formation first H2O2, which undergoes homolytic fission producing two ?OH radicals, thus very rapidly abstracting three H atoms from a polyunsaturated fatty acid. As a result, the HO2? molecule is converted to two molecules of water, and the molecule of a polyunsaturated fatty acid loses two double bonds, becomes highly unstable and undergoes peroxidation and random intramolecular re-arrangements causing a very large isomerism of the final products. The extremely high reactivity of ?2 with polyunsaturated fatty acids is the cause of very subtle and slow accumulation of damages in the membrane and membrane associated proteins, even though the concentration of ?2 relative to superoxide radical may be very low.  相似文献   

5.
J.A. Lloyd 《Phytochemistry》1975,14(2):483-485
Acetone-soluble extractives of “blue” and “green” strain Pinus muricata D. Don were found to consist of free and “combined” fatty acids, resin acids, and phenols. The composition of the extractives from the two strains was similar though “green” strain P. muricata contained more Δ8(9),15 isopimaric acid than “blue” strain. This difference may be used to identify these muricata strains if the age of the wood precludes a monoterpene examination.  相似文献   

6.
Desaturases that introduce double bonds into the fatty acids are involved in the adaptation of membrane fluidity to changes in the environment. Besides, polyunsaturated fatty acids (PUFAs) are increasingly recognized as important pharmaceutical and nutraceutical compounds. To successfully engineer organisms with increased stress tolerance or the ability to synthesize valuable PUFAs, detailed knowledge about the complexity of the desaturase family as well as understanding of the coevolution of desaturases and their cytochrome b5 electron donors is needed. We have constructed phylogenies of several hundred desaturase sequences from animals, plants, fungi and bacteria and of the cytochrome b5 domains that are fused to some of these enzymes. The analysis demonstrates the existence of three major desaturase acyl-CoA groups that share few similarities. Our results indicate that the fusion of Δ6-desaturase-like enzymes with their cytochrome b5 electron donor was a single event that took place in the common ancestor of all eukaryotes. We also propose the Δ6-desaturase-like enzymes as the most probable donor of the cytochrome b5 domain found in fungal Δ9-desaturases and argue that the recombination most likely happened soon after the separation of the animal and fungal ancestors. These findings answer some of the previously unresolved questions and contribute to the quickly expanding field of research on desaturases.  相似文献   

7.
Very-long-chain polyunsaturated fatty acids such as arachidonic, eicosapentaenoic, and docosahexaenoic acids, are important to the physiology of many microorganisms and metazoans and are vital to human development and health. The production of these and related fatty acids depends on Δ6 desaturases, the final components of an electron transfer chain that introduces double bonds into 18-carbon fatty acid chains. When a Δ6 desaturase identified from the ciliated protist Tetrahymena thermophila was expressed in Saccharomyces cerevisiae cultures supplemented with the 18:2Δ9,12 substrate, only 4% of the incorporated substrate was desaturated. Cytochrome b5 protein sequences identified from the genome of T. thermophila included one sequence with two conserved cytochrome b5 domains. Desaturation by the Δ6 enzyme increased as much as 10-fold when T. thermophila cytochrome b5s were coexpressed with the desaturase. Coexpression of a cytochrome b5 from Arabidopsis thaliana with the Δ6 enzyme also increased desaturation. A split ubiquitin growth assay indicated that the strength of interaction between cytochrome b5 proteins and the desaturase plays a vital role in fatty acid desaturase activity, illustrating the importance of protein-protein interactions in this enzyme activity.  相似文献   

8.
Soybean lipoxygenase-1 acting upon polyunsaturated fatty acids containing a suitably positioned all-cis-1,4,7-octatriene moiety generates bishydroperoxy derivatives while consuming approximately 2 mol of O2 per mole of substrate. The reaction has been separated into two steps: The first is marked by the rapid monohydroperoxidation of the starting material and the second is marked by the much slower hydroperoxidation of the first product. All of the compounds which are successfully converted to bishydroperoxy derivatives contain an ω6,9,12 grouping of cis double bonds. α-Linolenic acid (ω3,6,9) cannot serve as a substrate because its preferred site of oxygenation is in the center of the octatriene moiety. The Km for arachidonic acid in the reaction leading to the singly hydroperoxidized monohydroperoxide is 8.6× 10?5, m, which is approximately 200 times smaller than the Km for the monohydroperoxide in the second step leading to the bishydroperoxide. All of the substrates which undergo double dioxygenation form conjugated trienes.  相似文献   

9.
《Journal of phycology》2001,37(Z3):30-30
Leblond, J. D.1 & Chapman, P. J.2 1Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132. 2US EPA (NHEERL), Gulf Ecology Division, 1 Sabine Island Dr., Gulf Breeze, FL 32561 Studies of the lipids of different algal species have revealed a diversity of fatty acids, sterols, and hydrocarbons, of which several are considered useful biomarkers, with potential for characterizing phytoplankton community composition. To extend this approach and characterize the lipids and lipid classes of laboratory-cultured marine dinoflagellates, a silicic acid fractionation system was developed to obtain compositional data for sterols and hydrocarbons of over forty species. In the course of this work, a neutral fraction obtained from a lipid extract of Pyrocystis lunula was found to contain an abundant quantity of a long-chain polyunsaturated hydrocarbon, along with previously reported keto-steranes. The hydrocarbon molecular weight (364) and retention time obtained by gas chromatography/mass spectrometry analysis suggested a C27 compound, which was confirmed by reduction (Adams catalyst) to give the straight chain alkane, n-heptacosane. The presence of eight double bonds was established by deuteration to give a product with molecular weight 396. While the positions of double bonds have not been established, the carbon number of this hydrocarbon and the number of double bonds strongly suggest formation by decarboxylation of the recently described, long-chain polyunsaturated C28 fatty acid shown to be a constituent of phospholipids. This hydrocarbon was not found in any other genus of the examined dinoflagellates, and appears to be one of the first identifications of a hydrocarbon in this class of algae. The function(s) of this compound in P. lunula is currently unclear.  相似文献   

10.
The lipids of the brown alga Fucus serratus were isolated, identified and quantified. The major acyl lipids were the three glycosylglycerides, diacylgalactosylglycerol, diacyldigalactosylglycerol and diacylsulphoquinovosylglycerol. These represent over 70% of the total acyl lipids. The fatty acid compositions of the major lipids were examined and most showed rather distinctive fatty acid contents. For example, diacylgalactosylglycerol was enriched in n-3 polyunsaturated fatty acids while phosphatidylcholine and phosphatidylethanolamine had very high levels of arachidonate. Phosphatidylglycerol contained the unusual trans-Δ3-hexadecenoic acid. The labelling of lipids and fatty acids from [14C]acetate was examined and the distribution of label between individual components as a function of the incubation period and in algae collected at different times of the year is reported. Algae collected in the winter incorporated much more radioactivity into non-esterified fatty acids when compared to algae collected in the summer. All algae could label myristate, palmitate, stearate and oleate at high rates. Longer incubation times allowed the labelling of polyunsaturated fatty acids such as linoleic acid.  相似文献   

11.
The development of a system for modifying the membrane fatty acid composition of cultured soybean cells (Glycine max [L.] Merr.) is described. Tween-fatty acid esters carrying specific fatty acids were synthesized and added to the medium of suspension cultures. Cells transferred large quantities of exogenous fatty acids from Tweens to all acylated membrane lipids; up to 50% of membrane fatty acids were exogenously derived. C15 to C20 saturated fatty acids and C16, C18, and C20 unsaturated fatty acids with either cis or trans double bonds were incorporated into lipids. Cells elongated saturated fatty acids of C16 or less, and unsaturated fatty acids with cis double bonds were further desaturated. No other types of modifications were observed. Growth ceased in cells treated with excessive concentrations of Tween-fatty acid esters, but frequently not for several days. Cessation of cell growth was correlated with changes in membrane fatty acid composition resulting from incorporation of large amounts of exogenous fatty acids into membrane lipids, although cells tolerated large variations in fatty acid composition. Maximum tolerable Tween concentrations varied widely according to the fatty acid supplied. Potential uses of this system and implications of the observed modifications on the pathway of incorporation are discussed.  相似文献   

12.
In a winter variety of rapeseed, low temperatures enhance fatty acid desaturation as evidenced by 14C-acetate incorporation into fatty acids or 14C-oleate desaturation in vivo; similarly, low temperatures favour polyunsaturated fatty acid accumulation during the maturation of the seeds. Oleate desaturation was slightly higher under 16 hr daylight exposure than under 9 hr treatment.  相似文献   

13.
Diets rich in unsaturated and polyunsaturated fatty acids have a positive effect on mammalian torpor, whereas diets rich in saturated fatty acids have a negative effect. To determine whether the number of double bonds in dietary fatty acids are responsible for these alterations in torpor patterns, we investigated the effect of adding to the normal diet 5% pure fatty acids of identical chain length (C18) but a different number of double bonds (0, 1, or 2) on the pattern of hibernation of the yellow-pine chipmunk, Eutamias amoenus. The response of torpor bouts to a lowering of air temperature and the mean duration of torpor bouts at an air temperature of 0.5°C (stearic acid C18:0, 4.5±0.8 days, oleic acid C18:1, 8.6±0.5 days; linoleic acid C18:2, 8.5±0.7 days) differed among animals that were maintained on the three experimental diets. The mean minimum body temperatures (C18:0, +2.3±0.3°C; C18:1, +0.3±0.2°C; C18:2,-0.2±0.2°C), which torpid individuals defended by an increase in metabolic rate, and the metabolic rate of torpid animals also differed among diet groups. Moreover, diet-induced differences were observed in the composition of total lipid fatty acids from depot fat and the phospholipid fatty acids of cardiac mitochondria. For depot fat 7 of 13 and for heart mitochondria 7 of 14 of the identified fatty acids differed significantly among the three diet groups. Significant differences among diet groups were also observed for the sum of saturated, unsaturated and polyunsaturated fatty acids. These diet-induced alterations of body fatty acids were correlated with some of the diet-induced differences in variables of torpor. The results suggest that the degree of unsaturation of dietary fatty acids influences the composition of tissues and membranes which in turn may influence torpor patterns and thus survival of hibernation.Abbreviations bm body mass - T a air temperature - T b body temperature - FA fatty acid - MR metabolic rate - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - VO2 rate of oxygen consumption - SFA saturated fatty acids - UFA unsaturated fatty acids - UI unsaturation index - SNK Student-Newman-Keuls test  相似文献   

14.
The structure and monomeric composition of the highly aliphatic and non-saponifiable fraction of cutans isolated from the leaf cuticles of Agave americana L. and Clivia miniata Reg. have been elucidated. Spectroscopic Fourier transform infrared and 13C-nuclear magnetic resonance, calorimetric and X-ray diffraction studies, together with biopolymer analysis after exhaustive ozonolysis, showed that the cutan fraction consists of an amorphous three-dimensional network linked by ether bonds containing double bonds and free carboxylic acid functions. Data obtained from fatty acid sorption indicated that the new biopolymer investigated here has a highly hydrophobic character constituting an additional barrier biopolymer in those cuticles where it is present. Labelled [14C]linoleic acid was preferentially incorporated into the non-ester part of C. miniata leaf disks in comparison with the cutin fraction of the cuticular membrane. This indicates that the cis-pentadiene system of polyunsaturated fatty acids is involved in the formation of intramolecular linkages, mainly ether bonds, of the aliphatic biopolymer. Received: 29 June 1998 / Accepted: 17 September 1998  相似文献   

15.
Reversed phase liquid chromatography–atmospheric pressure chemical ionization mass spectrometry (RP-HPLC/APCI-MS) was used for direct analysis of triacylglycerols (TAGs) from different strains of the cyanobacteria Mastigocladus laminosus, Tolypothrix cf. tenuis and Tolypothrix distorta. This technique enabled us to identify and quantify the specific molecular species of TAGs directly from lipid extracts of the cyanobacteria. The regioisomeric series of TAGs having α-linolenic and γ-linolenic and also oleic and cis-vaccenic acids were separated by RP-HPLC and identified by APCI-MS. M. laminosus produced only a few molecular species of TAGs, including both isomers of octadecenoic (oleic and vaccenic) acid, while T. distorta contained tens of molecular species of TAGs having FAs with up to four double bonds (stearidonic acid and including also its positional isomer, i.e. 3,6,9,12-octadecatetraenoic acid) and both positional isomers (α and γ) of linolenic acids. Individual strains of both cyanobacteria exhibited different contents of polyunsaturated fatty acids (Tolypothrix sp.) and different distribution of positional isomers of monoenoic fatty acids in TAGs (M. laminosus).  相似文献   

16.
Using chemical mutagenesis, mutants of Hansenula polymorpha that were defective in fatty acid synthesis were selected based on their growth requirements on saturated fatty acid mixtures. One mutant (S7) was incapable of synthesizing polyunsaturated fatty acids (PUFA), linoleic and α-linolenic acids. A genetic analysis demonstrated that the S7 strain had a double lesion affecting fatty acid synthesis and Δ12-desaturation. A segregant with a defect in PUFA synthesis (H69-2C) displayed normal growth characteristics in the temperature range of 20–42 °C through a modulation of the cellular fatty acid composition. Compared with the parental strain, this yeast mutant had increased sensitivity at low and high temperatures (15 and 48 °C, respectively) with an increased tolerance to oxidative stress. The responses to ethanol stress were similar for the parental and PUFA-defective strains. Myristic acid was also determined to play an essential role in the cell growth of H. polymorpha. These findings suggest that both the type of cellular fatty acids and the composition of fatty acids might be involved in the stress responsive mechanisms in this industrially important yeast.  相似文献   

17.
A series of phosphatidylcholines and phosphatidylethanolamines was synthesized containing two acyl chains of the following polyunsaturated fatty acids: linoleic acid (18:2), linolenic acid (18:3), arachidonic acid (20:4) and docosahexaenoic acid (22:6). In addition two phospholipids with mixed acid composition were synthesized: 16:0/18:1c phosphatidylcholine and 16:0/18:1c phosphatidylethanolamine. The structural properties of these lipids in aqueous dispersions in the absence and in the presence of equimolar cholesterol were studied using 31P-NMR, freeze fracturing and differential scanning calorimetry (DSC).The phosphatidylcholines adopt a bilayer configuration above 0°C. Incorporation of 50 mol% of cholesterol in polyunsaturated species induces a transition at elevated temperatures into structures with 31P-NMR characteristics typical of non-bilayer organizations. When the acyl chains contain three or more double bonds, this non-bilayer organization is most likely the hexagonal HII phase, 16:0/15:1c phosphatidylethanolamine shows a bilayer to hexagonal transition temperature of 75°C. The polyunsaturated phosphatidylethanolamines exhibit a bilayer to hexagonal transition temperature below 0°C which decreases with increasing unsaturation and which is lowered by approximately 10°C upon incorporation of 50 mol% of cholesterol. Finally, it was found that small amounts of polyunsaturated fatty acyl chains in a phosphatidylethanolamine disproportionally lower its bilayer to hexagonal transition temperature.  相似文献   

18.
Young expanding spinach leaves exposed to 14CO2 under physiological conditions for up to 20 minutes assimilated CO2 into lipids at a mean rate of 7.6 micromoles per milligram chlorophyll per hour following a lag period of 5 minutes. Label entered into all parts of the lipid molecule and only 28% of the 14C fixed into lipids was found in the fatty acid moieties, i.e. fatty acids were synthesized from CO2in vivo at a mean rate of 2.1 micromoles per milligram chlorophyll per hour. Intact spinach chloroplasts isolated from these leaves incorporated H14CO3 into fatty acids at a maximal rate of 0.6 micromole per milligram chlorophyll per hour, but were unable to synthesize either the polar moieties of their lipids or polyunsaturated fatty acids. Since isolated chloroplasts will only synthesize fatty acids at rates similar to the one obtained with intact leaves in vivo if acetate is used as a precursor, it is suggested that acetate derived from leaf mitochondria is the physiological fatty acid precursor.  相似文献   

19.
Fatty acid desaturase enzymes perform dehydrogenation reactions leading to the insertion of double bonds in fatty acids, and are divided into soluble and integral membrane classes. Crystal structures of soluble desaturases are available; however, membrane desaturases have defied decades of efforts due largely to the difficulty of generating recombinant desaturase proteins for crystallographic analysis. Mortierella alpina is an oleaginous fungus which possesses eight membrane desaturases involved in the synthesis of saturated, monounsaturated and polyunsaturated fatty acids. Here, we describe the successful expression, purification and enzymatic assay of three M. alpina desaturases (FADS15, FADS12, and FADS9-I). Estimated yields of desaturases with purity >95% are approximately 3.5% (Ca. 4.6 mg/L of culture) for FADS15, 2.3% (Ca. 2.5 mg/L of culture) for FADS12 and 10.7% (Ca. 37.5 mg/L of culture) for FADS9-I. Successful expression of high amounts of recombinant proteins represents a critical step towards the structural elucidation of membrane fatty acid desaturases.  相似文献   

20.
The fatty acid composition of animal products (eggs, milk and meat) is the reflect of both the tissue fatty acid biosynthesis and the fatty acid composition of ingested lipids. This relationship is stronger in monogastrics (pigs, poultry and rabbits) than in ruminants, where dietary fatty acids are hydrogenated in the rumen. There is an increasing recognition of the health benefits of polyunsaturated fatty acids (PUFA), because these fatty acids are essential for humans. In addition, the ratio n-6/n-3 fatty acids in the human diet is important. This ratio by far exceeds the recommended value of 5. Therefore, inclusion of fish meals, or n-3 PUFA rich oils, or linseed in animal diets is a valid means of meeting consumer demand for animal products that are nutritionally beneficial.The studies that are undertaken on animals mainly use diets supplemented with linseed, as a source of n-3 fatty acids. The use of linseed diets generally leads to an increased n-3 fatty acid content in animal products (egg, meat, milk) in ruminants and monogastrics. Recent studies have also demonstrated that neither the processing nor the cooking affects the PUFA content of pork meat or meat products.The ability of unsaturated fatty acids, especially those with more than two double bonds, to rapidly oxidise, is important in regulating the shelf life of animal products (rancidity and colour deterioration); however, a good way to avoid such problems is to use antioxidant products (such as vitamin E) in the diet.Some studies also show that it is not necessary to feed animals with linseed-supplemented diets for a long time to have the highest increase in PUFA content of the products. So, short-term diet manipulation can be a practical reality for industry.As the market for n-3 PUFA enriched products is today limited in most countries, other studies must be undertaken to develop this kind of production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号